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ABSTRACT

This paper deals with the problem of optimal allocation of customers in a two server
queue with heterogeneous service rates and resequencing. The resequencing constraint
ensures that the customers leave the system in the order in which they entered it. It is
shown that the optimal policy that minimizes the average end-to-end delay of customers in
the system is independent of the number of customers in the resequencing buffer. Morever

it is also shown that the faster server should be kept busy whenever possible.
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1. Introduction

Consider a M /M /2 queue with heterogeneous servers which operates under the resequenc-
ing constraint that the customers should leave the system in the order in which they entered
it. If a customer goes out of sequence after recciving service, it waits in a special buffer—
the so-called resequencing buffer—until the customers who entered the queue prior to it
have completed service, at which time it leaves the system. The queucing system described
above can be used to model the communication between two nodes in a computer network,
which are connected together by two independent channels. Multiple channels are usecful
because if one of the links becomes faulty, then the other links can take on its function,
thus paving the way for better fault tolerance. Multiple paths also help in distributing the
traffic more evenly in the network. Networks such as IBM’s Systems Network Architecture
(SNA) and French PTT’s public network TRANSPAC, employ multiple paths between

two nodes.

An interesting question is that of finding the optimal strategy for assigning customers
to the servers in order to minimize their end-to-end delay, which is defined as the sum of
their queueing and resequencing delays. When the resequencing constraint is not present
this problem has been solved by Lin and Kumar [4]. They showed that it is optimal to
keep the faster server busy whenever possible, while the slower server should be assigned
a customer only if the number in the buffer exceeds a certain threshold. In this paper, we
show that in the presence of the resequencing constraint the decision to assign customers
to either server is not influenced by the number of customers present in the resequencing

buffer. Moreover as in [4] we show the faster server should be kept busy whenever possible.



In this paper we restrict ourselves to FCFS allocation policies for the two servers. Under
this restriction we have been unable to obtain the optimal allocation rule for the slower
server. However, if the FCFS restriction is removed, then preliminary results (not presented
here), suggest that the optimal allocation to the slower server should be of the threshold

type.

One of the first two server models to incorporate resequencing is due to Lien [7].
He considered a server allocation policy independent of the number of customers in the
resequencing buffer, and of the threshold type in the number in the queue buffer. He
derived a closed form expression for the average resequencing delay for various values of the
threshold,and showed that the end-to-end delay is minimized for a certain threshold value,

which depended on the systemn parameters. Lien also assumed that when the threshold
value is excecded, the customer to be assigned to the slower server is taken from the first
position in the queue. This last assumption was relaxed by Iliadis and Lien (2], who again
assumed a threshold type policy, but also considered the case when the customer assigned
to the slower server was taken from the last position the buffer, when the threhold value
was exceeded. They obtained an expression for the resequencing delay distribution and
showed that depending upon the ratio of the service rates, it may be optimal to assign
a customer to the slower server from either the first position or the last position in the

buffer.

The paper is organized as follows: In Section 2 the model is introduced and a descrip-
tion of the optimization problem is given. In Section 3, the model is discretized and an

explicit description of control actions and events is provided. The dynamic programming



equation is formulated in Section 4. In Section 5 it is shown that the optimal control of
the two servers is independent of the number of customers in the resequencing buffer and

in Section 7 the optimal control of the faster server is identified.

2. Model

The system under investigation is a M /M /2 queue with heterogeneous servers. The
input process is Poisson with rate A and the service time distribution at server 1 (resp.
server 2) is exponential with rate yy (resp. p2). We assume py > p2 so that server 1 and
server 2 can be called the fast and slow servers respectively. Following [7], a state space

representation of the system is provided by the quintuple z = (zo, 2,2, %3, Z) where

7o = Number of customers in the buffer of the M/M/2 queue where customers await
service.

z; = 1 (0) if the fast server is busy (idle).

z2 = 1 (0) if the slow server is busy (idle).

z3 = Number of customers in the resequencing buffer.

Z = 1(0) if the customer being served by server 1 (server 2) arrived earlier into the

system than the one being served by server 2 (server 1).

When there is a single customer being served by either one of the two servers, we will
adopt the interpretation that Z = I if the customers is with server 1 and Z = O if the
customer is with server 2.

In this model, jockeying of customers between the two servers is not permitted, so
that once a customer commences service at some server, it remains there for the duration

of 1its service.



