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ABSTRACT

Time-stamp ordering is one of the consistency preserving algorithms that is nsed in
distributed data bases. Baceelli [1] has introduced a queueing model to analyze its perfor-
mance which incorporates, both the fork—join as well as the rescquencing synchronization
constraints in its structure. In this paper, we illustrate the power of interpolation approx-
imation technique, by obtaining extremely good approximations for this rather complex
model. The heavy traffic approximations are obtained by showing that this model has the
same diffusion limit as a system of parallel fork—join queues, the heavy traffic limit for which
was obtained in [6]. The light traffic limits are obtained by applying the Reiman-Simon

[5] light traffic theory.
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1. Introduction

Consider a fully replicated distributed database consisting of i storage sites. Assume
that the time-stamp ordering consistency preserving algorithm is used in this database.
This consists in predefining a total order among the update transactions that operate on a
data element and processing them according to this order on all the sites. In order to obtain
such a total order, all the access sites are put on a (possibly virtual) token ring, and a
token is circulated on this ring. On each access site the update transactions are quened up.
When the token with integer value N arrives at a site, it numbers the transactions at that
site sequentially with time-stamps from N +1 to N + M (assuming that M transactions
were waiting there). The mark of the token is then increased to N+ M.

Baccelli [1] has introduced a queueing model for this algorithm, which operates as
follows (Fig 1). The model is simplified by assuming that the circulation of the token in
the access sites is fast enough in comparison to the update transaction arrival process.
Once an update transaction receives a time-stamp from a circulating token, it is instantly
split into K parts, with each part going to a different storage site. This corresponds to
fork synchronization constraint. The communication delay between the access site and the
storage sites is modeled by an infinite server queue, while the storage sites are modeled by
K single server queues. Since the update transactions may arrive at the storage sites in
an order different from the one that they were assigned by the circulating token, they may
undergo a resequencing delay before entering the storage site. The transaction is said to
have concluded when each of its K parts have finished their execution at their respective
storage sites. This corresponds to a join synchronization constraint.

Baccelli [1] has obtained the stability conditions for this queueing model, and also has
given technigues which can be used to obtain bounds for the response time. In this paper
our aim is to obtain good approximations for the average response time by using techniques
from heavy and light traffic approximations. We show that the time-stamp odering model
has the same heavy traffic limit as the usual K —-dimensional fork—join queue, whose heavy
traffic limits were obtained in [6]. We also obtain the light traffic limits for this model by
nsing the Reiman-Simon [3] theory. By combining the heavy traffic limit with the light

traffic limit, we are able to obtain good approximations for the entire traffic range.
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This paper is organized as follows. The recursions governing the model, as well as
its stability conditions are given in Section 2. In Section 3 we obtain the heavy traffic

diffusion limit, while in Section 4 we obtain the light traffic limit.

2. Recursive representation of the delays

In this section a recursive representation for the delays in the time-stamp ordering
system is provided. These equations were first derived in [1]. For all n = 0.1... and
1 < j € K, define the following RV’s on some probability space (2, IF, IP).

tn41 ¢ Inter-arrival time between the (n + 1) and n'* exogenous customers.

v} : Service time requirement of the n'" customer to be served in queue j.

dJ : Service time requirement of the n'® customer to be served in infinite server queue
]

D! : The delay between the n'* exogenous customer arrival and the beginning of his
service at the j'* queue.

W3 : Waiting time of the ntt exogenous customer in the the resequencing box associ-
ated with the infinite server queue j, as well as the buffer of queue ;.

T, : End-to-end delay of the n'h

exogenous customer.
We assume the system to be initially empty and adopt the convention that the 0"
exogenous customer is created at time ¢ = 0. The following recursion holds between these

rariables.

