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ABSTRACT

Queues with resequencing arise as models in various applications, including distributed
databases and computer communication networks. Most models are extremely difficult to
analyze using traditional techniques. In this paper we investigate the heavy traffic behavior
of several resequencing models. It is observed that resequencing delay can be ignored in
heavy traffic for a certain class of models, while it blows up in heavy traffic for another
class. The heavy traffic limits are combined with light traffic limits in [26] to obtain

interpolation approximations.
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1. Introduction

In this paper our objective is to obtain heavy traffic limits for queues exhibiting the
resequencing synchronization constraint. For an introduction to the literature concerning
resequencing queues, the reader may consult our companion paper [25] or the survey [3] .
This work leads to the following advances in the theory of resequencing systems.

(1): We Lave obtained good estimates for the queucing delays for several models that

were previously intractable analytically;
(2): We have identified a class of models in which resequencing can be ignored in
heavy traffic.

We obtain heavy traffic diffusion limits for a variety of resequencing systems possessing
the following generic structure: Customers enter a disordering system which they leave
(after being served) in an order different from the one in which they entered it. This
necessitates resequencing which takes place in a so called resequencing buffer, After leaving
the resequencing buffer, the customers enter the buffer of a single server queue from where
they leave the system. This generic model is introduced in Section 2. where we also give the
recursive equations governing its delays. In Section 3 we obtain the heavy traffic diffusion
limit for the generic model from Section 2 from which diffusion limits for specific models
can be easily recovered.

In Section 4 we specialize the results of Section 3 for the important special case when
the disordering system is an infinite server queue. We show that the queue delay process
of this system has the same heavy traffic limit as an ordinary single server queue, i.e., in
heavy traffic the resequencing delay has negligible influence on the operation of the system.
We also extend this result to the case when there may be more than one disordering and
resequencing stages before the single server queue.

In Sections 5 and 6 we obtain the heavy traffic limit for finite server disordering
systems. For the case when the disordering system is a GI/GI/K queue, we show that
the normalized resequencing delay converges to zero in heavy traffic. For the case when
the disordering system is composed of A single server queues operating in parallel, we use
an alternate representation for the end-to—end delay of the system than the one given in

Section 2, to obtain the heavy traffic diffusion limit. In this case, our results show that
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the resequencing delay constitutes the major portion of the total delay, in heavy traffic.

2. The model

In this section we introduce a generic resequencing model (Fig 1), from which specific
resequencing structures can be recovered as special cases. There is a stream of customers
which enter a disordering system, and leave in an order different than the one in which
they entered it. After leaving the disordering system. they wait in a resequencing buffer
until all customers which entered the disordering system prior to them have left it. After
leaving the resequencing box, these customers are served by a single server queue, before
finally leaving the system. The model of Baccelli, Gelenbe and Platean [1] is special case
of this model when the disordering system corresponds to an infinite server quene.

We now define some RV's that are useful in disenssing the properties of this system.
Let the sequences of RV’s {0, }§°, {va}8® and {7.}§ be defined on some probability space

(Q, IF,IP). Here 7, represents the time of arrival of the ntk

customer into the system,

D,, represents its disordering delay and v, represents its service time in the single server
P £ v I g

queue. In terms of these RV’s define the following quantities for all n = 0,1...,

th customers (= Tyng1 — Tn )

U+ ¢ Inter-arrival time between the (n + 1)™* and the n
W, : Delay of the n** customer in the resequencing box and in the buffer of the single server
qllCllc.
Y, : = D, +W,,. This will be referred to as the end-to-end delay in the sequel.

‘arious kinds of disordering systems can be realized by assuming different statistical
structures on the sequence {D, }5°. For example, if the delay sequence {D,}§® is an iid
sequence which is independent of the inter-arrival sequence {u,}§" then the disordering
system corresponds to a GI/G /oo quene. Similarly we can realize the disordering system as
G/G/K quene or asystem of K parallel G/G /1 queues by imposing a particular structure
on {D,}°.

The analysis of this model is very difficult, one of the reasons for which is that the
output stream from the resequencing buffer is a complicated process with batch departures

and correlations between the batch sizes and inter-departure times. For the special case

when the disordering system has an infinite number of servers, and the the sequences
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{un}5%, {Dn}5° and {v, }§° are all exponentially distributed. Baccelli, Gelenbe and Plateau
[1] were able to derive a complicated expression for the Laplace transform of the end-to-
end delay Y, = D, + W,,. We now derive a recursion first given by Baccelli, Gelenbe and

Plateau [1], governing the sequences {Y,,}5° and {W,, }§°.