The aim is to find the optimal policy which assigns customers to the two servers, so
as to minimize their average end-to-end delay. To that end, define the cost incurred per
unit time at time ¢, when the system is in state z(t), by c(t) = zo(t) +z1(2) + z2(t) + 3(2).

The problem in now cast as a Markov Decision Process [9]. A policy v is any rule
which at ¢ > 0 decides on the basis of {x(s),0 < s < t}, whether to send a quened message
to the idle servers. Let EJ denote the expectation corresponding to the measure P} on the
space of trajectories {z(s),0 < s < oo} such that z(0) = = and the policy 7 1s used. Since
we consider only the discounted cost case, let a > 0 be the interest rate used for discounting
the future cost. i.e., the present value of cost ¢(t) incurred at time t is e(t)e(—at) and the

cost incurred by a policy 4 over the interval [0,00) is given by
o0
I(z9) = E;’/ e”*c(t)dt (2.1)
0

when the system is initially in state z. A policy = is optimal if J (z,7) = inf. J(z,v) and
it is well known that an optimal policy can always be choosen to be Markov and stationary
[5], and therefore identifiable with a single mapping from the state space to the space of

control actions.

3. The discrete time problem

It is useful to give a discrete time formulation of the problem in order to facilitate the

backward induction of Dynamic Programming. The uniformization procedure for doing
this is standard and the reader may for instance consult [5] or [11].

A detailed description of the events and control actions in the discrete time problem



are now provided. The system state z = (xg, 1,2, 73,7 ) is an element of the state space

E = {0} U N % {0,0,0,2)}

UIN x {1,0} x IN x {I}

(3.1)
UIN x {0,1} x IV x {0}
UINV x {1,1} x IN x {I,0}
where {0} represents the ‘empty’ state and IV is the set of non-negative integers.
Define the operations A, Dy, Di s B — E'by
Alzo,21,22,%3,2) = (z0 + 1,%1,22,T3,2) (3.2)
Di(z0,1,22,23,I) = (20,0,22,0,0) (3.3a)
D;(z0,0,z2,23,0) = (20,0, 22,23,0) (3.30)
Dy(z0,1,72,73,0) = (20,0,22,23 + 1,0) (3.3¢)
Ds(zg,21,1,23,0) = (70,21,0,0,1) (3.4a)
Dy(z9,231,0,23,1) = (20,71,0,23,1) (3.4D)
Dl #i, 1, 25, I) = (v, 2y, Oims + 1,1 (3.4c)

It is plain that A is the arrival operator and that D; is the departure operator from server
i = 1.2. Depending on whether Z = I or O, a departure from server 1 either adds to the
number in the resequencing buffer by one, or clears it of all customers. The same behaviour
is exhibited by a departure from server 2. The changes in the Z component are illustrated
by the following example: When 2y = vz =1 and Z = I, then a departure from server

1 changes I to O, since following the departure, server 2 is left serving the customer who



started service earlicr. Note that a departure of a dummy customer does not change the
state of the system.
We now define the control operators for assigning customers to the servers.

e The hold operator Py is first defined by

Py(xo,%1,22,73,2Z) = (20,21, 72,23,2).

e The operator P; defines customer assignment to server 1 and is given by

( (z0 — 1,21 + 1,22,73,0),

ifzp 21,2y =0

z2=1,23 20

Py(xg,x),22,23,0) = ¢ s en-Toaprass 1) 2 T3 2
if:l.'()Zl,xl =0

. "52:0,333?.0

o The operator P; defines customer assignment to server 2 and is given by

'(Io-lsxlsx2+1,$3,I),
ifl‘oZl,.‘L'l:l
22 =0,z 20
Py(xo, 21, 22,73, 1) = ¢ Fing e 0) 2 T3 =
) L] y oz . 3 N

IOZIQII =0;
; 1.2:071320

e Finally, the operator P, defines customer assignment to both servers at the same time

and is given by
1’})(-170.,1'],13'2..1'3.2) - ("(.0 —23I] + 1?'1‘2 == ]‘VIS-Z)
if 20227 =0,22=0,2320,Z=1 or O

Let U = {u = (up,u1,u2) : u; € {h,1,2, b}} be the set of available control actions

where control action ug is to be taken on the occurrence of an arrival and the control action




u;, 1 = 1,2 is to be taken on the occurrence of a departure from server z. Let
U(z) = {ue U : A(z) € Dom(P,,),Di(z) € Dom(P,;),i = 1,2} (3.5)

be the set of admissble control actions when the system state is z. Note that U(z) can be

expressed as the cartesian product
U(z) = Us(z) x Uy(z) x Us(z) (36)

where

Ug(z) ={uo : A{z) € Dom(Py,)}

Ui(z) ={u; : Di(z) € Dom(Py;)}, 1=1,2.

