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ABSTRACT

Consider a M/M/2/B queue with heterogenous servers which operates under the
resequencing constraint that customers should leave the system in the order in which they
entered it. A matrix geometric solution to the steady state buffer occupation probabilities
of this system is provided by noting that the infinitesmal generator matrix possesses a

block diagonal structure.
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1. Introduction

Consider a M/M/2/B queue with heterogeneous servers which operates under the
resequencing constraint that the customers should leave the system in the order in which
they entered it. If a customer goes out of sequence after receiving service, it waits in a
special buffer, the so-called resequencing buffer, until all customers who entered the queue
prior to it have completed service, at which time it leaves the system. The queucing
system described above can be used to model the communication between two nodes in a
computer network, which are connected together by two independent channels. Multiple
channels are useful because if one of the links becomes faulty, then the other link can take
on its function, thus paving the way for better fault tolerance. Multiple paths also help
in distributing the traffic more evenly in the network. Networks such as IBM’s Systems
Network Architecture (SNA) employ multiple paths between nodes. However our model

does not account for the fact that there are multiple virtual circuits that use the same two

links, nor does it account for hop-level flow control protocols between the nodes.

One of the first models to incorporate resequencing into the two server queue was that
of Lien [4]. By using a clever extension of the state space for the usual M/M/2 queue,
hie obtained a closed form expression for the average resequencing delay. Later Iliadis and
Lien [5], [6] obtained expressions for the distribution of the resequencing delay for the case
when the customers are allocated to the servers according to a threshold type of policy.
Baccelli, Gelenbe and Plateau [1], Harrus and Plateau [3], Kamoun, Kleinrock and Muntz
[7] and Varma [12] have analyzed resequencing systems in which the disordering is due to
infinite server queues. Gun and Jean Marie [2], Yum and Ngai [13] and Varma [11], [12]

2



Subir Varma, 3

have analyzed resequencing systems in which the disordering is due to finite server queues.
In all the work mentioned above, the emphasis was on obtaining the distribution of the
resequencing delay. However, the problem of obtaining the resequencing buffer occupation

probability distribution is also important from the practical point of view, since it would
help the designer in choosing the size of the resequencing buffer in a appropriate way to
minimize overflow. In this paper we take a step in this direction by obtaining an expression
for this distribution for the case when the disordering is due to a M/M/2/B queue. We
do so by noting that the infinitesmal generator matrix for the system has a block diagonal
structure, which yields a matrix-geometric solution for the steady state probabilities.
The rest of the paper is organized as follows. In Section 2 we give a Markovian state
space description of the model. In Section 3 we present the corresponding equations for
the steady-state probabilities. In Section 4 we give an exact solution to these equations
for the special case of B = 0. In Section 3, by using matrix-geometric techniques, we solve
them for an arbitrary yet finite value of B. Some numerical results are presented in Section

6.

2. A Markovian State Space Description

Consider a M /M /2/B queue with arrival rate A, and service rates of magnitude s
and jto for servers one and two, respectively. Assume that jp; 2 pa so that server one (1)
and server two (2) can be called the fast and slow servers, respectively. Pose
n = number of customers in the main queue buffer.
ey =1 (resp. 0) if the faster server is busy (resp. idle).
ey =1 (resp. 0) if the slower server is busy (resp. idle).
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m = number of customers in the resequencing buffer.

The variables (n, €1, e2,m) do not constitute a Markovian description of the system,
since there is no way to take into account the effect on m by a service completion at either
server. Due to the synchronization constraint on the output customer stream, we need a
state variable which captures this effect. A clever way of defining this state which was
first given by Luke Lien [1], is now presented. The additional information needed to get
a Markovian state space description is the specification of which of the two customers
presently in service, started receiving service earlier. This is exactly what the fifth state
variable, denoted by Z, specifies with

Z = I if the fast server (1) is serving the customer which entered the system earlier. We
shall refer to this as being an in-sequence state.

Z = O if the slow server (2) is serving the customer which entered the system earlier.
We shall refer to this as being an out-of-sequence state.

