COMPUTATION OF THE CHARACTERISTIC CURVES
FOR VIDEO SOURCES

by

o

Subir Varma

Emerging Technologies, Dept CT0A /673
Networking Systems Architecture, IBM Corp., RTP, NC 27709
cmail: subirv@onet.ibm.com

Ph. No.: (919) 254-7493

ABSTRACT

1} video source can be described by its characteristic curves, namely the peakedness,
burstiness and loss curves. These curves can be used at the time of connection set up to
provide Traffic Descriptors (TDs) to the network, and request Quality of Service (QOS)
pa.ra,r‘neters from it. In another paper [Va] we provided techniques for obtaining the TD and

QOS parameters, if the peakedness, burstiness and loss curves are known. The objective

of this paper is provide efficicnt algorithms for computing these curves.
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1. Introduction

Consider a compressed video source of duration 7' and frame rate FR, such that the
i*" frame is of size f; bits. In order to describe this source to a network, the following
Traffic Descriptors (TD) have to be specified:
- The peak rate C at which the data is sent into the network.
- The leaky bucket parameters (o, p) such that the rate m©(#),0 < ¢ < T of the input

into the network, satisfies the inequality

ty
/ mC(t) o+ (t’g - fl)p, 0 ‘S th S ta < T, (11)
iy ; \ \‘

) R oo,

/

The source also requests the followihg Quality of Service (QOS) parameters from the
network:
- The maximum end-to-end delay A,
- The maximum cell delay variation . and
- The maximum cell loss ratio €, that it can tolerate.
In [Va] we described a procedure for obtaining the TD and QOS parameters for such
sources, which consists of the following steps:

(1) : Send the video trace into a single server quene with rate €', and let s(C') be the
maximum quene length observed. Obtain a plot of s(C) vs C by repeating this
procedure for different values of C. We will refer to this plot as the peakedness curve.,
Assuming that Stp is the amount of buffer available in the transmitter. choose a
peak rate C such that $(C) = Spp. The end-to-end delay A and jitter & are then
obtained in a straight forward manner by making use of relations between the sender
and recciver buffer occupancies [Val.

(2) : Let m“(£),0 < ¢ < T be the rate at which packets are sent into the network, after
the peak rate smoothing. We need to obtain the paramecters (o,p) such that (1.1)
is satisfied. Unfortunately, as several researchers have pointed out [Gr], [LoVal, [Va],
there is no single pair (o, p) that uniquely characterizes a sonrce. In fact for every value
of p in the range 0 < p < maxo<i<7 m€(#), there is a & such that the source js (o p)

conformant. Hence the set of conformant (o, p) pairs describe a curve which has been
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referred to as the burstiness curve by Low and Varaiya [LoVa). In [Va] we describe
some procedures by which the best (o, p) pair can be obtained, by combining the

information in the burstiness curve with other information about network behavior.

(3) : The burstiness curve is a sufficient description of a traffic source if it cannot tolerate
any loss in the network. However there are sources that can tolerate a certain amount
of loss, in return for which they reduce their network costs by consuming less resources.
The loss parameter ¢, introduces a third dimension in the traffic descriptor, so that
a different burstiness curve can be drawn for each value of €. These curves have
been referred to as loss curves by Wong and Varaiya [WoVa). For a given value of e,
procedures are provided in [Va] to obtain the best (o, p) pair.

The peakedness, burstiness and loss curves can be obtained through simulation based
techniques, as described in [Va]. However simulation can be very time consuming especially
when the packet size is small. The objective of this paper is provide efficient al gorithms for
computing these curves, that do not rely on simulation. The rest of the paper is organized
as follows: In Section 2 we provide algorithms for computing the peakedness curve, while
in Section 3 we provide algorithms for computing the burstiness curve. These algorithms

are extended in Section 4 to obtain the loss curves.