In order to completely specify the Markov decision process we define the one-step

transition probability function of the underlying discrete-time Markov chain as

Plz{(t+1)=y|z(t) = z,u(t) =u) = A if y= Py, Az

=g it y=iPs: D

The model operates as follows: If the present state is z, then a control action (ug,uy,uz)
in U(z) is chosen such that if an arrival occurs the state changes to P, Az while if a

departure from server ¢ occurs, then the state changes to Py, D;r.

4. The Dynamic Programming Formulation

In the discrete-time formulation, the discounted cost criterion becomes

B> 8'(zo + #1 + 72 + 73)] (4.1)

t=0



where 3 = = is the discount factor. This equation is an easy consequence of discretizing
the continous-time cost criterion of Section 2 by the uniformization procedure of Section
3:

Define a stationary policy 7 as a function = : E — U with 7(z) in U(z) for every
in E. When a stationary policy 7 is used, the control u = w{z) is applied whenever the

system is in state z.
Denote by IF the collection of all functions f : E — R so that
flz)

i < ) 4.2
A1l 5L,tpma_\:(xo'*l--Tl'+'~'1"2'*"’73v1) °C )

and observe that (JF,||.||) is 2 Banach space. For any stationary policy 7, define the

operator Ty : IF — IF by

T, f(z) = 7o + 21 + 72 + 13 + BAf(Pug Az) + i1 f(Pu, Drz) + Bz f(Puy Daz)  (4.3)

for all z in E, where w(z) = (uo,u;,u2) and consider the dynamic programming operator

T : IF — IF given by
(Tf)=) = nl,éll(Tfrf)(I) (4.4)
The operator T, acting on the space of functions JF, is a contraction mapping, so that if

J# is the optimal cost function, then 73 = TJ? and for any fin IF, im,—oo T"f = J7.

The dynamic programming equation of interest for the minimization problem associated



with (4.1) can be written as

I (z) = min | + oy + 22473 + BATR(P,, Az)
ucUlx

+ ﬂl‘.l]g(puxDl‘T) (4.5)

+ BuzJ?(Py,Da)|.

In view of (3.0), this can be re-written as

JB(.'L‘) =Zo+ Ty +x2+ 234+ mmun )BAJ"(P.“,AJ?)

upgELG(x

4+ min )5;L1Jﬁ(Pu1Dlx) (4.6)

uyely(x

4+ min ; ;9;12J3(P,.2D21:).

ur€Ux(z

The following notation will be used in the rest of the paper: For any f in IF, define

AZf(i, 5, k) = f(i,1,0,5, 2) — f(i,1,0,k, Z)
AEf(3,5,k) = f(,1,1,5, Z) = f(i,1,1,k, Z) i,j, k>0 (47)

AZf(i,j. k) = f(i,0,1,4.Z) — £(i,0,1,k, Z)

Also given z = (xo,T1.72,23,2Z) and y = (Yo.y1,Y2,¥3, Z ), we say that z > y if z; 2
3 =10,1.23;
5. A key property

In the present section we show that the optimal control of server 2 is independent of

the number of customers in the resequencing buffer. A similar proof holds for server 1 and




1s omitted. The proof proceeds by the technique of value iteration, wherein it is assumed
that a function f satisfies certain inequalities. These inequalities are satisfied identically
by the zero function and further lim, ... T"0 = J?. Hence if we show that T f also satisfies
these inequalities, it would follow that the same is true for 7" f. Since lim,—o T f = J#,
it follows that the optimal value function also satisfies these inequalities. The main result

of this section is now stated.