When there is a single customer in the system, we shall adopt the same notation with
the interpretation that Z = I if the customer is with the fast server and Z = O if the
customer is with the slow server.

The reader will readily check that (n,e;,e2,m, Z) provides a complete Markovian
state space description of the system. The state variables (n, ey, e2,m,Z) belong to the

space

E={0JUINx{0,1} x {0,1} x IN x {I,0}

where {0} is the ‘empty’ state.
If the system is in a in-sequence state (Z = I), then a departure from server 2 leads
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to an increase in the number of customers in the resequencing box by one (m — m + 1),
since the customer who arrived earlier is being served by server 1. On the other hand, a
departure from server 1 empties all the customers in the resequencing buffer (m — 0), and
changes the state to an out-of-sequence state (if there is a customer in service in server 2).
By a similar reasoning, if the system is in an out-of-sequence state (Z = 0), a departure
from server 1 leads to an increase in the number of customers in the resequencing box

(m — m + 1), while a departure from server 2 empties the resequencing box (m — 0).

3. The State Space Equations

In this section we proceed to write down the equations for the steady state probabilities
for the Markov Chain associated with the M/M/2/B queue with resequencing.

1. The equilibrium equation at the origin.

AP(0) = 1 Y, P(0,1,0,5,1) + p2 ) P(0,0,1,5,0) (3.1)

=0 =0

2. The equilibrium equations for the states for which Z = I.

(a) For0<i< B,7>0,e; =1,e2 = 1.
Oty oY PIE A  D e PR A 3 5 =1 S XPE =325 (89
(b)Fori=B,j720,e;=1,e2=1.

(p1 + p2)P(B,1,1,3,I) = AP(B - 1,1,1,3.1) (3.2b)
(c) Forit=0,7 >0,e; =1;e2=1.

A+ + 12)P(0.1,1,5,1) = 12 P(1,1,1, = LD + AP(0,1,0..)  (3.2¢)

-

]



Subir Varma, 6

(d) Fori =0,7 > 0,¢; =1,es = 0.
(A + p11)P(0,1,0,3,I) = p2 P(0,1,1,7 — 1,1I)

(e)For0<i< B,j=0,e; =1,e2 =1.

=0
(A+p1 + p2)P(i,1,1,0,1) = p2 »_ P(i +1,1,1,5,0) + AP(i — 1,1,1,0,1)
=0

(f) Fori=0,7 =0,e; =1,e2 = 0.

o0
(A + 1 +muz)P(0,1,1,0,I) = p» Y P(1,1,1,j,0) + AP(0,1,0,0,1)

i=0

(g) Fori=0,j =0,e; =1,e2 = 0.

0
(A+m)P(0,1,0,0,1) = 2 y | P(0,1,1,5,0) + AP(0,0,0.0)
=0

2. The equilibrium equations for the states for which Z = O

(a) For0<i< B,j >0,y =1, =1.
(A p1 + p2)P(1,1,1,j,0) =i P(1 + 1,1,1,7 - 1,0) + AP(i — 1,1,1,;,0)
(b) Fort=B,; >20,¢; =1,e2 = 1.

(o1 + p2)P(B,1.1,5,0) = AP(B —-1,1,1,3,0)
(¢)Fori=0,j > 0,6, =1,e2 = 1.

(’\ + 1 +I"2)P(07 1 1,_],0) = l‘lP(1>1‘1vj - lv0)+ AP(0,0, 11]10)

6

(3.2d)

(3.2f)

(3.29)

(3.3a)

(3.3h)

(3.3¢)
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(d) Fore = 0,3 > 0,¢1 =0,¢3 = 1.
(A + p2)P(0,0,1,7,0) = 1, P(0,1,1,5 — 1,0) (3.3d)

(e)For0<:i< B,j=0,e; =1,e2 = 1.