Lemma 2.1 Constder the resequencing system. defined above. If the system is initially

empty, then the recursions

Yo = Dy
1’-".;.1 — ma,x{D,.+1, ),n + vy — 'l&,.+1}, B 3 RIS (21)
and
Woa=0
W'rn.-{-l = max{O, Whn + D — Dt + Un — Una }1 n=0,1...(22)
hold.

For a proof, the reader may consult [1] or [25].
We shall assume that
(TIa): The sequences {u, }5° and {v, }§° are iid with finite second moments and mutually
independent.

Foralln=0,1..., we set
u = IE(up41) < o0, 0";)} = Var(un,y) < oo

and

v=IE(vy) < 00, af=Var(vy) < co.

3. The heavy traffic limit for general resequencing systems

In this section we obtain heavy traffic diffusion limits for resequencing systems pos-
sessing a disordering system which can have an arbitrary structure. Disordering systems

possessing specific structures are discussed in Sections 4-6.
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We now consider a sequence of resequencing systems indexed by r = 1,2.. ., each of
which satisfies assumptions (Ia). Moreover assume that
(Ib): As r T oo,
oulr) — ou,
Uv(?‘) — .0V,

[u(r) — o(mIVF = c.

(Ic): For some e > 0,

sup {IE{| ua(r) [**}, Biwi(r) 77} < oo

For r = 1,2..., define the following partial sums
Vo(r) =0,
Va(r) = vo(r) + ... + vn-1(r), #=152+..(81)
and
Uo(r) =0,
Ua(r) = uo(r)+ ... +uu_1(r). no=1;2:::(3:2)

For r = 1,2... define the stochastic processes & = {{f(r),t > 0},7 = 0,1, with

sample paths in D[0, oc) by
Upeg) (1) — u(r)[rt]

& () = - , t>0 (3.3)
and
£(r) = V‘"‘“)\;;’("’[”], 1> 0. (3.4)

Let & = {E’ .t = 0},5 = 0,1, be two independent Wiener processes. Lemma 3.1
shows that the stochastic processes defined in (3.1)-(3.2) converge weakly to these Wiener

Processes.

Lemma 3.1. As r T oo,

(&°(r), & (r)) = (out’,avE') (3.5)



in D[0, 00)>.
Proof. Equation (3.5) follows directly by Prohorov’s functional central limit theorem for

triangular arrays [22] under assumptions (Ia)-(Ic). E

Forr=1,2..., we set
So(r) =0
Sa(r) = Viu(r) — Un(r), n = 12:.:(3:6)

and define the stochastic processes { = {(¢(r),t = 0}, with sample paths in D[0, o), by

Sar) 450 (3.7)

Ct(r) = \/F ? =

We also define the stochastic process { = {(;,1 = 0}, by

(o =ové —ou€l —ct, t20. (3.8)
Lemma 3.2 shows that the stochastic processes generated by the random walk process (3.7)
converge to { in the himit.
Lemma 3.2. As r T oo,

)= ¢ (3.9)

in. D[0, 00).
Proof. Fix r > 1 and t > 0. We see from (3.6) that

. . Virt](r - U[rt]
Qf(r) ST \/77

Ve (r) = v(r)[rt] _ Upg(r) — u(r)[rt] _ [rt][u(r) = v(r)]
- vr g vr

= &) - £0) — () —wrlvF

From assumption (IIb) it is clear that as r T oo,

1?'—]-[u(‘r) —v(r)|Vr — e,
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and we conclude to (3.9) by invoking Lemma 2.2.1 and the continuous mapping theorem
[4, Theorem 5.1].

E

For r =1,2..., we define the stochastic process p = {ju(r),t > 0} and & = {&(r),t =

0} with sample paths in D[0, cc) by

Wi
pelr) = ‘\';];(’”), t>0 (3.10)
and
Dy,
§i(r) = %(r) t>0. (3.11)
Theorem 3.1.
(a): Assume that as r T oo,
Do(r) 24 Dg (3.12a)
and
(8(r),¢(r)) = (6.0) (3.120)

in D[0,0c)?. Further assume that | ¢ |< oo, then

) = g(¢ —é) (3.13)
in D[0,00) as r T oo.
(b): Assume that as r T oo,
(86(r),E°(r), (7)) = (6,€°,6") (3.144)
in D[0,00)* and
u(r) — w and v(r) — v with u(r) > v(r) and u > v, (3.14b)
then
p(r) =0 (3.15)



in D[0,00) as r T oc.

Proof. We first prove Part (a). Fix r =1,2.... We can write the recursion (2.2) for the

waiting time sequence as

Wo(r) =0,
Wat1(r) = max{0, W,(r) + X, +1(r)}, =01
where
Xrg1(?) = Da(r) = Dpga(r) + vu(r) — wnga(r). n=0,1...