Lemma 5.1. The following relations propagate under the dynamic programming operator,

i.e., if f in IF satisfies the relations

AL f(=o,73,23) = Af flyo,ys.43) (5.1a)
A{f(xovl's,l';) - A{f(yo';yfbyi'i) (5'16)
Aif(rﬂax:):x;}) =Atltf(y0)y3$y;) (5.10)

for z0,23,%0. Y3, T3, 45 = 0,23 — 25 = y3 — y3, so does Tf.
Proof. We provide a proof for (5.1a) and leave the proofs for (3.1b-c) to the reader. We

have to show that,
Tf('rOn 1~0-, .I‘:;.I) = Tf(:ro,l,(),xg,[) = Tf(y(h lvla yJaI) = Tf(ym 11 1,.9’;,]) (5'1(")
In view of (4.6)-(4.7), (5.1a") holds if Equs. (5.2)(5.3) and (5.4) given below are satisfied,
where
1?i}1f(Pu0(1-(, +1,1.0,23.1)) — 1;}15_31 f(Puo(xo +1,1,0,25, 1))

= f(Puu(yO +1, l, 11 yth)) = f(Puo(yO =0 111 ly;»l)) (52)



nlﬁ:x f(Pu‘(Io,(),0,0,0))-n’li;l f(20,0,0,0,0) = !llliglf(Pul(yo,(), 1,0,0))—nl1i;1 flyo,0,1,0, O))l

(5.3)
and
rf"iznf(Puz(a"Oala 0v$391)) = H’;lizllf(Puz(l‘o,l,O,I;,I))
o nhli,?f(Puz(!lO, 11 01!!3 + 1~I)) - n"liznf(Pug(yO’ 1,019:'3 + I)I)) (5'4)

If we apply the hold operator on the LHS of (5.2), then it 1s true because of (5.1a).
If we apply the operator Py, then it is true because of (5.15). Eqn. (5.3) is obviously true

by inspection. Expanding (5.4), we obtain
min(f(zg,1,0,z3,1), f(xo — 1,1,1,z3,1)]
— min[f(z0,1,0, 2%, I), f(zo — 1,1,1,23, )]
= min[f(yo,1,0,y3 + 1,1), f(yo — 1,1,1,53 + 1,1)]

—min[f(yo,1,0,93 + 1, 1), f(yo — 1.1, 1yy + 1,71)) (5.4")

and (5.4') will clearly be true if the following equations hold:

flx0,1.0,23,1) — f(20.1,0,25, ) = f(yo,1,0,y3 + L. I) — flyo — 1,1.0,y5 + 1. 1) (3.3)

flxo —1,1, 1,23, 1) = f(zo =34, 128 ) =Fve -1,1,1,y34+1,1)— f(ve -1,1,1, 3 +1,1)
(5.6)

f('TO»1\0-,1:3’I)—f(‘r()-,l'o,'l'{;al) - f(y0‘1ﬂ1v11y3+1-I)—f(y0—lvlsl’yi’i"*—l’I) (5'7)



and

f(l‘u-1,1,1,373a1')"f($0-1.1,1'1'3,1) =f(yOylsovyJ+le)—f(y011v07yé+1’I) (58)

But (5.5)-(5.8) are just Eqns. (5.1a — ¢) which are assumed to be true. Hence equation

(5.1a) is proved.

Eqn. (5.1a) indicates that the decision to allocate a customer to server 2 is independent
of the number of customers in the resequencing buffer. This can be shown as follows.
Suppose there are ry customers in the queue buffer and r3 customers in the resequencing
buffer, and for these values of zo and x3 it is optimal to assign a customer to server 2, in
which case

f(IO,l,O,-T:;,I)-f(-To = 1$1113137I) 20

But by (5.1a) this implies that

f(lf().,l,o.,l‘g. +1,I)—f(1‘o —1,1,1,213+1,I)20.

so that it is also optimal to assign a customer to the slower server when there are 23 + 1
customers in the resequencing buffer. Equs. (5.1b-¢) were found to be necessary to make

(5.1a) propagate. These conclusions are summarized in the following theorem.

Theorem 5.1. The optimal control of the two servers is independent of the number of

customers in the resequencing buffer.

6. The effect of the Z variable on the value function



In this section we show that if both servers are busy, then an out-of-sequence state has
a greater value function than the corresponding in-sequence state. This property will come

in use later when we prove that the faster server should be kept busy whenever possible.