>0
(A + p1 + p2)P(i,1,1,0,0) =y »_ P(i +1,1,1,5,0) + AP(i = 1,1,1,0,0)  (3.3¢)
j=0

(f) Fori=0,7=0,e1 =1,e0 = 1.

oo
(A + g1 + #2)P(0,1,1,0,0) = 1 Y P(1,1,1,5,I) + AP(0,0,1,0,0) (3.3f)
j=0

(g) Fori=0,7=0,e; =0,e2 = 1.

o0
(A+ 12)P(0,0,1,0,0) = g1 y_ P(0,1,1,5,1) (3.39)

=0

4. The Case B=10

Explicit closed form expressions can be obtained for the buffer occupation probabilities
for the special case when B = 0.

A customer who arrives when both the servers are busy is discarded. Because of
the resequencing constraint, customers leave the system in the same order in which they
started service. We assume that the resequencing box has unlimited buffer space.

Note that all the results given below can be recovered from the more general discussion

of Section 5. We nevertheless go through the calculations because the case B = 0 is of
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mterest in its own right and the equations being much simpler than for the general case,
it serves an illustrative purpose.

The equations to be solved are now stated below. Since n = 0 everywhere, it is

omitted from the notation. The equations (4.1)-(4.3) now become,

oC o0
AP(0) =y D P(1,0,5,1) + p2 y_ P(0,1,5,5)=0,1...(4.4)

=0 7=0
(A +pm1)P(1,0,5.I) = 2 P(1,1,5 — 1,1) j=1,2...(4.5a)
(A + p2)P(0,1,5,0) = py P(1,1,5 — 1,0) j=1,2...(4.5b)
(1 + p2)P(1,1,5,I) = AP(1,0,7,I) j=0,1...(4.6a)
(Ill ;% ﬂ?)P(]"lﬁj? O) = AP(Ov 1!]10) J — 011 "'(4'6b)
(A+ p1)P(1,0,0,I) = AP(0) + p2 Y P(1,1,4,0) (4.7a)
=0
(A+#2)P(0,1,0,0) = 4 ) | P(L,1,5,1) (4.70)

7=0

We now proceed to solve these equations. From (4.5a-b) and (4.6a-b) it is easy to see

that the relations

2 e A . ,
/\+#1)(ll1+112) P(1,0,0,1) F=01,..(48)

P(1,0.5,I) =

: M2 A +1 2
P(1,1,3,1I)= i 1 P00, 4 =0,1...(4.9
(L D= P ) (4.9)

) e e L N A iy o
P(0,1,5,0) = (35— (-——VP(0,1,0,0)  j=0,1...(410)

s oy = (P A i e
P(l,l,J,O)—(/\+ll2)(#HL“Z) P(0,1,0,0) ;=0,1...(4.11)
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are satisfied.

Substituting (4.11) into (4.7a), we obtain

A

m+uum1001—APmeu2} Y( y*1P(0,1,0,0)

A '*‘ M2 T M2

Pose

01=i( Ly 4 P

H1 T p2

g AN + p2)
p2(X + pa + p2)

with o; always finite since

1 A
A+ po g+ 2

- |

Hence (4.12) can be rewritten as
(A + p1)P(1,0,0,I) = AP(0) + o122 P(0,1,0,0)

Substituting (4.9) into (4.7b), we also obtain

M+ﬂ)ﬂ0100%wn2j P(—2— P+ P(1,0,0.1)

)‘+l‘l B+ p2

Pose

= Sy Ay
¢ A" TR T

- A(A + ey
(A g+ pz)

9

(4.12)

(4.13)

(4.14)



with o7 obviously finite since

A
H2 <1
A+ gy jy + 2

Hence (4.14) can be rewritten as

(A + 12)P(0,1,0,0) = o1, P(1,0,0,I)

Subir Varma, 10

(4.15)

The relations (4.13) and (4.15) provide us with two equations for the unknown values

of P(0),P(1,0,0,I) and P(0,1,0,0). In order to get a third equation, we

the sum of all the probabilities should be one, i.e.,

P(0)+ ) (P(1,0.5,1)+ P(1,1,5,I) + P(0,1,j,0) + P(1,1,5,0))

o=
Substituting from (4.8)-(4.11) into (4.16), we obtain
P(0) + (o2 + 03)P(1,0,0,1) + (01 + 04)P(0,1,0,0) = 1

where o; and o3 are as defined earlier and o3 and o4 are given by

gy
e A+’ pn 4 pe

(A g ) + p2)
(A + i+ p2)

and

A+ p2)(pn + p2)
pa( A+ i+ p2)