2. Computation of the Peakedness Curve

In order to compute the peakedness curve, we need to obtain the maximum queue
lengih observed when the video trace is passed through a single server queue with deter-
ministic service time C. We repeat this procedure for a range of values of €, and then
connect the resulting points together. For each value of €' we also compute the valucs

si75t7),1 =1 = W), where §(C) is the number of busy periods, 3;? is the time instant

at which the i** busy period commences while t¢ is when it ends. This information will
be used in computing the burstiness curves in the next section.

Note that the number of frames in the video trace is given by N = FR x T. Also lct

7 be the constant interval between two frames so that + — ?'IR' Then the % frame occurs

at fime 7.0 < 7 < N and is of size f; bits. Let Pz = maxe<i<N fi. be the size of the
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biggest frame in the trace. As long as the peak rate C satisfics ¢ > -”"—T“-‘, we have

|/ :
$(C) = fmax; HC) =N, sf =i}‘ and 1‘,C = %

/

(2.1)

However for C' < 'L;‘-’L, neighboring frames collide with one another. thus leading to larger
maximum queune lengths and a smaller number of busy periods. Let H(C) > fi be the size
of the queune just after the instant at which the " frame arrives, assuming that the peak
ratc is C. Note that since the maximum queue always occurs just after the arrival of a

frame, we have that

s(C) = i fi(C)

The following algorithm computes f/(C),0 < i < N and (s;", tf), 1 <7 <bC).

(0) : Let the index i denote the i** frame and let the index 7 denote the j** busy period.
Let s§ =0, f4(C) = fu and initialize i = j = 0.
(1): If i‘,((ﬁﬂ < 7 then set

fi+1(C) = fiy1, 1§ = i+ %

Also let 7 «— j + 1 and sf =.iI. If IACQ > 7, then set
fin(C)= firi + FI(C)—Cr~ (2.2)

(2) : i =N then go to step (3), otherwise set ¢ + i + 1 and go back to step (1).
(3): Set
S(C) = max f(C) and KC)=;

The peakedness curve obtained by applying this procedure will be an upper bound to

the exact curve. In order to show this, the following proposition is used.
Proposition 1. The peakedness curve is piecewise linear and conver.

Proof: Assume that the largest quene length occurs in the j** busy period for € = Cj,

the frames in that busy period are {f; ..., fitm }, and the maximum occurs at arrival of
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the fih i+ frame. Further assume that this continues to be the case until ¢ dr‘(‘leaseb to C o J l
By recursively applying (2.2) & times, it is easy to see that (starting with f/ = £),

S - f
/, 13 4 ¢

= fi+1(C) = L fiv1 = kCr, o < C < Cp | (2.3)

=0

Jiia

i \'\——» St

This is clearly the equation of a straight line with slope k.
——
In order to show the convexity, it is sufficient to show that the slope of ﬁjc lincar
segements that constitute s(C') increases as C decreases. There are three distinct scenarios
that can occur at C = Cy:

o busv period again, but at the (i 4+ &)** frame.

- The new maximum occurs in the j
Note that is clear from (2.3) that for this to be true, k > k, so that the slope increases.
- The number and duration of the busy periods changes, but the new maximum con-
tinues to occur at the (i + k)** frame in the old j'* busy period. In this case, the
only way that the peakedness curve will change slope is if the busy period just prior

" busy period, coalesces into it, and forms a larger busy period. In this case,

to the 7
the number of frames & that oceur in the new busy period before the tagged frame is
clearly larger than k. which leads to an increase in slope of the peakedness curve.

