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ABSTRACT

The buffer and bandwidth resources that a video source requests from an integrated
services network, is governed by its burstiness curve. Hence it is extremely important to
obtain efficient algorithms for computing it. In this paper we give an efficient algorithm
to compute the burstiness curve for VBR MPEG-2 sources, which utilize the MPEG-2
Transport Systems (TS) layer. We do so by taking advantage of the fact that the rate of
the MPEG-2 TS stream is restricted to be piecewise constant.

1. Introduction

Consider a video source with rate r(t),0 < ¢ < T, such that for each interval [t;,%2].
the following equation is satisfied:
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The source is then said to be (¢, p) conformant. Unfortunately, as several researchers have
pointed out [Gr], [LoVal, [Va], there is no single pair (o, p) that uniquely charactenzes
a source. In fact for every value of p in the range 0 < p < maxg<i<r (1), there is a
o such that the source is (o, p) conformant. Hence the set of conformant (o,p) pairs
describe a curve which has been referred to as the burstiness curve by Low and Varaiya
[LoVa]. Integrated service networks such as ATM use the burstiness curve to reserve buffer
and bandwidth resources within the network. In general, the bandwidth requirements are
proportional to p, while the buffer requirements are proportional to o. Hence by varying
p and o, the server can realize a bandwidth vs buffer trade-off in the network. At the time
when the server gets ready to transmit the video into the network, it can use the burstiness
curve to request appropriate QOS values [Va]. As an example of how this may be done.
consider the case when the peak rate of the source 18 rmayx. In order to save bandwidth
resources, if the source wishes to reduce its peak rate to rl ., < rmax, then it incurs an
additional delay of 5—(;?;““2, where the value o(r),.,) can be obtained from the burstiness
curve. "

A brute-foree way to obtain burstiness curve is based on the following result due to
Cruz [Cr]:

0<s<e<T

t
o = max [/ r(u)du — p(t — s)]

It follows from this that if the source is fed into a single server quene with deterministic
rate p, then the max queue length over the interval [0, T] is the corresponding o. However
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this procedure can be very time consuming especially if the packet size 1s 53 bytes, as for
ATM.

The objective of this paper is to present an efficient algorithm for computing the
burstiness curve for VBR MPEG-2 sources that utilize the MPEG-2 Transport Systems
(TS) layer. MPEG-2 is an emerging coding standard that is gaining widespread acceptance
in the new Video-on-Demand (VOD) marketplace. The TS layer, which lies between the
codec and the networking layers, provides additional functionality such as clock recovery
and stream synchronization. However it restricts the rate of the output stream to be
piccewise constant. We take advantage of this property and obtain an efficient algorithm to
compute the burstiness curve for these sources, which does not require detailed simulation.

2. The Algorithm

The strategy that we will pursue to obtain the burstiness curve is to analytically derive
the maximum queue length for a set of values of p. Furthermore we show that the entire
curve can be obtained by connecting these points with linear segments.

Let m(t),0 <t < T be the rate function of the MPEG-2 source in the interval [0, T’]
such that m(t) = ri,t € [zi_1,2:],1 <1 < N. Alsolet 2o = 0,25y =T and
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The interpretation is that the time interval [0, T'] is divided into N parts, such that the rate
of m(t) over the i** interval is r;. Let rmin and rmax be the minimum rate and maximum
rates, so that

e 11<1}i<n r: and Twmae = 11<n‘zglcv T3

The total amount of data contained in the MPEG-2 source M, is given by
N
M = "(zi — zi-1)ri
i=1

It is clear that o(0) = M, since if the video source is sent into a single server queue with
rate 0, then the maximum queue length is the same as the amount of data.
We start by showing that the equation for the burstiness curve in the interval p €
[0, 7min) is given by okssis
o=M—pT, 0L p<tu, 00 lyomits (1)
ookt on tedd
Consider a single server queue with rate p € [0,7min ). If the video source i5 sent into this
queue, then the queue length increases monotonically from zero at £ = 0 to M — pT at
t = T, since at all times the rate of the queue is less than the rate of the video source.
Also note that for p = rmax, we have that ¢ = 0, since the rate of the queue greater than
the input rate at all times, so that no queue is allowed to build up. This implies that the

burstiness curve lies in the interval p € [0, rmay].
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For the case when p > rpi,, the analysis is complicated by the fact that there are
several busy periods in the interval [0, T]. Hence in order to obtain the maximum queue
length, we need to consider every busy period and calculate the maximum queue length
achieved in each. Our task is simplified by the following result:

Proposition: The burstiness curve is piecewsse linear and conves.