10

use the fact that

=1 (4.16)

(4.17)
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The values of P(0), P(1,0,0,1) and P(0,1,0,0) can now be obtained very easily by

solving the system of linear equations

A =(A+m) o P(0 0
0 Ty —(/\ + p.g) P(I,0,0,I) = 0 (418)
1 (o2+03) (o1+04) P(0,1,0,0) 1
With
A : 9
ghies (/\ + [l])( -+ [12) _ 1p2 + (0’2 + 0’3)(A + u2) Fomieareng (4.19)
T A A a2/
routine yet tedious calculations show that
(A+pm)(A+p2)  oip2
P{0) = , - 4.20
(0) Tty A A ( )
P(1,0,0,1) = A #2) (4.21)
Oy
1
P(0,1,0,0) = UT (4.22)

We can use (4.8)-(4.11) to obtain the values the other steady state probabilities.
1) The probability that there are j customers in the resequencing buffer and the

customer who arrived earlier is being served by the fast server.

U 8 1 O )i j=0.1...(4.23)
py A g gt A Ay + p2

P(j,I)={

9) The probability that there are j customers in the resequencing buffer and the
customer who has arrived earlier is being served by the slow server.

/\+"1+F2l 1251 ) A J

P(j,0)= -
U py 2 @A+ et Tt e

i=0,1...(4.24)

11
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3) The probability ¢; that there are j customers in the resequencing buffer.

Hitpa Ty
4= (4.25)

A JA+J‘1+I‘2 jt\+112 TRy _|_ .
(#11’-#2 g [(A-l-;q) a2y (,\+,, ) forj=1,2...

P(0) + Aiti [ 4 q] & ifj =0

5. The General Case

In the present section we present a technique for calculating the exact values of the
buffer occupation probabilities in the M/M/2/B queue with resequencing. Note that Eqns.
(4.8)-(4.11) in the last section indicate a geometric structure for the buffer occupation
probabilities when B=0. We carry that insight to its logical conclusion by showing that in
the general case, the buffer occupation probabilities have a matriz-geometric structure.

We proceed as follows. The states in the Markov chain are numbered appropriately so
that the corresponding infinitesmal generator matrix Q is seen to have matrix-geometric
structure. In fact the structure coincides with the modified matrix associated with complex
boundary behavior identified by Neuts in [8, p.24]. Once this is done, the probability vector
can be written down using standard techniques.

As the first step we partition the state probability vector into the vectors

(P{0), 79, 71....), where ’(0) is the probability of the zero state as before and
xy:=(P(0y0; 1;7,0);:Pl0, 1, X, 7,0)yi5: 1 P(By X, Y3, 0), POB; X, Xyigs ) i
5 P00 15150, 1) PO 1057 .1)) J=0,1...(4.26)
Hence 7; is a (1 x 2(B + 2)) row vector which contains the probabilities of all states that
have 7 customers in the resequencing buffer. Using this partition of the state probability

vector, we can write the infinitesmal generator matrix Q) in the block partition form

12
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D1 C1 A0 0 0 0
DI C2 A1 40 0 0
0

@=1D1 c2 0 A1 40 (4-27)
D1 C2 O 0 Al A0
In (4.27), DO = —\ and the other matrices are defined below, with the convention

= (’\ +I‘l + 112), by

C0= (0’0’ L. ’0’ A)lx2(0+2)

D17 = (2,0, ... 'O’#1)1x2(8+2)

an — [ A0 0
.40..( : Aon)

where
0 0 0 ... 0 0 o0y BB
Ha 0 0 0 0
0 Ha 0 0 0 0
A0y = 5 ; : =
0 0 0 . . 0 0
0 0 0 . 0 i 0
and
0 2 0 P | 0 0 (B42)x(B+2)
0 0 TOIP oo 0 0 0
.‘“)-_32 — 3 . . - ‘
0 0 0 0 pp O
0 0 0 0 0 0