- The number and duration of the busy periods changes. and the new maximum now
occurs at the (1 + k)'* frame in the j i busy period. If the 7 7 busy period remains

unchanged over the interval [Cq, Cpl. then the change 1n maximum would occur duc

to the contribution of the second term in the LHS of (2.3). If this is the case then

= =th . - v . .
clearly k > k. If the j = busy period coalesces into the busy period just before it, for
some C' € [Co,Cy), then the change in maximum could oceur due to contributions
from both the terms in RHS of (2.3). However a little thought should convinee the

reader that the contribution due to the frame sizes in (7 — 1)** busy period in the first

" —=th . > 5 . . .
term of (2.3) for the j busy period is zero, thus implying an increase in slope. B

As a result of Proposition 1, the peak rate C' obtained by solving the cquation s(C) =
Str (see [Val), will lead to a maximum buffer fill level less than Syg. i.e.. there will not

be any data loss due to the fact that peakedness curve obtained is not the exact one.
0 | ; | '

| P . < y A ey Z " | N 2
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3. Computation of the Burstiness Curve

As a result of peak rate shaping, we obtain a waveformn m®(#),0 < t < T, such that
mC(t) = C,t € [s¢,1F],1 <4 < b(C) and m€(t) = 0 otherwise. The strategy that we will
pursue to obtain the burstiness curve is to analytically derive the maximum queue length
when m©(t) is fed into a single server queue with deterministic service rate p, for a set of
values of p in the range [0, C]. Furthermore we show that the entire curve can be obtained
by connecting these points with linear segments.

The total amount of data contained in the video source M, is given by |

N

bCy o 4
M=C) (ff —sf)
i=1

It is clear that ¢{0) = M, since if the video source is sent into a single server queue with
rate 0, then the maximum queune length is the same as the amount of data. Note that
a(p) = 0 for p = C. For the case when p € (0,C), the analysis is complicated by the
fact that there are several busy periods in the interval [0,7"]. Hence in order to obtain the
maximuim queue length, we need to consider every busy period and ealenlate the maximum

queue length achieved in each. Our task is simplified by the following result:

Proposition 2. The burstiness curve is piecewise linear.

Proof: Note that as the value of p inereases from 0 to €, the number of busy periods
increases from 1 to L. where L is the number of packets. Consider the case when the
maxunuin queue size occurs in the i*" busy period. The maximum always occurs at times

tC at which the rate of m“(t) changes from C to 0. Aesummg, thdt the ** busy peuod

started at ¢ = 5;, the maximum queue length o is thus p,xven b’v

34
a:/ ’ mc(t)dt‘—p(t;' —5¢) (3.1)

As long as the number of busy periods does not change ¢ and p satisfy eqn‘n.ti(m (3.1),

which is an equation of a straight line with slope ff — s;, which shows that the burstiness
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curve is piecewise linear. It is also clear that the values of p at which the slope changes =~

are precisely the same values at which the number of busy periods changes. ]

By virtue of this proposition, we only need to compute points on the burstiness curve
at places where the slope changes, since the entire curve can be obtained by joining these
points with linear segments. The set of these points is defined as {pr}i_,. Note that
po=0and ps = C.

The following is a brief summary of the algorithm to compute the burstiness curve:
Let us assume that we have obtained the burstiness curve in the interval [0, py.). In order

to extend it to the interval [p, pi41), We proceed in the following three steps:

e Identify all the busy periods for p = pi. Assume that there are n(pg) such busy

i

criods, and the % one spans the interval [s; o) tilpe )], 1 < @ < n(pr).
P I It

o Identify the value pipsy at which the number of busy periods increases to n(pg) +1

(= n(pe+1)). e

e In cach busy period, obtain the maximum queue length, say ¢:(pr).1 < i < n( Pk )

Then o(py) and the slope of the straight line between pgp and pryy can be obtained

by formulae that are given in the detailed description.