Lemma 2.1. If the system is initially empty, then for 1 < j < K, the recursions

Dg = dﬁ
Dfx-i—l — ma‘x{d{;q-l,Dz; + ‘U{; = “n—H}w n=:0: T (.21)
Wi =0
""'3;4-1 = max{0, W} + d, — dfu+| +v) — Unt1}, n=0,1...(2.2)

hold where the mazimum over an emptyset is zero by convention. Moreover the end—to-end

delay of the n'* customer is given by

T. = max {D] +vl}. n=0,1...(2.3)
1£)EK
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The proof of this lemma may be found in [1].
We make the following assumption.
(I): The sequences {un41}5%, {d4}5° and {v]}§°.1 < j < K, are iid with finite second
moments and mutually independent.

Foralln=0,1..., we set

u = JE(uy,) < oo, a(:,' = Var(u,) < o
W = E(v)) <00, of =Var(v)<oo, 1<j<K

& = Ed) <o, 7 =Var(di) <o, 1<j<K.

We consider the system to be stable if the sequence of delay vectors
{(DL,....DE)}5° converges in distribution as n T oo to a proper random vector

(D',...,D¥).It has been shown in [1], that the condition
w<u, 1<j<K (2.4)
is sufficient to cnsure stability of the system.

3. The diffusion limit

In the last section we saw that the the time-stamp ordering system will be stable
provided v7 < u,1 < j < K. The system is said to be in heavy traffic if v/ a2 u for one or
more queucs. In this section our objective is to develop heavy traffic diffusion limits for the
delay processes in these networks. We shall use the recursions (2.1)~(2.2) to connect the
delay processes to partial sums of iid RV’s and then use the well known results regarding
functional central limit theorems for these partial sums to deduce the corresponding limit
theorems for the delay processes by means of the continuous mapping theorem. The main
result that we obtain is that the time-stamp ordering system has the same diffusion limit
as the usual fork—join queue.

We now consider a sequence of these systems indexed by r = 1,2..., each of which

satisfies condition (I). Moreover assume that:
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(IX): As+ T oo,

oi(r) = oj, 0Lj<K
G;(r)—7;, 0< | (4

[u(r) — VW = 1<i<K
(TIT): For some € > 0,

sup {IB{| wi(r) [**}, B{| vi(r) PF* E{] di(r) T} < o0.
nJ

For 1< j < K and r=1,2..., define the partial sums

Vi(r)=0,

Vi(r) = vi(r) + ...+ vy () =12 (314)
and
Jo(r) =0,
Un(r) =ui(r) + ... + ualr). n=1,2...(3.1b)

For r = 1,2..., define the stochastic processes E(r)= {E{(r),t >0},0<j <K, with

sample paths in D[0, 00) by

&(r) = U{rqm\;;um[rt]ﬁ t>0 (3.2a)
) Vv S 10 T
&(r) = L \/; - ], 1<j<K, t>0. (3.2b)

Let & = {{{ .t >0}.0 <j <K, be K+1 independent Wiener processes. Lemma 3.1 shows

that the random functions defined in (3.2), converge weakly to these Wiener processes.
Lemma 3.1. As r T oo,

(E(r), € (r), -, " (1) = (008", n €., 0BE™) (3.3)

in D[0, 00K+,



Proof. Equation (3.3) follows directly by Prohorov’s functional central limit theorem for

triangular arrays [4] under assumptions (I)—(III).

Forr=1,2..., we sct
Si(r) =0

S3(r) = VI(r) — Un(r), n=1,2...(34)

and define the following stochastic processes {(/(r) = {¢/(r),t > 0},1 < j < K.with

I}

sample paths on D[0, oc) by

: 5.4

We also define the stochastic processes (7 = {(?,t > 01,1 <j < K, by
(=0l —ooll ~cit, 1<j<K, t>0. (3.6)

The process ((1,...,(®) is a K-dimensional diffusion process with drift vector ¢ and

covariance matrix 2 given by

o (R R (3.7)
and
2 a9 2 S
oy +o5 T4 ces ag
2 2
o3 o3 +at ... ol
R= ; : ) ; : (3.8)
2 9
ot o3 eer 0% + ok

The next result shows that the stochastic processes (C'(r),....C*(r)) converge weakly to