13
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where
—(At+p2) A 0 0 0 0 (B+2)x(B+2)
0 —5¢ X 0 0 0
‘4111 — - . : : :
: g @ 0 —x A
0 0 0 0 0 —(m+p2)
and
~(r+p2) 0 0 ... 0 O 0 (B+2)x(B+2)
A -y 0 0 0 0
) 0 0 A =y 0
g o9 0 A —(A+m)
0 C2p2
9
Ca= (0321 0 )
where
0 0 O 0 0 0\ Brax(B+2)
0 0 0 0 0 o
0 0 0 0 w2 0
€212 = . - T :
0 0 pu ... 0 0 O
0 p2 0 0 0 0
and
0 0 O 0 g Dy SERERGEED
0 0 0 1y 4] ]
C:Z'g] — . . . : ’
0 m O 0 0 0
e 000 0o 0 0
0 0 0 0O 0 0

14
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and

1 = Clyy Clyy
~\Cly Clp

where

Cln - .4111, C112 - C212, 0121 - 0221 and Clzz — .4122

Let e be a 2(B 4 2) x 1 column vector with all its components equal to one. Since Q

is an infinitesmal generator matrix, its rows should sum upto zero.i.e.,

DO+ C0e=0
D1+ Cle+ Ale =0 (4.28)

DI +C2e+ Ale+ AQe =0

We now proceed with the task of solving the equations

rQ =0, re=1 (4.29)
which can be rewritten as

P(0)D0O+ D1) " m =0 (4.30)

1=0
P(0)CO+mC1+C2) mi=0 (4.31)

=1
7 A0+ wig A1 =0 120 (4.32)
PO)+ Yy mi=1 (4.33)

=0
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Before we can solve (4.30)-(4.33) we need the following

Lemma 1. The following statements hold true, namely

(1) The mairiz A1 1s nonsingular.

(2) If

R=-A40(A171) (4.34)
then the eigenvalue M R) of R with largest modulus satisfies the condition,
AMR) < 1. (4.35)

(3) The matriz B{R) defined by

DO co
B(R) = ) (4.36)
(I-R)"'D1 C1+R(I-R)"'C2

13 an infinitesmal generator matriz.

Proof. (1) The nonsingularity of 41 can be proved very easily as follows. If the row

vector u = (uy,uz) is in the (left) null space of Al, then
wAl =0 (4.37)
and this implies that
(A +j2)u; =0 and (A +py)uz =0 {4.38)

whence u; = u, = 0. i.e., Al is nonsingular.

(2) We will prove (4.35) by using Theorem A from the appendix. Note that R can

written as

_ [ —A0 A1 0
R= ( 0 — A0y 415,

16
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Denoting Ry = — Al .41;,l and Ry = —:1022:112_2' , it 1s sufficient to show that A(R;,) <
1 and A Rp;) < 1. We will show that A(12;;) < 1 and leave the proof of the other claim
to the interested reader. We now write down the matrix %), explicitly by substituting for

A0q; and Aly;. We let 6 = py + p2 and n = A + po in what follows, so that

0 0 0 0 0
#1785 i A‘yB"léi ’“)\'.'.,8-25 s III/\B‘S #V\B'H
Bl 0 myP7n mAPTEen . mATlen Ay
n=gm3E| 9 0 myB=n . APy APy
0 0 0 cee B l6n mAyBy

Since the top row of Ry, consists only of zeroes, it follows that 0 is an eigenvalue of Ry;y.
The remaining (B + 1) eigenvalues come from the (B + 1) x (B + 1) matrix obtained by

omitting the first row and the first column. It can be shown that the elements of the

Al*l

first row of this matrix sum up to = "hma

while the remaining rows sum up to
m%“—;)- Hence the criteria of Theorem A from the appendix is satisfied, and it follows
that A(Ry;) < 1.