By successive substitutions, we obtain

Wa(r) = max{0, Xn(r), Xn(r) + Xn-1(r),..., Xa(r) + ...+ Xi(r)}. n=0,1..

Let

ZO(T) = Oa

n

Zalr) =D Xi(r).

=1
It follows that

Wair) = Za(r) — Ora_igﬂ Zi(r).

Note that

Za(r) = Do(r) — Du(r) + Sn(r).

.(3.16)

(3.17)

.(3.18)

n=1,2...(3.19)
w=10,1..<(3:20)
n=0,1...(3.21)

For r = 1,2... we introduce the stochastic process p(r) = {p¢(r)},t = 0} with sample

paths in D[0, c0) by
Ziry(r)

pilr) = —F7—, t20.

ﬁ ?

From (3.20) and (3.22) it follows that

pe(r) = g(p(r))e, t20.

8

(3.23)



Hence by the continuous mapping theorem, in order to prove (3.13), it is sufficient to show

that as r T oo,

p(r) = (-6 (3.24)

in D[0,0c). From (3.21), we see that

plr) = D“’;)

+((r) — &(r). (3.25)

As a consequence of (3.12a), it follows that

D()(T)
\/F

= 0asr Too

so that (3.24) follows from (3.12b), (3.25) and the converging together theorem.
We now provide a proof for Part (b), the main idea of which is borrowed from Iglehart
and Whitt [13]. For r = 1,2... introduce the stochastic processes p'(r) = {p}(r),t = 0},

with sample paths in D[0, o), by

Zirey(r) — [o(r) — u(r)][r?]

pi(r) = o R i 0 (3.26)

Then proceeding as in Part (a), it can be easily shown with the help of (3.14a) that
p'(r) = oy —opyt® =6 (3.27)

in D[0.oc) as r T cc.

In order to prove that u(r) = 0, it is sufficient to show for each T' > 0, that

sup | pa(r) |2 0 (3.28)
0<t<T

as r T oc. It is intuitive to expect that (3.28) would be true, since

Y = == 1 i
pelr) = pe(r) oggfgps(r), t>0
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and as a consequence of (3.14b)
lim[u(r) — v(r)]V/r = o
rleo

so that p(r) | —ocasr 1 oc.
Fix T > 0, a value d in [0,T] and 0 < € < 1. We first show that as r T oo, with

probability greater that 1 — e, we have

inf
0<s<t—d VT

S{ra](r) —.D[rs](r) > S[,-‘](T) = D[ri](r) 0<t<T (329)

= ;

which is a justification for the intuitive fact that info<s<t ps(r) = pi(r) for a sufficiently

large value of r. For d <t < T, we note that

s S[rf](’) il D[ra]("')
ogiréfz—d T

ol S[ra](r) el D[rs](r) [U('l‘) == u(r)][rsl ['U(r‘) o u(r)][rs]
e R )

. Sprs)(7) = Dpra)(r)  [v(r) — u(r)][rs]
= ( Vr N Vr )

+ [w(r) — "(\r/)rl["'(t —d)]

) S[ra](r) = D[r.!](r) [U('I‘) = u(r)][r‘s]
= o<l ( v R )

— (S[”](r) - D[rt](") _ [v(r) — U(?')]['l't])

VT VT
Str(r) — Dirg(r) | [u(r) — v(r)][rd]
- Y Y

< Strq(r) — Dy (r)
= Vr

with probability greater that 1 — e for sufficiently large » > 79. The second inequality

follows from assumption (3.14b), while the last inequality follows from the fact that the
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terms in the first two brackets have weak limits while the last term blows to infinity as »
Inereases.
As a resulf of (3.29), it follows that for r > rq. with probability greater than 1 — e, we

have

. o Sra)(r) = Dprg(r) . Sirai(r) = Dppg(r)
s = S, 7

for a fixed value of d. Hence, for r > ry, with probability greater that 1 — e, we see that

sup | pu(r) |
0<t<T

= g S[rt](r) = D[rl](r) = il S[v-r](’) = D[rs](r)
ogag'r VT t—d<s<t Jr

Zie)(r) — Zra (1) [v(r) — u(r)][r(t — s)] |
' Vr

= wyrry(d) (3.30)

|

< sup sup |
0<a t<T |s—t|<d Vr
where the modulus of continuity w,(,y for the process p'(r) is given by

wp(d)= sup  sup | pl(r) = ph(r) |, d>0.
0<a 1<T [s—t]<d

Also as a result of (3.27) and of the continous mapping theorem, we get
wp:(,)(d) = wy(d) (3.31)

as r T oo. Since we can make the value of d as small as we please, and since

wa(d) =20 (3.32)

as d | 0, it follows from (3.30) that
plr) =0 (3.33)
in D[0,T] as r T cc. and this proves the theorem. ]