Proof: Note that as the value of p increases from 0 to rpax, the number of busy periods
increases from 1 to L, where L is the number of packets. Consider the case when the
maximum queue size occurs in the i** busy period. Assuming that the i'" busy period
started at ¢ = s;, the maximum queue length o is thus given by

o= / ’ m(t)dt — p(zp — 3;) (2)

The equation of the burstiness curve is given by (2), and changes under the following two

circumstances as p increases:

(1): The maximum now occurs at time x, within the same busy period. In this case
necassarily @, < 7, so that the slope increases.

(2): The maximum occurs at time 7, in some other busy period (which starts at s;). Once
again, this is only possible if z, — s} < @, —s; so that the slope of the burstiness curve
increases. Since an increase in p leads to an increase in the slope of the burstiness
curve, it is convex. |

By virtue of this proposition, we only need to compute points on the burstiness curve
at places where the slope changes, since the entire curve can be obtained by joining these
points with linear segments. The set of these points is defined as {pr};_,. Note that
po = 0,p1 = nin and ps = rmax-

The following is a brief summary of the algorithm: Let us assume that we have
obtained the burstiness curve in the interval [0, pr). In order to extend it to the interval
[pkspr+1), we proceed in the following three steps:

e Identify all the busy periods for p = pr. Assume that there are n(px) such busy
periods, and the i** one spans the interval [s;(pz),i(pz)],1 < 1 < n(pp).

¢ In cach busy period, obtain the maximum queue length, say ¢i(pz),1 <1 < n(p).
Also compute the values of p at which the maximum shifts to some other point within
the busy period as well the value at which the busy period splits into two or more
busy periods. Lastly compute the value of p at which the maximum queue length
shifts from one busy period to another. Then piy; is the minimum of these three
values of p. Moreover, the equation of the straight line between p; and pryq can be
obtained by formulae that are given in the detailed description.

A detailed description of the algorithm now follows:
(0) : Initialize the algorithm by setting p’ = rmin, b =0, so(p’) = 0 and #5(p’) = 0.
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(1) : In the rate function m(t),0 <t < T, find the smallest time z; > #3(p’) such that the
corresponding rate riyy (in the interval [x;,zi41)) satisfies ripy > p'. If no such z;
exists, then all the busy periods have been identified for p = p’, hence go to step (4).
Otherwise set b « b+ 1 and s;(p’) = z;.

(2a): For j =1+1,...,h, compute the quantities 'pf?j(p') given by

J
P:‘bj(/)’) = Z (Ta — Ta—1)re — (75 — zi)p’ (3)

a=i41

Note that either,
- h is the smallest integer greater that 7, that satisfies ply (p') < 0, or
- Th = T.

The maximum queue size over the bt* busy period is given by

"N b /
o(p’) = '.+r1ngajxgp,,(p ) (4)

Let the maximum be achieved for indices (i(b), j(b)). If pb,(p") < 0, then the time at which
the busy period ends, t3(p’) is given by,

h=-1
a=i41(Ta — Ta—1)ra +Tip’ — Th-1Th

pr—rh

tb(p,) = ) (3)
otherwise, set t)(p') =T if z; = T.
(2b) : Let p}, > p' be smallest value of p at which the b** busy period splits apart into two
or more busy periods. In order to compute this quantity, first compute the quantities
Pt} i =i+1,...,h —1 for the b** busy period given by

4= D=5
N (zj — =)