(hacng CF).
Lemma 3.2. As r | oc,

(CH )oY UL 04€™) (3.9)

in D[0,00)".
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Proof. Fixr > 1and t > 0. Forall 1 <k £ K, we see from (3.4)-(3.5) that

B Vien(r) = Uty

- VT

_ Vi) — ot 0)lrt]  Upg(r) —u(lrt] [ré]fu(r) — v¥(r)]
VT NG VT

= £r) - €00 — pur) - IV

r

¢E(r)

From assumption (IT) it is clear that as r T oo,

L’;—ﬂ-[u(r) —o* ()T —et, 1Sk<K

and we conclude to (3.9) by invoking Lemma 3.1 and the continuous mapping theorem [2]-

|
For r = 1,2..., we define the stochastic processes w(r) = {;tf(r'),t 2051 £ 7L K,

with sample paths in D[0,00), by setting

. Wi (r)
wr) = _l\_}];’ 1<j<K, t>0. (3.10)

The processes j# = {;z‘i,f. > 0},1 < j < K, are now defined by
w=g(), 1<j<K (3.11)
We now present the main result of this section.

Theorem 3.1. As r T oo,
)y B () = (5o i™) (3.12)
in D[0,00)¥.

Before providing a proof for Theorem 3.1, we present the following two corollaries.
For r = 1,2..., we define the stochastic processes ni(r) = {n}(r),t = 0} with sample paths

in D[0,>0), by

piry=—LL 1<j<K, t20 (3.13)




Corollary 3.1. As r T o0,

it I i () 3 (o (3.14)
in D[0,00)".
Proof. Note that forall r =1,2...,
Di(r) =Wi(r)+di(r), 1<j<K n=01..
so that for all r = 1,2...,
m(r) = pl(r) + A7) 1<j<K, t20 (3.15)

i

We obtain (3.14) from (3.12) and (3.15) by applying the continuous mapping theorem and
the converging together theorem [2]. E
For r = 1,2.... we introduce the stochastic processes r(r) = {ke(r),t = 0} with

sample paths in D[0, 0c) by

T,
K(r) = [\‘}_g—), > 0. (3.16)
Corollary 3.2. Asr ] oo,
k(r) = lgl;%\lx n (3.17)

in D0, cc).

Proof. Using the fact that for all r=1,2...

: = c Anir i’l >
m(r) = mex {m(r)+-7=h £20 (3.18)

we obtain (3.18) from (3.14) by applying the continuous mapping theorem and the con-

verging together theorem. [
We now proceed with the proof for Theorem 3:1.
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Proof. Fixr=1.2.... For1 < j < K, we can write the recursion (2.2} for the waiting

tine sequence as

Wi(r) =0,
Wi ,1(r) = max{0, W3(r) + X}, (1)} B = 0uksee (3:19)
where
Xy =difr) - d{r-l-l(r) +v3(r) = tna(r). n=0,1...(3.20)

By successive substitutions, we obtain

W) = max{0, X2 (r), X2(r) + X} _y(r)y..., X2(r) + ...+ Xi(r)}: n=0,1...(321)

Let
Zj(r) =0,
Zi(r) =Y X{(r). n=12...(3.22)
i=1
It follows that
Wi(r) = Zi(r) — min Zi(r). n=0,1...(3.23)
Note that
Z3(r) = Di(r) = Di(r) + Si(r). n=0,1...(3.24)

For r = 1,2. .. we introduce the stochastic process Pr) = {pf (r),t >0},1 <j < K, with

sample paths 1n D[0,0) by

j Z{,y(r) e g
p(r) = v 1<j<K, 120 (3.25)
From (3.23) and (3.25) it follows that
i) =gl (M), t20. (3.26)

Hence by the continuous mapping theorem, in order to prove (3.13), it is sufficient to show
that,
O WO ) E A (G o) (3.27)
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in D[0,0)%, as r T co. But this follows by (3.9), (3.21) and the converging together
theorem. |