Part (b) of Theorem 3.1 implies the surprising fact that the normalized resequencing

delay of the customers will always be zero if the single server queue is operating in its stable
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regime, irrespective of whether the disordering system is in heavy traffic or not. However
this result hinges upon the crucial condition (3.14), that é, = 6 in D[0,00) as r T oo. This
condition is satisfied for disordering systems of the GI/GI/K type as well as for infinite
server disordering systems. Unfortunately it is not satisfied for disordering systems within
which there is probabilistic routing of customers. For example, as elaborated in Section
6, this condition is not satisfied for disordering systems which are made up of parallel
queues with Bernoulli switching of arriving customers, or disordering systems which involve
probabilistic feedback from the output to the input. For such disordering systems, the
conclusion of Part () of the Theorem does not hold. In fact we show in Section 6, that
rather then goiug to zero, the resequencing delay constitutes the major portion of the total

delay of such systems, in heavy traffic.

4. The heavy traffic limit for infinite server systems

In this section we specialize the results of Theorem 3.1 to the case when the disordering
system is an infinite server queue. We shall assume that
(Id): The sequences {1, }5°, {Dn}§° and {v, }§° are iid with finite second moments and
independent.
Foralln=0,1..., we set
u=IE(un) <00, of=Var(uy)< oo,
v = IE(v,) < oo, a%, = Var(v,) < oo
and

d=IE(D;) < oo, or%) = Var(D,,) < oc.

We now consider a sequence of resequencing systems indexed by » = 1.2.. ., each of
which satisfies assumption (Id). Moreover assume that
(Ie): Asr T oo,

ou(r) — ou,

av{r) — ov,

op(r) — op,
[u(r) — v(r)]V/r = c.
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(If): For some € > 0,

sup {IE{| ua(r) **°}, E{vi(r) 7 IE{| Dy(r) "**}} < o

Under these assumptions, Theorem 3.1 immediately yields the following corollary.

Corollary 4.1. Asr T oo
u(r) = g(C) (4.1)

in D[0, 00).
Proof. This follows from Part (a) of Theorem 3.1 owing to the fact that

Dypq(r) =0

64(7') = \/1—.

in D[0,00) as r T oc. E

For infinite server disordering systems the sequence {1, }§° has the same traffic limit
as the sequence of waiting times in an ordinarysingle server queue. This means that
asymptotically resequencing as a negligible effect on the operation of the single server quene
in heavy traffic. This result is surprising if seen from the following viewpoint: Kingman
[15] has shown that the diffusion limit for a single server quene depends on the particular
discipline chosen to serve the customers, for example it is different if the customers are
served in LCFS order rather than in FCFS order. Resequencing may be viewed as a special
type of service discipline (if the resequencing buffer and the single server queue buffer are
regarded as a single buffer of an equivalent single server), because customers are served in
the order in which they entered the infinite server queue. rather than the order in which
they enter the equivalent buffer. Also note that this effect remains unchanged in heavy
traffic. Hence in this case even though we change the service discipline of the single server

queue, we nevertheless obtain the same diffusion limit.

4.1 Generalization to a tandem system
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We now proceed to extend the result of the previous sub—section to the case when there

are an arbitrary number of disordering and resequencing systems preceding the single server

queue. The system under consideration operates as follows: Each customer is disordered

by an infinite server queue and resequenced K successive times before it enters the buffer

of a single server queue. After getting served there, it leaves the system (Fig 2). Let the

sequences {u, }5° and {v, }§° be defined as before, and foreach 1 <k < K andn =0,1...,

define the following,

k.
By

vk
Wk

Wh :

Dy, :

(Ig):

Delay of the n'* customer at the k' disordering system;
For 1 < k < K — 1, this RV represents the delay of the n'* customer in the k™
resequencing box;

th resequencing box plus the delay in the buffer

Delay of the n'* customer in the K
of the single server queue; and
=D, +W!4+.. .+ DE-" L WEK-1 4+ DK ie., the total disordering delay of the
n'" customer, before it is resequenced and sent to the buffer of the single server
queune.We shall assume that

The sequences {v, }&°, {u.}s° and {D¥}15°,1 < k < K, are iid with finite second

moments and mutually independent.

Foralln =0,1..., we set

and

u = IE{u,) < oo, af, = Var(u,) < o0

v=IFE(v,) <00, ot =Var(vy) < oo

dp = IB(DY) < 00, of = Var(DF) < o0, 1<k<K.

