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ABSTRACT

The loss curve of a video source characterizes the loss rate of the video stream generated by the source as

a function of the allocated bu�er size for a given transmission rate. The loss curve is useful in the optimal

allocation of resources when the video stream is transmitted over a packet network, so that the desired

tradeo� can be reached among the loss rate, bandwidth and the bu�er space to be allocated in the network.

We present a deterministic algorithm for exact computation of the entire loss curve of a video elementary

stream. The algorithm exploits the piecewise linearity of the loss curve and computes only the points at which

the slope of the loss curve changes. We also present an extension of the algorithm to MPEG-2 Transport

Streams. The algorithm was able to compute the entire loss curve of a 2-hour video elementary stream in

approximately 11 seconds on a Sun Ultra-2 workstation. The e�ciency of the algorithm makes it suitable

for both o�- and on-line QoS provisioning in networked video environments.

1 Introduction

The explosion of the Internet has spawned video-based services over packet networks, such as streaming

video and video-on-demand. Many of these applications require, or can bene�t from, the network's ability

to provide Quality-of-Service (QoS) guarantees. The QoS guarantees are usually in the form of bandwidth,

end-to-end delay, and/or the loss rate experienced by the tra�c stream.

The rate variability of video sources has introduced the need for characterizing the tra�c so that

the amount of resources to be allocated by the network (such as bandwidth, bu�er space, etc.) can be

estimated during the call admission control (CAC) process. The characterization of the tra�c stream is also

necessary for e�cient policing of the tra�c. The two primary resources allocated by the network are the

transmission rate � and the bu�er size B. In an application where no losses are allowed, the video source can

be characterized completely by determining the minimum bu�er size necessary to avoid losses as a function

of the rate �. This characterization is referred to as the burstiness curve [8]. E�cient algorithms for exact

computation of the burstiness curve can be found in [10].

When the application can tolerate some amount of loss, the amount of bandwidth and/or bu�er

space needed in the network can often be reduced signi�cantly, since the burstiness curve of the source
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Figure 1: Model used for the computation of the loss curve of a video stream.

typically exhibits a long tail. The problem of determining the necessary network resources then becomes the

problem of choosing a speci�c vector from the three-dimensional space (�;B; �). To simplify the problem,

either the transmission rate � or the bu�er size B can be �xed to calculate the corresponding curves. The

� versus B curve for a speci�c transmission rate � enables the estimation of the loss rate resulting from a

given bu�er size to send the video source at a certain transmission rate. We refer to a plot of the loss rate

as a function of the bu�er size for a given rate � as the loss curve [2] of the source corresponding to the rate

�. Our interest in this paper is to investigate e�cient algorithms for the computation of such loss curves. In

some other cases, it is necessary to obtain the variation of the bu�er size B to achieve a given loss rate as a

function of the transmission rate �. Such a plot can be constructed by computing a series of loss curves for

di�erent values of the rate �, and reading o� the B values for the given loss rate �.

In this paper, we present a deterministic algorithm for the exact computation of the loss curve

of an elementary video stream. The algorithm exploits the piecewise linearity of the curve and performs

calculations only at points where the slope of the loss curve changes, thus using the minimum number of

points needed to exactly characterize the curve. The piecewise linear nature of the loss curve was observed

by Wong and Varayia [12], but they did not analyze the behavior further. By characterizing only the points

at which the slope of the loss curve changes, our algorithm achieves optimality in the number of points

needed for the exact computation of the loss curve. The algorithm exhibits low time- and space-complexity

and therefore, is attractive for use not only in o�-line video systems but also in real-time video distribution

systems that need to perform estimation of the loss curve in real time. We also give an extension of the

algorithm for computation of the loss curve of MPEG-2 Transport Streams.