A detailed description of the algorithm now follows: A=

(0) : Initialize the algorithm by setting p’ = 0, b = 0, s¢(p’) = 0 and to(p’) = 0. peot rode ok

(1) : In the rate function m(),0 < ¢+ < T. find the smallest time s > t3(p’) such that

m.C(Q = C. If no such s¥ exists, then all the busy periods have been identificd for

p = p, hence go to step (4). Otherwise set b+ b+ 1 and s3(p') = €.
{2}z For § = 0 h, compute the quantities pf.’j(p’) and 1‘)?]-( o) by 7
] : Ot Lo ol
- e i = g
Pii(p) = C Y (t5 —s§) = (tf — 5§’ (3.24)
' a=i 2 :
T ' of B
P (p") =C ) (5 —s§) = (s5y — €)' (3.25)
S @z /
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Note that either,

- h is the smallest integer greater thak:. that satisfies pby(p’) < 0, or
- t,(, =

The maximum queue size over the b** busy period is given by

Qb(pl) = pz)(p (3'3)

i< oh
If piy(p') < 0, then the time at which the busy period ends, ty(p") is given by,

P sz::, (#¢ = s€)

ts(p)

— 7 P

— - . Y f -

otherwise, set {3-;,(,)’/)’= Tl =" 0 cold 5 bt =
(8)z 1f ‘lb(p )i= T then go to stcp (4), otherwise go back to step (1).
(4): Set n(pr) b If n( p) 0 then STOP. thelwmc compute the maximum queue

length achieved for p = p' as —3 £ AP SR ‘;.

9(p’) = s s(p")
l /
If the maximum is achieved at b = B, then identify (af'z B),tﬁ- B))’ such that qB(pb) =
pg B)j(p)(#’ ). Then the burstiness curve satisfies the following equation for p € [o, p)

where p” is computed in the next step.
i(B)

wp)=C Y (8 —s5) = pltfimy —sipy), P <p<p” (3.5)
a=i{R)

—
1]
—

i Let p” > p' be smallest value of p at which the B** busy period splits apart into two
or more busy periods. In order to compute this quantity, first compute the quantities

P53 =i+1,...,h =1 for the B** busy period given by

"o CZJ—g‘(t(‘—ba)
."' _— (‘v v
e (s i1 "f
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- In step (5), the quantity p; satisfies the equation

" . . " >
p" = min[C, ;gé’(li‘-n Pi (3.6)

2 If p” = C. then STOP. Otherwise replace p' by p”, set b = 0, so(p') =0,10(p') =0

and go back to step (1).

We now provide justifications for the steps in this algorithm:
The quantities pgj (p') in step (2) are the quene sizes at the end of the interval [s&, tf"]

8%,

while the quantities ﬁf-'j(p’ ) are the queue sizes at the end of the interval [s
Note that it is sufficient to obtain the queue sizes at the time instants at which the
rate m©(t) changes, since the maximum and minimum qucue sizes always occur at

these rate change instants. Note that if 7, (p) < 0, then t4(p’) satisfies the equation

=1

C Y (tg — &) = (t(p") = s£)p'

which leads to (3.4).

J
(o o] C (ON T
CY (= s§)— (5§, —sf)' =0
a=i
and so is interpreted as the minimum value of p’ at which the quene size at the end of
the interval [S,C,sjcﬂ} becomes zero, i.e., the B busy period ends at 1 = sJC+ ;- Note
that it is sufficient to consider only the B'* busy period, since if any of the other busy
perids were to break up, the maximum queue would still be achieved in the B busy

period.

4. Computation of the Loss Curve

We assumed during the computation of the burstiness curve that there is an infinite

amount of buffer space available in the single server queue with rate p. This implies

that if the network reserves resources based on the burstiness curve, then the source does
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not experience any loss. However this can lead to excessive resource demands, since the
burstiness curve 1s governed by the tail behavior of the source traffic statistics. In order to
reduce resource consumption, the source may be willing to tolerate a small amount of loss.
In order to realize this, it is necessary to obtain the burstiness curve under the constraint
that at most & bits of buffer space is available in the single server quene with rate p. The
plot of 3 vs p, for a fixed value of the loss €, is known as the loss curve. In order to obtain
the loss curve we first compute an € vs # curve for different values of p. The loss curve
can be obtained from this set of curves by fixing € and then reading off the 8 values as p
changes.
Once again we start with the waveform m®{¢),0 < t < T, such that m©(#) = C,t €
,C 5 ff'] 1 <1 < b(C) and m€(1) = 0 otherwise. We will denote the number of bits lost in
the interval [fy,£5] when the buffer size is 3 and the rate of the single server queue is p,
by L(t1,12, 3, p), with the convention that if 4; = 0,4, = #, then the notation L(#, 3, p) is
used. The fraction of lost traffic €(3,p),0 < € < 1 is given by