Now consider a sequence of resequencing systems indexed by r = 1,2... each of which

satisfies assumptions (Ig). Moreover assume that

(Ih):

As r T oo,
oy(r) — ou,
Fu () = ov,
or(r) — o, 1<k<K
[u(r) — o(r)IVF = .
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(Ii): For some € > 0,

sup {IB{| wa(r) *T}, B{vi(r) FTVE{| DY(r) Y1} < o0

Define the partial sums {V,,}5%, {Ua}5®, {Xn}§® and {Z,}§° as in (3.1), (3.2), (3.17)
and (3.19) respectively. Also define the stochastic processes €°(r), E1(r), ((r), pu(r), 8(r)
and p(r) as in (3.1), (3.4), (3.7), (3.10), (3.11) and (3.22). It is casy to see that Lemma
7.3.1 and Lemma 7.3.2 continue to hold for this model.
For r = 1,2..., define the stochastic processes p* = {u¥,t > 0},1 <k < K — 1 with
sample paths in D[0,00) by
T/V[‘;'ﬂ(r)

on g e L DA B o oy S (4.2)

T

Theorem 4.1. Asr | oc

&(r)=0 {4.3)
in D0, c0).
Proof. Fix r =1,2.... Note that
, BY . ere o DB
8ilr) = \'/;" )+ f/'} + ) + \‘/ri].. t>0, (4.4)
Hence in order to prove (4.3), it is sufficient to show that as » T oc
(1 (r)se s ™71 ()) = (0,....,0) (4.5)

in D[0,00) 1,
We propose to prove (4.5) by induction on the number of levels in the system. We

first show that as r T oo
wr)=0 (4.6)

in D{0,sc).



Note that

I'V,],+1(1-) = max{0, W',:(r) + D:‘('r) - D:,_H(r) — —tpt1(r)}

_ g T - =
= Zpia(r) 0<l;nslv?+1 Z;(r), n=0,1...(4.7)

where
Z(r) = Dj(r) — DA(r) —uy(r) — ... — un(r). ni="H0,1...(4:8)

From (4.7)-(4.8) it follows that

](7‘) - D(I](T) B Dllr(](') . U[rt](r) - 50F {Dé(r) — Dllrs](r) CT[rs](r)}
A Ay S Jr s U Jr

For r = 1,2. .., define the stochastic processes ji'(r) = {fi}(r),t > 0} in D[0,00) by

t=>20 (4.9

U[rl](r) L[t a](r)

fig(r) = — -~ - Og.lsgt{ \/_ ——}, t>20 (4.10)

and note that u!(r) and i'(r) both have the same limit due to the converging together

theorem. Note that in this case we do not require an additional condition such as (3.12a) to

1 Dl 5 ) )
conclude that 2&({—) or —L'\i};('f) converges to zero, since by assumption they form sequences
ofiid RVs.
Hence in order to prove (4.6), it is sufficient to show that a'(r) = 0 as r T oc. In

order to prove this, it is sufficient to show that

sup | jit(r) |- 0 (4.11)
0<1<1

as r T oo. The proof for (4.11) is similar to the proof given for Part (b) of Theorem 7.3.1,
and is therefore omifted.

As the induction step, assume that as r T oo
(BH(r), - oosp(e)) = {0,:4:50) (4.12)
in D[O,oo)"', for some 2 < k < K — 2. We shall show that as r T oo

(1 (1), s () = (0,...,0) (4.13)
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in D[0, 00)**+1.
For1<k <K —1andr=1,2..., define the RVs T*(r) by

Ty (r) = Dy(r) + Wi(r) + ...+ Dy(r) + Wi(r)

Note that as a consequence of (4.12), it follows that as r T oo,

Tiry(7)

I = () (4.14)

in D0, 0c0).
Note that

W (r) = max{0, W1(r) + T¥(r) + DEY (r) = Tk 1 (r) = DEEY(r) — unsa (7))

= Z,5(r) — | min_ ZFH (), n=0,1...(4.15)

where
ZEH () = THr) + DEV (7)) — T¥(r) — DEP () —wa(r) — ... —un(r) n=0,1...(4.16)
From (4.15)-(4.16) it follows that

! : k -
iy ~ T DE(r)  Tirg() Dy (n)  Upg(r)
! VT a vr vr a
e & %
e (BO | DE) T Dirii (r) _ Upa(r)

S S S S

(4.17)

From equation (4.14) (which is a consequence of the induction hypothesis (4.12)) and
(4.17), and the fact that T¥(r) is independent of D5+1(r), it is clear that that (4.13) holds,

and this completes the proof.

Equation (4.3) in combination with Part (a) of Theorem 3.1, implies that

Theorem 4.2. Asr T oo

u(r) = g(C) (4.18)
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in D[0, oc).