The rest of the paper is organized as follows: In Section 2, we �rst describe the model for charac-

terizing the queue behavior of the corresponding elementary video stream. This model is then used for the

exact computation of the loss curve, which is presented subsequently. In Section 3, we consider an extension

of the algorithm to MPEG-2 Transport Streams. In Section 4, we evaluate the performance of the algorithm

with many video traces. Finally, in Section 5 we conclude the paper with a brief summary of this work.
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2 Algorithm for Exact Computation of the Loss Curve of Elemen-

tary Video Streams

2.1 Model

The most common case for transporting video over a packet-switched network is by using an elementary

video stream. An elementary video stream consists of a sequence of frames generated at a �xed rate (frame

period), that may have varying sizes due to scene changes. In this section we present an algorithm for exact

computation of the loss curve for such tra�c sources.

The model that we use for the computation of the loss curve in the case of an elementary video

stream is shown in Figure 1. The tra�c from the source goes through a peak-rate shaper which produces

a new time sequence for the bit-stream. For di�erent values of the peak rate r, the queue of the peak-rate

shaper may have a di�erent maximum length, denoted by s(r). The bit-stream at the output of the peak-rate

shaper, denoted by a(r; t) in the �gure, is also dependent on the peak rate r. Our interest is in computing

the loss curve of the tra�c source at the output of the peak-rate shaper for a speci�c transmission rate �

and bu�er size B.

We can determine the loss rate of the source for a given transmission rate � and bu�er size B by

feeding the bit-stream at the output of the peak-rate shaper in Figure 1 into a second leaky-bucket shaper

with rate � and bu�er size B. By recording the amount of data lost from this bu�er for di�erent bu�er sizes,

we can obtain the loss curve of the source for the given peak rate r and transmission rate �. The B versus

� curve for a given maximum acceptable loss rate � is obtained by constructing a series of loss curves for

di�erent choices of the rate � and reading o� the B values corresponding to the given loss rate.

We �rst de�ne LB;�(t) as the amount of tra�c of the video stream lost over the time interval [0; t]. Then,

the fraction of lost tra�c, or the loss rate �(B; �), is given by

�(B; �) =
LB;�(T )

M
;

where M is the total number of bits in the elementary stream and T its duration. For plotting the complete

loss curve for a given rate �, it is only necessary to consider the range of bu�er sizes 0 � B � �(�), where

�(�) is the maximum burstiness of the source at rate �. For a complete characterization of the source, a

series of loss curves can be constructed for di�erent transmission rates in the range 0 < � < r.

To complete the de�nition of the loss curve, we must de�ne the loss rate for the boundary values of

B and �:

�(B; �) = 0; B > �(�); (1)

�(0; �) =
r � �

r
; 0 � � � r; (2)

�(B; 0) = 1; 0 � B < M ; (3)

�(B; 0) = 0; B �M ; (4)

To analyze the behavior of the queue at the second shaper in Figure 1, we �rst need to characterize

the on-o� signal at the output of the peak-rate shaper. Hence, we �rst present an algorithm to compute the

on-o� periods of the bit-stream a(r; t) at the output of the peak-rate shaper when the input source is an

elementary video stream. These on-o� periods are then used in the computation of the loss curve.
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We de�ne active period as a maximal period of time during which the peak-rate shaper is continuously

transmitting tra�c. This corresponds to an on-period of the signal a(r; t). Let na(r) denote the number of

active periods of the signal for a peak rate of r, sri the time instant at which the ith active period commences,

and tri the time when it ends. We need to compute the active periods (sri ; t
r
i ), for 1 � i � na(r).

We assume that the number of frames in the video trace is N , the length of the trace is T , the frame

rate is f , and the size of the ith frame is di bits. Let dmax = max1�i�N di be the maximum frame size in

the trace. We also assume that a frame is added instantaneously to the queue of the peak-rate shaper at

the end of the corresponding frame period. That is, the �rst frame arrives in the queue at time 1=f , which

marks the beginning of the �rst active period. When the peak rate r satis�es r � dmax=f , it is trivial to

compute the active periods of the signal a(r; t).

s(r) = dmax; na(r) = N; sri =
i

f
; and tri = sri +

di
r
: (5)