L(T,ﬁ..p)‘

dopl=—=7

0<p<C, 0<3<0(p) (4.1)

It is only necessary to consider the range 0 < § < o(p), where o(p) is the burstiness curve,

since if 3 > a(p), then €3, p) = 0. Note that if 3 = 0, then
€0,p)=—~ 0£p<C (4.2)

since if 3 = 0, then the maximum amount of data that is able to get through without

being dropped is
»C)

L(T.0,p) = (C — p) Y (£ =)

i=1
It is also easy to sce that
| U if0< <M
3,0) = i -
€(3,0) {0 i8> M (4.3)
Consider the b** busy period and let [s& €], [s& sf11,154] and [sf,,t5 5] be the first
three intervals in that busy period for which m©(#) = 1. We will obtain expressions for

the lost data in the following three cases:
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: Loss of data in the first interval, but not in the second and third: Let x; be the time

at which the queue length first exceeds 3 during the first interval. It is clear that

B=(C - p)(xy —sF)

so that

B

T :S,C'*’C_p

The amount of data lost is given by
L(s{ ¢, 8,p) = (C = p)(t€ — z1)

=(C—p)tf —s{)—8

2= /C' (m(t) — p)dt — 3

(4.4)

: Loss of data in the second interval, but not in the first or third: Let the queue length

at time # be denoted by ¢(t). Let z be the time at which the queue length first

exceeds # during the sccond interval. It is clear that
r’; — ‘C ) + C —_ — "‘.C'.
M= Q("-‘z-f-l ( p)(‘TZ "z-}-l)

s0 that

c .53 == (I(Sgn‘)
i+1+ =N

T2 =S8

The amount of data lost is given by
A A o (e
=(C — P)(tf‘:‘c.l — 3&1) -8+ (I(-";C;l )
Substituting
a(si31) = (C = p)t —s8) = p(sfiy — 27)
we obtain

o e |
L(SSXF t?+1,i3,p) = /C (m(t) — p)dt —

First Draft
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(3) : Loss of data in the first and second intervals, but not in the third: From (4.4), the

(4):

amount of data lost in the first interval is given by
L(s{ 18, B,p) = (C = p)(t{ —s€)— B (4.7)
while the amount of data lost in the second interval is given by (4.5) with
4(s51) = B — p(sfy — 1) (4.8)

Substituting (4.8) into (4.5), we obtain

L(Sﬁx atauﬂa p)=(C— P)(ti(im == -‘53-1) = P(qu = txc) (4-9)
Combining (4.7) with (4.9), we obtain
P S |
L(si',z‘i;l,ﬂ,p)=/c (m(t) — p)dt — 3 (4.10)
P 7

Loss of date in the first and third intervals, but not in the second: Once again the

amount of data lost in the first interval is given by
L(s{ 45 B.p) = (C — p)tf —sF)— (4.11)
while the amount of data lost in the third interval is given by

L(Sﬁutfiw‘iﬂ) =(C— P)(t?+2 - qx(+.a) =g+ ‘1(55»2)

Note that

e c c ; c : :
a(siha) = (C — p)(t5 — $G1) — p(s51 —t8) — p(siha — t?—;—l)

s0 that
%,

L(s{ 619, 8.p) =/ +’(m('t) —p)dt -3 (4.12)

8"

The following result now follows (a related result was given in [WoVa] without proof).
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Proposition 3. Let {s{i} be a sub-sequence of the sequence {s€ } such that the busy periods
that start at the instants s§ experience cell loss. Furthermore let {75} be the time instant
at which the last intervel (with input rate C') experiencing cell loss ends, for the busy period
that starts at 55. Then

<

L(T,8,p) = Z[/T" (m(t)—p)dt — 8], 0<p<C, 0<d<o(p) (4.13)

3! =

Proof: The proof is by straighforward induction from equations (4.4), (4.6), (4.10) and
(4.12). [ |

Proposition 3 has the following Corollary.
Corollary 1. For a fized value of p, the € vs 8 curve is piccewise linear and conves.