5. The heavy traffic limit for finite server resequencing systems: Multiserver

disordering systems

The resequencing systems to be analyzed in the next two sections deviate slightly
from the general model introduced in Section 2 due to the fact that the single server quene
after the resequencing buffer is omitted from the system. In this section we shall consider
the case when the disordering system is a GI/GI/K quecue, while in Section 6 we shall
consider the case when the disordering system consists of I single server quenes operating
in parallel.

The resequencing system under consideration operates as follows: Customers enter a
GI/GI]/K queue, after obtaining service from which they are resequenced in a resequencing

buffer and leave the system. Our basic heavy traffic result about this system is stated next.

Theorem 5.1 The end-to-end delay in the GI/GI/K resequencing system has the same
heavy traffic limit as the response time of a GI/GI[K queue.

Proof. This system satisfies the conditions in Part (b) of Theorem 3.1, so that the con-

clusion is a direct consequence of (3.15). I

Let the average end-to-end delay for the system be denoted by T (X). Then Theorem

5.1 and results regarding heavy traffic limits for GI/G/K queues in Kollerstrom [16] imply

that
2 oy TR0 ]
2 g U I A AT ; o
Alllﬁ;l‘(fxy — AT k(N = [0 + ——K?] 5 K= 2:30::(03)

where \, oy and p,op are the rates and variances of the arrival and service processes

respectively.
6. The heavy traffic limit for finite server resequencing systems: Disordering
due to parallel queues

The system to be analyzed has a disordering system composed of K parallel single

server queues (Fig 3). We assume that customers are switched to the different queues by
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a Bernoulli switch with switching probability pg,1 < &k < K. After the customers receive
service, they are resequenced in a resequencing buffer after which they leave the system.

This system was analyzed by Giin and Jean-Marie [16] for the special case when the
arrival process into the system is Poissonian. They gave a complicated expression for the
average end-to—end delay involving the virtual waiting time in the system. However, since
for most systems it is difficult to obtain a formula for the virtual waiting time, we expect
that the limit theorem approximations that we obtain to be of practical computational
value.

The following RV’s are defined on a common probability space (2, IF, IP). For n =
0.1...and 1<k < K,

)t and n'" customers.

ty+y ¢ Inter-arrival time between the (n + 1

vk : Service time of the n'" customer to enter the system, if it were to join the k™ queue,

: This is a {0, 1}-valued RV, such that a* = 1 implies that the n*" customer joins the
k™ quene.

th ecustomer to enter the system, if it were to join the k' quene.

Wk : Waiting time of the n
T : End-to-end delay of the n'® eustomer to enter the system (including the resequencing
delay).
We shall assume that
(1j): The sequences {un+1}5%, {ak}5° and {v8}5°,1 < k < K, are iid with finite second
moments, and mutually independent.

Forn=0,1..., we set

P(“ﬁ) = Pk,

u=IB(uyy) <00, of =Var(uap) < oo

and

vp = IE(vX) < 00, ok = Var(vh) < oo, 1<k<K

6.1 Recursive representation for the delays

The delays in the system obey the recursions given in Lemma 2.1 with D,, replaced

by the response time of the n'® customer in the system of parallel queues. However we
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give another set of recursions for the system which have the advantage of facilitating the
proof of the heavy traffic limit theorems. Assuming that the initial batch arrives into an

cipty system at time ¢ = 0, it is easy to sce that for each 1 < k < K|
rk __
Wy =0

I-'V,f+, = max{0, WX + a*v* — w1} n=0,1...(6.1)

The end-to-end delay T,,1 < k < K, is given by

/ s rk k _k =
T, = lg}@\.{w Lt aont. n=0,1...(6.2)

It is well known [1] that the stability condition of a system with resequencing is the
same as the system without resequencing. Therefore the system is stable iff each queue is
stable, 1.e.,

prop <u, 1<k<K. (6.3)

6.2 The diffusion limit

We now proceed with the task of obtaining heavy traffic diffusion limits for the delay
processes in the resequencing system. We consider a sequence of resequencing systems
indexed by r = 1,2..., each of which satisfies assumption (Ij). We make the following
additional assumptions (Ik)—(Il), where

(Ik): Asr T oo,

op(r) — o, 0<k<K,
pr(r) = pry 12k K,
ve(r) = v, 1<k K
[u(r) — pr(r)oe(r)Vr — e, 1<k<K

(I1): For some € > 0,
sup {IE{| wr(r) [+, | vi(r) )} < co.
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For r = 1,2..., define the following partial suins

Ve(r) =0,

VEr) = akok(r)+ ... +ak_jof_(m), 1<k<K, n=12...(64)

Uo(r) =0,

Un(r) = wa(r) + ... + un(r). n=1;2...(6:5)
and

Si(r)=0

SE) =V —Uu(r), 1Sk <K n=12...(6.6)

and define the stochastic processes (¥(r) = {¢}(r),t = 0},1 < k < K, with sample paths
in D[0,00) by
S[';',L](r)