Corollary 3.2 implies that the end-to-end delay sequence in the time-stamp ordering
queue has the same heavy traffic diffusion limit as the end-to-end delay sequence in a
fork—join queue [6]. The following formula was given in [6] for the heavy traffic limit for
the end—to—end delay of a homogeneous fork—join quene. Assume that the service processes
have a distribution with rate g and variance o2, while the arrival process has rate A and

limiting variance (as A T u) oj. Let

2
g

P
ot + og

(3.28)

Denoting the average end-to-end delay when the arrival rate is A by T(A), then

lim(p — AT k(})

Alp
3 R i ,
= [H;{ + 4V —3Hg - 1)+ 2(1+ Hix — 2V )3 ]——‘)—';1 . 0€8<1
K =2:3..:13:29)
where
K 1
He=) ¢ (3.30)
k=1
and

Iy & r
¥ 0, O e r\ (m— 1) .
V'I( = E (r)(—l) 3 E (n},) -—rm—l—. K =2.3..(331)

=1

4. The interpolation approximation
In this section we consider the special case of a homogeneous time-stamp ordering

system with Poisson arrivals and exponential service and disordering distributions. We

obtain the light traffic limits for the end-to-end delay of this model and combine it with

the heavy traffic limit of the previous section, to obtain good approximations for the entire

traffic range.
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We shall assume that the batches arrive into the system according to a Poisson process
with rate A, the I\’ infinite server queues have service times with exponential rate v, and
the K single server queues also have service times with exponential rate p. Specializing

(3.29) to this case, we obtain

!\i%n(u —ATk(A) = Vk. K=2.3...(41)
I

Before the light traffic limits can be obtained, we have to prove that the system is
admissible in the sense of Reiman and Simon [5]. This was done in [6], to which the reader
is referred to for further details.

We first caleulate T g ( 0). Consider the batch arriving at ¢ = 0. Let d;,...,dx beits
disordering delays and si,...,sx be its service times at the K queues. Since this batch
does not experience interference from any other customer, i.e., it does not experience any

queueing or resequencing delay, it follows that

o s i i
Tk(0) Elglkasxk,(dx + 8 )- (4.2)

Each of dr + 53,1 < k < K, has a common distribution F(z), given by

Fz)=1+ — exp(—vz) — — exp(—pz), z=20 (4.3)
so that
- = . Vo
TA-(O):/ L1~(1~}— - # e V¥ — —¢ "‘)"]d:
0 — i v—
oo [ e K 0 %
— oo —ve . —pz\r d-’?
~/0 _1 ;(T)[V—p-e I/—pe ]
Y " r
Y e i
r m v— v— [
r=1 m=I
% /Oc e—(mu+(r—m)u):dz
Jo
_ K AEN L R 1)1n+1( T e v ym 1
—Z r L m fi= v—u v—J mp—{-(r—m)u'

=1 m=0
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Let Ly (g, v) denote the right hand side of this last equation, so that
Tic(0) = Lic(s,v). (4.6)

Values of Lx(1,2),1 £ K < 10 are given in Table IL

We now proceed to calculate T',\-(U). Let

T(t1 dls s -.dk'vslv v 731\'1211 S0 ,2[{,:‘;"], cas vgl\’)
be the response time of the batch that arrives at time t = 0 with service times s1,....5K
and disordering delays dj....,dx given that another customer arrives at time ¢ with dis-
ordering delays dy,....dy and service time 5;,...,%x. Then it is not difficult to see that
T(t,(ll._\. . ,d}(,sl,. . .,S[{,(-ll,. .a ,2}\',3‘-],. e ,E[{)
max; <k<i(dr + Sk ), ift>0
- ) (4.5)
max15k51<[ma,x(dk,t +dp +3%) +sx] ift<0.
Define the RV’s Xz, 1 < k< K, as
Xy =t +dp + Sk (4.6)
Then it can be shown that each Xj,1 < k < K. has the following distribution,
l-l' —
Fx =1- < = t—=z)), x>t 4.7
x{x) e exp(u(t —a)) + ey exp(v(t —z)), =z 2 (4.7)
Next define the RV's Y. 1 < k < K as
Y = max(dg, Xi) (4.8)