Proof: We first show that, for the 5" busy period that experiences loss, the time < in
(4.13) is the same as the time at which the maximum queue length was achieved in that
busy period. Assume that the maximum queuc length ¢, was achieved at time t,. Then
the queune length p; at the end of the i** interval with rate € in that busy period (that

occurs after #3), satisfies the equation (assuming that there are I such mtervals),

(¢
Pi=qb+/ (m(t) —p)dt i=1,...,1

Jty

Since by assumption p; < ¢, ¢ = 1,...,1, it follows that

s

t
/ (m{t) —p)dt <0 i=1,...,1 (4.14)
Ly

Consider the case when the value of 3 decreases to the point such that 3 < qv, then the
b** busy period will experience traffic loss. In this case gv = # and the quene lengths in

the succeeding intervals in that busy period satisfy the equation

v
pi=0+ / (mlt)—p)ydt i=1,....1 (4.15)
i

First Draft Page 13



Combining (4.15) with (4.14) it follows that p; < 8,7 = 1,...,I, which implies that the

last interval that experiences loss ends at #3, i.e.
Ty =1 (4.16)

Consider the case when J decreases from o(p) towards zero. The interval [0,a(p)] can be
divided into sub-intervals [3;_1(p), Bi(p)].i = 1,...,9(p), such that Go(p) =0, Balp) =alp)
and the mumber of busy periods experiencing loss 1;(p), is constant over the i** such
interval. It is clear from (4.13) and (4.16) that the slope of the L(T, 3, p) vs 3 curve is also
ni(p) in the interval [3:_1(p), Bi(p)] which implies piecewise linearity. Convexity follows
from the fact that 7;(p) increases as i decreases, since there are more busy periods that

experience loss for smaller values of 3. |

Recall that the number of busy periods n(p) (for # = o(p)) was computed in the
algorithm for the burstiness curve in the last section. Note that ni(p) > n(p),1 <i <
g(p) =1 and 7ig(p) = n(p), since data loss can lead to an increase in the number of busy
periods, even if p is fixed. In fact ny(p) = H(C),0 < p < C. Based on the results in
Proposition 3 and Corollary 1 a quick approximation to the exact curve can be readily
obtained from the data produced by the algorithin for the burstiness curve in the following

way:

Proposition 4. Re-arrange the sequence of mazimum queue length in the bt* busy period.

{alp) bé’i), obtained in (8.5). in increasing order, say {q[,,](p’_)}?i‘;). Set B = qp(p),1 <
t < n(p). Then the data lost for 3 € (Be—1, Bi] is approzimately given by

n(p)
LT, 3,p) = Z ap(p) — (n(p) — k+1)3. (4.17)
b=k

Proof: When 3 € (#;_1, 8;], then only the busy periods for which the maximum queue
length gi(p) exceeds Bi_; will experience loss. Ignoring the fact that more busy periods

are created due to decreasing 3, there are approximately n(p) — k + 1 such busy periods,

First Draft Page 14



with maximum quene lengths given by {am( p)}:i’,: Equation (4.17) then directly follows
by applying (4.13) and (4.16). 3]

This approximation should work well for small values of loss, since the effect of increase
in busy periods is not apparent until 3 becomes sufficiently small. The exact algorithm

now follows.