CHr) = — 1<k<K, t>0. (6.7)

Let ¢ = {¢F,t > 0},1 < k < K, be K independent Wiener processes and define the

stochastic processes (¥ = {¢(f.t > 0},1 <k < K, by

K
= Quél —et, 1SkSK, 20 (6.8)
j=1
where the matrix Q = {Q;; ,"J= | is such that the covariance matrix R for the diffusion is

given by (with pr. + 7, = 1.1 <k < K),

R=QQ"
o2 +pro? + p1py o3 o2 = Uy 0 02 — MPKRVIVE
o T P10y T P11V % P21P2 102 z %8 9 PIPKVIVEK
oé — Pa2pivzty aé + p205 + p2Pavy ... 05 — P2PKUV2VE
= ; . . (6.9)
2 i 2 . 2 2 e
05 — PKP1VK V1 Oy —PKP2VK V2 ver Oy +PEKOE T PKPK VK

The process (C',...,¢¥) is thus a K—dimensional diffusion process with drift vector ¢ =

(—ei,...,—ck) and covariance matrix I2.



Theorem 6.2 shows that the stochastic processes (6.7) generated by the random walk

(6.6) converge to (¢',...,¢N) in the limit.

Theorem 6.2, As r T oo,
()i EN = 005) (6.10)
in D[0, c0)¥.
Before providing a proof for Theorem 6.2, we present the following two corollaries.

Forr=1,2... and 1 € k < K, observe that
WE(r) = max{S¥(r) — S5(r) : i =0,1...,n)

= S¥r) —min{8¥(r) :i =0,1...,n}, n=0,1...(6.11)

For r = 1,2..., we now define the stochastic processes u*(r) = {uf(r),t =0}, 1 <k < K,

with sample paths in D[0,oc) by

Wiy (r)
ﬁ ]

pe(r) = 1€k K, 620 (6.12)

We also define the stochastic processes ¥ = {nF,t > 0},1 <k < K, by
i =g(c*)e, 1<k<K, t>0. (6.13)

In Corollary 6.1 we show that the vector process associated with {6.12), converges
weakly to a K—dimensional diffusion process (6.13) with drift ¢ and covariance (6.9). This
limiting diffusion stays in the non-negative orthant of the K-dimensional space and ex-

hibits normal reflections at the boundaries.

Corollary 6.1. As r T oo,
(}11(7'),...,#.".(1')) = (p', .. w1 (6.14)

in D[0,00)K.

(S
(8



Proof. From (6.11) and (6.12), we conclude for each r =1,2,..., that

ph(r) =g(C*(r), 1<k<K.

and the result follows by the continuous mapping theorem and Theorem 6.2. B
For r = 1,2..., define the stochastic processes w(r) = {x(r),t > 0} with sample

paths in D[0, o) by
'-.F[rt](r)
ﬁ 1

Also define the stochastic process & = {#y,t 2 0} with sample paths i D[0, 00} by

ke(r) = t>0. (6.15)

P ..k ~ .
Ky = lglkaé\}\'y, . 4 20. (6.16)

In Corollary 7.6.2 we show that the stochastic process (6.15) generated by the end-to-end
delays, converges weakly to the process (6.16), which is the maximum of K correlated
Wiener processes with drift, in the non-negative orthant and normal reflection at the

boundarics.

Corollary 6.2. Asr T oo,
K(r) =& (6.17)

in D[0,00) .

Proof. From (6.2), (6.15) and (6.16) we conclude for each r =1,2..., that

I
re(r) = max {p(r)+ —ﬁ—}, t>0.

Equation (6.17) now follows from Corollary 6.1 by the continuous mapping theorem and
the converging together theorem ]

We now proceed with the proof of Theorem 6.2.

Proof. Note that we write (6.7) as

Sk a(r) — (pe(rive(r) — ulr))[rt _ =
Cf(’) A .]( ) — (px( \)/;( ) —u( ))[ ]+(pk(r)vk(r)—u(r))£\—/t.1-l:,
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1<k<K, t>0 (6.18)
As a result of assumption (Ik), we have that

,l_i'xcx,l(pk(r)vk(r) - u(r))t\‘/t-%_ = —¢rt. (6.19)

By a multi-dimensional version of Prohorov’s theorem, it follows that as r T oo,

S1a(r) = (P (r) —uDlrt] S5y (r) — (prc(r)orc(r) — u(r))[r]
Jr r

K K
= () Qutl,-.., > Qratl) (6.20)
k=1 j:k

in D[0,oc)®, and it now remains for us to identify the components of the matrix Q. This

can be done by observing that

(QQ™)ijt = Rijt

S (r) = @ilr)oi(r) = w()Irt]\ [ Shy(r) = w3(r)o(r) = u(r)lr]
T Jr :