Lemma 6.1. The inequalities (6.1a-¢) below propagate under the dynamic programming

operator, where

f(x0,1,1,0,0) > f(20,1,1,0,7) (6.1a)
AL f(zo, a3, 74) = AL f(yo, 3, 93) (6.18)
AP f(zo,x3.2%) > AL f(yo,Ys,¥3) (6.1¢)
A2 f(xo, 23, 25) = ALf(yo,ys, ) (6.1d)
AL f(zo,za,25) = Af F(yo, ys, y3) (6.1¢)

for all xq, 23,25, y0, Y3, ¥4, T3 — 25 2 ya — Y.
Proof. We only provide a proof for (6.1a). The proof for the other cases may be found in

[13]. We have to prove that
T f(z0,1,1,0,0) 2 Tf(z0,1,1,0,1). (6.1a")

We will consider the case zg > 1. Eqn. (6.1a") will be true provided Eqns. (6.2) and (6.3)

below are satisfied, where
F(Pug(za +1,1,1,0,0)) > f(Pug(20 +1,1,1,0,0)) (6.2)

and

By flxe = 1,1,1,1,0) + Bus qli?f(Puz(ro, 1. 1:1:0))



2 )3[l]f(.'l'() - 1) 11 laOv O) + ﬂl‘Z n’;li?f(Puz(xDv lst la I))' (63)

Eqn. (6.2) follows from (6.1a). Eqn. (6.3) reduces to proving the folowing two equations

(6.3") and (6.3"), where

/"l[f(xo = 1$111$170) = f(IO o= 1311 13010)] Z l‘2[f(-7:0 = 11 lalvl’I) b f(TO = 1117 1301-[)]
(6.3")

and

1‘1[f(1'() - 1111 1'. 17 O) = f(xu = 11131,010)] 2 I"‘Z[f(xﬂ-, 1705131-) = f(l'(), 1,0-0-])] (63")

But Eqns. (6.3') and (6.3") follow from (6.1a) and (6.1b), and (6.1a) is verified.

Eqn. (6.1a) contains the main result of this section. Eqns. (6.2b-e) were found to be
necessary to make (6.1a) propagate. An intuitive explanation of why (6.1a) holds is that
when Z = O, there is a greater potential for a large number of customers to accumulate
in the resequencing buffer, compared to the case when Z = I.

7. Identification of the Optimal Control of the Faster Server

In the present section, we identify the inequalities that the value function must satisfy

in order to specify the optimal control of the faster server.

Lemna 7.1. The inequalities

f(Prz) > f(P1z), =€ Dom(P) (7.1)

f(P:x) > f(Pir), x € Dom(Py) N Dom(P;) (7.2)

are propagated under the dynamic programming operator.



Inequality (7.1) implies that if server 1 is idle, then it is always optimal to assign a
customer to it, if one is available in the buffer, irrespectively of whether server 2 is busy
or idle. Inequality (7.2) implies that if both servers are idle, then it is optimal to assign
a customer to server 1 rather than to server 2. Together these inequalities say that it is

always optimal to keep server 1 busy whenever possible. These conclusions are summarized

in the following theorem.

Theorem 7.1. Whenever server 1 is idle, it is optimal o assign to it a customer if one

is waiting for service.

We now provide a proof for Lemma 7.1.
Proof.

In order to show that the optimal value function satisfies (7.1)-(7.2), it is sufficient

to prove that these inequalitics are propagated under the dynamic programming operator,
i.e. if f satisfies (7.1)-(7.2). so does Tf. In the process of doing so, we found that it
was necessary for the value function to satisfy additional properties (7.3a) — (7.3¢) below,

namely

fe)> fly) i 22y (1.3a)
f(.‘l'u.l.l..’l?:;,O) > f(xe,0,1,23 +1,0) rg,xr3 = 0 (7.3b)

f(za,1,1,23,0) 2 f(xo — 1,1,1,23 + 1,0) xp>1,23 20(7.3¢)



We first show that

Tf(zo,0,1,23,0) > Tf(zo —1,1,1,23,0),  zo > 1. (7.1)

We will consider the case zq > 2. The following inequalities (7.4), (7.5) and (7.6) have to

be verified, where

I}Ililn f(Puy(zo +1,0,1,23,0)) > m’jnf(P.,o(a:o, 1,1,z3,0)) (74)
glilnf(P,“(xo,O, 1,23,0) 2 111i1n f(Py, (20 —1,0,1,2z3 + 1,0) (7.5)

and
ﬂilzf(Puz\’IO’()a 0' Os I)) 2 q;li'?f(Pug(xO BE 11 11 0, OQI)) (7~6)