(0) : Initialize the algorithm by setting 3 = o(p), A(T,5',p)=0,b=0, ¢ = 0, so(B')=0

and fo(3') = 0. Also, let I be the ordered list of maximum queue lengths such that

I = {qu1(p):-- - qn(oi(P)}

(1) : In the rate function m©(t),0 < t < T, find the smallest time s = #3(B') such that
m®(t) = C, If no such s¢ exists, then all the busy periods have been identified for
= ¥, hence go to step (4). Otherwise set b« b+ 1 and s(f') = sf’

b

(2): For j = 1,...,h, recursively compute the quantities rf-’j #') and T..(3') as follows:

¥ /
Initialize
ri(8") = C(tf —sf) — p(tf —5€)
Fil(B) = CtF = sf) = plsfzr — sf)

Assume that rf’j (#') and Ff’j (3') have already heen computed, then

'rf'j“(ﬁ") = 111iu[Ff—’j(;'3') +(C — /’)(SJCH — 1), 8] (4.18)
ir1(8) = 851(8") = p(s5a — 1511) (4.19)

Note that either,

- h is the smallest integer equal to or greater that i, that satisfies 7o (p') < 0, or
s it
Compute the quantities pf-’j( phj = i,...,h as given by equation (3-2a).
If max;<;<n r:-’j (8') < 3', then the " busy period does not experience any loss. In this case
if maxj<j<n r:"j(;?’) 1s not already in I, then add it to that list. If maxi<;<h rf’j( =4,

then the b busy period does experiences loss. In this case, let ¢ «— ¢+ 1, and
A(T, ', p) = A(T, B, p) + max pl;(p) (4.20)
i<i<h

First Draft Page 15



If 7, (') < 0. then the time at which the busy period ends, #(3) is given by,

rb ar
t(B') = s + _(,,__;,(_,9_)

otherwise, set t4(3') = T if ¢t = T.

(3):
(4):

(5):

If #3(p') = T, then go to step (4), otherwise go back to step (1).
Set n(8') = ¢. I n(p') = 0 then STOP. Otherwise the cquation for the loss in the

range 3 € (3", 3] is given by
L(T, 8", p) = A(T, 8', p) — n(8")8 (4.21)

where 5" is obtained by deleting 3’ from I, and choosing the largest remaining number
left.

If I is empty, then STOP. Otherwise set 3 — 37, AT,B',p) =0, =0, ¢c =0,
so(p") =0, to(p') = 0 and go back to step (1).

We now provide justifications for the steps in this algorithm:

Note that from Proposition 3 and Corollary 1, the slope of the curve remains fixed
as long as the number of busy periods with losses does not change. The algorithm
basically works by keeping track of the number of the busy periods, and the maximnum
queuc lengths that are achieved in those busy periods. These maximum quene lengths
are put in the list I, which expands as # decreases, since there are more busy periods
created.

The guantities rf’j(ﬁ ) are the queue sizes in the b*® busy periods, at the end of the 33
interval with rate €, while the quantities F?j(gi ) are the queune sizes at the end of the
7™ interval with rate zero.

Even though the algorithin computes the € vs 4 curve for € € [0, c—;ﬁ], in most practical

situations an application will not be able to tolerate a loss of more than a few percent.

Hence we may stop the algorithm when e reaches that threhold. Once the e vs 3 curves

has been computed, the 3 vs p curves (i.e. the loss enrves) can be easily got, by fixing e

and obtaining the value #, for each p, at which the loss equals e. In fact the algorithms for
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— the burstiness curve and the € vs 3 curve can be run in alternation in the following way
to obtain a three-dimensional plot of € vs 3 vs p-
(a) : Compute the value o(pg) for p = Pk by using the burstiness algorithm.
(b) : Fix p = pp and obtain the € vs 8 curve using the algorithm in this section. The
maximum queue lengths computed in (a) can be used as nput.

c): Set p to the next higher value ppy, and go back to step (a).
g g

5. Conclusions

In this paper we provided several efficient algorithms for computing the characteristic
curves for video sources. We envision that these algorithms would form part of a software

tool that can be used to process video traces and extract useful information from them.
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