Then,

/ - . bl
= min|r min ~ 6
Ph1 [ max’i+1gjg(h—l)p” (6)

(2¢) : Let p}, > p’ be the smallest value of p at which the maximum in the 4** busy period
shifts. In order to compute this quantity, first compute the quantities p?}“’, j=1+
1,...,7(b) — 1 for the b** busy period given by

() o2 W i =
b2 a=i+1(Ta — Ta-1)la Za=i+1(1’a Ta—1)Ta
Pij = s e
(zjep) — i) = (25 — i)

Note that it is sufficient to compute pff for the intervals [z;_;,z;] for which the

corresponding rate rj exceeds the rate in the interval [2j(3)—;,%j3)]- Then,

. . 1',2 oy
Ppz = Min[rmax, :’+15j!£gl(b)-—l)p‘]] (7)



(3):
(4) -

(4b) :

(6) :

If t3(p’) = T', then go to step (4), otherwise go back to step (1).
Set n(p’) = b. If n(p’) = 0 then STOP. Otherwise compute the max queue length
achieved for p = p' as
LA e 7

q(p') = lsrbns«:fzp,)qb(/) )
If the maximum is achieved at b = B, then identify ¢(B), j(B), such that ¢g(ps) =
pf% B)j(B)( ¢'). Then the burstiness curve satisfies the following equation for p € [p', p*),
where p" is computed in the next step.

i®)
o(p)= Y (2a—ze-1)ra —(zie3y—ziim))ps P <p<p” (8)
a=i(B)+1
Let ; ‘ ,
A= g,
and ‘ ’
P2= S P

Let pj be the minimum value of p at which the maximum shifts from the B** busy
period, then

j (&
pl o zix(zligB)a}-l(xa - :ca—l)ra i E‘;E:;?(b).*.l(za =2 ma—l)ra
3 =

1<b<n(p’) (z5(B) — 2i(B)) — (Tj(3) — Ti(r))

Then
p" = min(p}, p, pl)

If p"” = rmax, then STOP. Otherwise replace p’ by p”, set b= 0, so(p’) =0, to(p’) =0
and go back to step (1).

We now provide justifications for the steps in this algorithm:

In step (0) we initialize the algorithm at p' = rpp, since equation (1) describes the
burstiness curve in the interval [0, rmin ).

In step (1) while locating the start of the next busy period, we can skip the intervals
over which r; < p’, since there will not be any build up of the queue at those times.
The quantities pf;(p') in step (2) are the queue sizes at the end of the interval [z;, z;].
Note that it 1s sufficient to obtain the queue sizes at the time instants at which the
rate m(t) changes, since the maximum queue size always occurs at these rate change
instants. Note that if p, (p') < 0, then #4(p’) satisfies the equation

h—1

Z (2o — Ta—1)ra + (ts(p") — za—1)rn = (ts(p’) — zi)p’
a=i41

which leads to (5).
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- In step (2b), the quantity pf} satisfies the equation pfj( pf-'j') = 0, and so is interpreted
as the minimum value of p at which the queue size at the end of the interval [z, z;]
becomes zero, i.e., the b** busy period ends at t = 5.

- In step (2¢), the quantity pgj? 1s the point at which the straight lines

i)
o= 2 (Za — Za—1)ra — (@) — Ti)p
a=i41
J
o= Z (a — Ta=1)ra — (x5 — 21)p
a=i+1
meet,
- In step (4), the summation is the maximum queue size achieved in the B'* busy
period.

3. Conclusions

In this paper we provided an eflicient algorithm to compute the burstiness curve for
VBR MPEG-2 video sources. It can be used to pre-process MPEG-2 video traces and the
burstiness curve can be stored as part of the meta-data associated with the actual trace
data.

Even though the algorithm computes the entire curve in the interval [0, rpay], it can
be easily modified to compute it in a smaller interval. For example the smallest value of
p which would be requested from a network is the long term average, hence the algorithm
can be started there rather than at the origin. Similarly is can be stopped before going all
the way to rmax.
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