By Eqn. (7.1), Eqn. (7.4) reduces to the comparison
f(zo,1,1,23,0) = f(z0,1,1,73,0)
which holds with equality. Similarly again by (7.1), Eqn. (7.5) reduces to
flrg —1,1,1,73,0) 2 f(zo —2,1,1,23 + 1,0)

which is true by (7.3¢). As for (7.6), if we take action P on the left-hand-side and Py
on the right-hand-side, (7.6) reduces to an equality. The other cases can be treated in a
similar fashion.

Since the proofs for (7.2)-(7.3) proceed by a similar technique, they are omitted. The

interested reader may refer to [13] for further details. I



An intuitive interpretation is now provided for some these properties. Inequality (7.3a)
expresses the monotonicity property of the optimal value function. The value function
increases if the magnitude of any one the first four states is increased while the other
states remain unchanged, as should be intuitively clear by the linearity of the cost in the

first four states.

Eqn. (7.3b) reveals that the value function decreases if the total number of customers
in the M/M/2 queue and the resequencing buffer is kept constant, while the number in
the queue buffer is decreased and that in the resequencing buffer is increased. Hence it
is ‘better’ to have a customer in the resequencing buffer rather than in the queue buffer.
This is also intuitively appealing since a customer in the resequencing buffer has already
finished its service, while the one in the queue buffer is yet to receive service. Eqn. (7.3c)

has a similar interpretation.

9. Conclusions

The result in this paper may seem to be counter-intuitive at first, because the reader
may expect that the decision to assign a customer to the servers ought to depend on the
number in the resequencing buffer. It is now argned why this is not the case. Consider
the situation when server 2 is idle, server 1 is busy and there are z¢ and z3 customers in
the queue and resequencing buffers, respectively. The controller has to decide whether to
assign a customer to server 2 or not. Note that all the x3 customers in the resequencing
buffer are being ‘held up’ by the customer in service at server 1. Hence the assignment
of a customer to server 2 will in no way influence the epoch of their departure from the

system. Hence the controller is not influenced by z3 while making its decision.



The same kind of reasoning also explains why server 1 should be kept busy whenever
possible. Indeed suppose that the customer in server 2 is holding up x3 customers in the
resequencing buffer and server 1 is idle. If the controller assigns a waiting customer to
server 1, and it finishes service "efore the customer in server 2, then the number in the
resequencing buffer will increase further. However, when the customer at server 2 does
end service, a larger number of customers will leave the resequencing box than in the case
when the controller does not assign a customer to server 1. This is the intuitive explanation
behind equations (7.5a-b) which stated that the value function decreases as the number in

the resequencing buffer increases and that in the main buffer decreases.

As stated in the introduction, we have been unable to identify the optimal control of
the slower server under the restriction of FCFS policies. However we conjecture that the
optimal allocation rule is of the threshold type in the number of customers in the main
queue buffer. We would expect the value of the threshold at which the controller starts
assigning customers to the slower server to increase, as compared to the situation without
the resequencing constraint. The reason for this is as follows. Without the resequencing
constraint, use of server 2 may be harmful because the loss due to the additional time that
a customer spends at this server may outweigh the gain due to the decrease in waiting time
of the customers which were behind him at the time when he was assigned to server 2.
With the resequencing constraint, the use of server 2 is even more harmful because not only
does the customer spend more time getting served at 2, but also a few customers behind
him may be unable to leave the system after service at server 1, due to the resequencing

constraint. This effect is illustrated in Table 1. below. Note that T'1 is the threshold for the



system without resequencing, while T2 is the threshold for the system with resequencing,.
The thresholds have been calculated with the help of the explicit formulae for the average

number in the system which were derived by lliadis and Lin [2].

Table 1
A i1 153 T1 T2
13 15 5 0 2
13 15 4 1 3
13 15 3 1 5
13 15 2 2 10
13 15 1 4 33

When there are more than two servers, the optimal server allocation is still unsolved,
but it may still be possible to prove that the optimal policy is independent of the number in
the resequencing buffer. Investigation of this problem is underway, and some preliminary

results are available.
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