Since the RVs di and X are independent for 1 < k € K, each Y3,1 < k < K, has the

distribution Fy given by

FY'(:B) :[1 . v 6#(‘—1’) + H ell(f-—z)](l = 6—;;1:)
. vV—p v—p
=1-— —v—-e"’('-” + - Vi) _ VT
W= V—f
Y gnte A B ottemie, 0 20, (4.9)
Ve vV —u
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Lastly define the RV's R, 1 <k < K, as
Ri = Yi + k. (4.10)

Taking into account that the RV's s and Y} are independent for 1 € k < K, it can be

shown that each Rp.1 < k< K,

Fr(z) =1+ A Y b= A eMlzeHF
v—H v—pu v —
/‘2(31" —2p) SILLAR y2 eVte—vs
(v = p)*(2v — p) (v —p)?
e [ 6#(6—;1;: . H cl;tc—-(u-i'u)x
v— i v — p
- i e~ 3> 0. (4.11)
(20 — p)(v — p) B
Note that from (4.5), (4.6), (4.8) and (4.10),
T= max Rp if t<0 (4.12)

1<k<K
where the left hand side of {4.5) has been abbreviated to T. Since the RV's R, 1 <k < K,

are independent, we obtain that

.
P(T <) = [[ P(Re < 2) = Fg (), ==0. (4.13)
k=1

Using the fact [5], that

oo oo

T;;(O) = / (1—IP(T < z))dxdi

t=—oc Jr=0

it ean be shown after some calculations that

g g pa K N K
Ty(0) = — /t_ oo/z_o}: (r)cr V" dadt (4.14)
e —=vir=1
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where

I-L v
U=1+ exp(—va) — exp(—pua
e xp(—v2) = pl—p)
and
2
7 - [ (31/ '—21"") vt —pxr __ ol o cutme"llz
(v — @ —n) v~
p? L
- > Cvt —vr c:tte-#t
P v—h
_ A e“te—(u+p)z _ Nz ‘V‘te*zvt
v—p (2v — p)(v — p)
It can be shown that
i, K-',. K—-r\ « iy may M my —m v m
e Fo (o ) D L N i B
my =0 Lo nig=0 e =4 A
% e-(u(ml-m2)+umg)z
and
A s\ TSR ek 7
s () 3 ()t
Z ) 2w )G
2
x [ I.l (31/ " 2#) k;e(}l(v‘—k| —k;)+l’k;)le—[l2“(r—kl)
(v — u)?(2v —p)
kl’kg—k.l

k3=0 k.] =

" i (kl)h—zka (lq _1.-3)( v o 12 |
ks kg v—p' t(v— p)?

x e(uk.1+v(k| —'ks——kq)ka.q e—([tk.g+u(k| —k;;—lu)):r

ka }‘,‘3 i -
: Z (ks)("—ﬂ) [(V

ks =0

"42 ]ks— k_',
— )2 = )

¥ c(ﬂk:;+V(k3—k5))tc—([tk:.-Fv(st—k:,))I'

From (4.14), (4.17) and (4.18) it follows that
T (0)
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EOECE Gt
=1 =, 2 “ =K

my=0 2=
i S " (r—k\,_n u2(3v — 2u)
p'e ( 1) 1 ( ) ( )( )T"kl—kz = o kg
e ‘§=:0 k2 v— [ [(r/ — 1) (2w - /.z)]
T
s (1‘»]) ’z:s (kl L ) VL )k~l[ “2 ]kl—'ks-kq
k=0 k3 ka=0 k4 V=& (V i “)2
ks 1, 9
Lo \ks/ v —p” (v — p)(2v = p)
oo
X / xkd e-(#("+'732—k1+k-1+k3) +o(my —".2+k"+k3—k4—k"’))r(l.’1?
0