(3) Since A(R) < 1, it follows that Y ey R* = (I — R)™" is well defined. To prove

that B(R) is an infinitesmal generator, first note that D0 + Cle = 0 by (4.28). Hence it

suffices to verify that

Z RY(D1+C2¢)+ D1+ Cle=0. (4.39)

=1

Substituting from (4.28) for D1,C1 and C2, we sce that (4.39) is equivalent to

R(I—R)7(Al + A0)e + ADe =0

17



1Le.,

AO(A1)" (I + A0(A1)™")( AL + AD)e = A0e

upon using (4.34). We finally obtain

AO(A1)™T (I + A0(A1)™")(I + AO(A1)"")Ale = ADe

This verifies (4.39).

We can now state the main result in this section.

Theorem 1. The  solution to  (4.29) is  given
= = (P(0), mp, 71,...) where

7 = moRR', 1 =0

with It defined by (4.34) and (P(0),7y) solves the equation

(P(0) =0 )B(R)=0

subject to the normalization condition

PO)+m(I-R) 'e=1

Subir Varma, 18

by

the

vector

(4.40)

(4.41)

(4.42)

Proof. By Lemma 1, Al is nonsingular, so that (4.40) follows directly from (4.32). Also

(4.41) follows from (4.30)-(4.31) after substituting for {m;,7 > 1} in terms of my via (4.40).

|
18
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The distribution of the number of customers in the resequencing buffer can be re-
covered from Theorem 1. From the definition of 7; given in (4.26), the probability ¢; of
finding j customers in the resequencing buffer is simply the sum of the probabilities in ;.

therefore,

P(0) +me ifj=0
modtle for 7 =1,2...

The average number of customers in the resequencing buffer is then given by

. o<
N=> i
j=1

= . 4.44
T Zj RJG ( )

=1

= moR(I — R)2e.

6. Numerical Results

In this section we give an application of the formulae that were derived in the last
section. Specifically, we are interested in obtaining values for the resequencing buffer size
No.os subject to the constraint that probability that it overflows is equal to or less than

0.05. We shall consider the special cases B =0 and B = 1.

The Case B=0

We carried out the caleulations for the following values of the arrival and service rates
A =1, =1 and pa = 0.1. Substituting these values of A, iy and po in (4.20) and (4.23),

19
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we obtain

qo = 0.3994

and
g; = 0.126 [1.16(0.045)7 + (0.83)’] . j=12:..

Using this formula, it can be shown that

Noos =10 and N =3.62

The Case B=1

Once again, we carried out the calculations for the following valued of the arrival and
service rates A = 1,; = 1 and pa = 0.1. For this case we use (4.13) to obtain the values
of ¢;,j = 0,1.... The required matrix manipulations were carried out with the help of the

PROMATLAB mathematical software package. We found out that
N =5.03

while the values of ¢; are given in the following table.

q, ] 4
0.3187 10 0.0214
0.0788 11 0.0185
0.0678 12 0.0161
0.0587 13 0.0139
0.0508 14 0.0120
0.0440 15 0.0104
0.0381 16 0.0090
0.0330 17 0.0078
0.0286 18 0.0068
0.0247 19 0.0056

O m =1L W= O,
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From this table, it is casy to see that Ny o5 = 18.

We notice that Ny g5 increases from 10 to 18 as B is increased from 0 to 1. This
can be understood due to the fact that the system is in heavy traffic (since A = 0.1 and
1 + pz2 = 1.1), so that the extra buffer for the case B = 1 remains full most of the time.
This leads to a larger supply of customers to the two servers, leading to more customers

going out of sequence.
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APPENDIX

The following theorem is stated without proof, the interested reader may consult [10,
Cor. 6.6. p.227].

Theorem A. Consider a square matriz A with components a;;,1,5) =1...n. If the sums

7

> laij s 1 <i<n (Al
i=1

are all less than 1, or if
n
Z|u,) s 1 <1<n(A2)
1=1
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are all less than 1, then all the eigenvalues of A are inside the unit circle.
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