= lim IF

rliec

(6.21)

A straightforward computation of the right hand side in (6.21) leads to the conclusion that
op +piot +pi(l—pipi, fi=]j

Rijie=
o;‘; — Pip;viv;, ift#.4

which proves the theorem. E

6.3 Symmetric queues with Poisson arrivals

Consider the case when each queue has identical parametersso that v = v, 1 < k < K,
o=0p,1<k<K and ¢=c¢;,1 €k < K. Further assume that p; = 7]\— 1<k < K. Due
to the structure of the matrix R, the assumption

‘U2

= 6.23
e (6.23)

2
Ty

e
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leads to a cancellation of the cross—correlation terms in R, so that

2 ot Kal 2
o+ %+ = v 20 0
0 of + 2 + E5ly? v?
0 7 .
;- ® A (6.24)
0 0 oo 045 4 B5Ly?

One of the most common inter—arrival distributions that satisfies (6.23) is the exponential,

since in this case

2 = lim 1 :
O, — 11I = p——
9 AR A2 K 2#2

where as usual, v = ;’; Making these substitutions in (6.24), we obtain

2o+ %) 0 0
0 '1“':(0‘2 -+ —l—) PR ’U2
5 _ el i . : (6.25)
0 0 oo elo® 4+ J5)

Thus under the condition that the arrivals are Poisson and pp = 7';.-,1 <k < K, (G.8)

(= \/ -1.—.(cr2 + L.,)cf -ct, 1<k<K, t>0. (6.26)
K e

Note that now the stochastic processes (¥,1 < k < K, are independent, so that we have

simplifies to

reduced the diffusion to a form from which it is easy to obtain the stationary distribution.
Carrying out the calculations for the case ¢ > 0 as in [28], it can be shown that the RV #,

converges in distribution to a RV k., such that

5 2 1 H}\' o=
Eh,oc = (0’ -+ [1_2- ke (()._,l)
where Hy as usual is the Harmonic series. In general, the n'* moment is given by
n K - E
1. I 1" FON (=1)k T2
ok ; S | 2 )
Erl, =n! [(cr + 2 2{\.0] E (’\> T (6.28)

k=1
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Let us denote the average end-to-end delay of a K—dimensional resequencing system with
Poisson arrivals by T () and its n* moment by ﬂ? )(,\). Then (6.27)-(6.28) suggest the

following formulae for the heavy traffic limit of the response times.

Iun (IX,U—‘/\)TA(’\) = (0% + I)I\H.,!\“

—

and

Yits (K — A)PToe (A) = nl [(02+ ul "‘ ] Z (I‘)( ) i (6.30)

ATK e
THKpu =

Note that in this case, in contrast to the case of disordering by GI/GI/K queues, the
resequencing delay grows logarithmically with A.

It is interesting to contrast the behavior of parallel queues operating under the fork-
join and resequencing constraints. From [28] and (6.27) we come to the conclusion that
the average response time in heavy traffic for these quenes under both the synchronization
constraints varies logarithmically with the number of quenes K. However in light traffic.
the fork—join synchronization still leads to logarithmic increase of the average response time
with I (see [29]), while the resequencing synchronization leads to a constant light traffic
limit for the average response time, i.e. -T-(O') = ,'7 From this we come to the conclusion
that while the fork—join constraint leads to an equal degradation of the average response
time inboth light and heavy traffic, the resequencing constraint becomes important in the
calculation of the average response time only when the system is heavily loaded and the
number of parallel quenes I\ is large.

Before closing this section, we would like to give another example of a system in which
the resequencing constraint leads to a significant degradation of the average response time
in heavytraffic. The disordering system is composed of a single server queue with feedback
in which the customers may be routed back to the end of the queue with probability ¢, or
they may enter the resequencing box with probability p after receiving service. We have
been unable to carry out a heavy traffic analysis of this system, however an exact analysis
was carried out by Horlatt and Mailles [12] for the special case when the inter-arrival and

service times are exponential with rate A and y respectively. They showed that the average
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end-to-end delay T(p) as a function of p = ;’-\; satisfies

o0

Tw)=2Y" i . (6.31)
piz L= p(1—g*)[1- p(1— ")

From (6.31) it is possible to obtain the following heavy traffic limit

oQ
- i 7 i : :
lim(1 — p)*T(p) = . .32
,,?11( p)1(p) E_:l: L+ ¢F + g1 — g2+ 1) (6.32)

Hence as a result of the resequencing constraint, the average response time grows at rate

(—l—_f—p-)v_.- as p T 1rather than at rate r—.
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