0
% / c(#(r“kx-—kz-‘rk4+ks)+1’(kx+k2—k4“kr.))tdt
—0co

s (I\) I\z:’ (I{ a T) i (m] l)mg l" wip—z 4 Nty
- mi g 2 (_ (l/ = ;L) (V — p)
r—ky 2
& r—k\, B ek -k #TBY —20) g,
XZ( o ( )z_:u( ks )(v-/t) [ —u)? (’V—ﬂ)]

Ky —k:
< (k1—ks VI ke B ky—ka—ky
<3 () & (L)t et

ka=0 ky=0

= ks ) v —p' “(r—p)(2r —p)

kgl
X
u(r +ma —ky + ks + ks) + v{(my —ma + ky + k3 — ky — kg)]kat!
b3 - (4.21)
lt("—kl—k2+k4+k5)+l/(k1+k2-k4—ks). -
We shall denote the right hand side of (4.21) as G (u, v) so that
T (0) = Gr(p, v). (4.22)

Values of Gr(1,2),2 £ K < 10 are given in Table II.
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Finally combining (4.1), (4.4) and (4.20), we obtain the following first order approxi-

mation to the average response time of the time stamp ordering model,

Lk
Tie (M) ﬁT’—(’—‘— + Gt ) — Do) -

A

A 1
+ [VK — 112G r(p, l/)] (Z)2 -,‘—_—,\, 0< A< p. (4.23)

This approximation agrees extremely well with simulation results (see Table I).
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Table I

In these tables, approximation (4.23) is compared with simulation results for the case

p=1v=2and K =2,3,5 and 10.

A Ta()\) T2 (N\) % Error
0.1 .95 + 0.008 2.93 0.89
0.2 | 2.46+0.012 2.43 1.22
0.3 | 2.73+0.016 2.67 2.19
04 | 3.08+0.017 3.00 2.59
0.5 | 3.56+0.036 3.46 2.80
0.6 | 4.27+0.062 4.15 2.81
0.7 | 5.4040.112 5.30 1.88
0.8 7.59 +0.24 7.59 0.00
0.9 | 14.54+0.31 14.47 0.48

A Ta()) T;;(X) % Error
0.1 | 2.6440.007 2.63 0.38
0.2 | 2.88+0.011 2.85 1.04
0.3 | 3.17+0.015 3.14 0.95
0.4 | 3.57+0.022 3.52 1.40
0.5 | 4.11+0.036 3.89 5.35
0.6 | 4.92+0.059 4.86 1.22
0.7 | 6.31+0.111 6.19 1.90
0.8 | 9.13+0.295 8.85 3.07
0.9 | 17.63+1.23 16.82 4.59

A Ts()\) Ts(X) % Error
0.1 | 2.64+0.007 2.63 0.38
0.1 3.14 + 0.009 3.14 0.06
0.2 | 3.41%0.012 3.40 0.32
0.3 | 3.76+0.017 3.73 0.80
0.4 | 4.2240.026 4.18 0.99
0.5 | 4.8740.041 4.88 0.20
0.6 | 5.83+0.068 5.73 1.71
0.7 7.39 +£0.12 7.28 1.48
0.8 | 10.44 +0.28 10.39 0.57
0.9 | 19.96+0.39 19.69 1.35
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A Tia(X) Tio(N) % Error

0.1 | 3.84+0.008 3.84 0.08
0.2 | 4.16+0.011 4.14 0.48
0.3 | 4.57+0.016 4.53 0.87
04 | 5.11%£0.019 5.05 1.17
0.5 | 5.8640.026 5.78 1.36
0.6 | 6.99+0.076 6.88 1.57
0.7 8.80 + 0.15 8.70 2.13

0.8 | 12.73+0.37 12.34 3.06
0.9 | 24.25+0.43 23.26 4.08
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Table T
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Lk(1,2) Ggr(1,2)
2.08 1.39
2.45 1.62
2.72 LT
2.93 1.88
3.10 1:97
3.25 2.04
3.38 2.10
3.49 2.15
3.60 219
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Fig 1. The time-stamp ordering system