However, in the general case when r < dmax=f , neighboring frames overlap with each other in the shaper

queue, leading to larger maximum queue lengths and a smaller number of active periods. Let qi(r) be the

size of the queue at the input of the peak-rate shaper just after the instant when the ith frame arrives. The

maximum queue length will always occur just after an arrival of a frame, and is given by

s(r) = max
1�i�N

qi(r): (6)

The active periods of the elementary stream can be determined by traversing the sequence of frames

and computing the queue size at the instant just after each frame arrival. The pseudocode for computing the

active periods is given in Figure 2. For a given value of the peak rate r, the algorithm processes the individual

frames of the elementary stream in sequence and computes the maximum queue size s(r), the number of

active periods na(r), and the starting and ending times of each active period (sri ; t
r
i ); 1 � i � na(r).

We can use the active periods of the signal a(r; t) to compute the loss curve of the original video

stream by observing the queue behavior at the input of the second shaper in Figure 1. We now develop an

algorithm for calculating the loss curve for a speci�c service rate �. Since the peak rate r remains a constant

in the discussion, for simplicity in the rest of this section we omit the parameter r from all the notations.

2.2 Computation of the Loss Curve

The peak-rate shaping procedure produces a sequence of active periods for a given peak-rate r. If we denote

by m(t) the output rate of the peak-rate shaper, then

m(t) =

(
r; t 2 [si; ti];

0; otherwise:
(7)

We de�ne busy period as a maximal period of time during which the queue of the second shaper in

Figure 1 remains non-empty. We use the notation �i; �i, respectively, for the starting and the ending times

of busy period i. For a given sequence of active periods, the corresponding busy periods are a function of

the transmission rate � and the bu�er size B at the input of the second shaper. Figure 3(a) illustrates the

active periods of an elementary video stream and Figure 3(b) the corresponding busy periods for the case of

in�nite bu�er size.
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Pseudocode for Computation of Active Periods of Elementary Video Stream

/* Index i denotes the i-th frame, qi denotes the queue size at the instant

just after the i-th frame arrival and index j denotes the j-th active period. */

1 /* Perform initialization */

1.1 sr1  1=f ; q1  d1; i j  1;

2

2.1 If
�
qi
r
< 1

f

�
/* no backlog present at the start of next frame */

2.1.1 qi+1  di+1;

2.1.2 trj  
i
f
+ qi

r
; /* compute end time of current active period */

2.1.3 j  j + 1;

2.1.4 srj  
i+1
f

; /* start time of new active period */

2.2 else

2.2.1 qi+1  qi + di+1 �
r
f
; /* there is backlog carried to current frame */

2.3 endif

3

3.1 i i+ 1;

3.2 If (i < N)

3.2.1 goto Step 2;

3.3 endif

4

4.1 s(r) max1�k�N qk; /* compute maximum queue length observed */

4.2 trj  
N
f
+ qN

r
; /* compute end time of last active period */

4.3 na(r) j; /* store the number of active periods */

4.4 De�ne sna(r)+1 =1;

Figure 2: Algorithm to compute the active periods of the bit-stream at the output of the peak-rate shaper,

when the input tra�c is an elementary video stream.

If we assume no losses from the bu�er, we denote by Q�
B;i the local maximum queue size for busy

period i, for a bu�er size of B; and by �B;i the time at which the local maximum occurs. For simplicity, we

will omit the subscript B when the bu�er size is obvious from the context. Our algorithm for characterizing

the loss curve of the source is based on two key observations:

i. For a given transmission rate �, the loss rate � is a piecewise-linear function of the bu�er size B. As

the bu�er size is decreased, the slope of the loss curve can change only when (i) a busy period starts

to experience losses for the �rst time, or (ii) a busy period breaks into two or more constituent busy

periods. This enables the exact computation of the loss curve by identifying the points at which such

events occur.

ii. Within each busy period where a loss occurs, the last time instant at which a loss occurs is the time

instant �B;i at which the maximum queue size occurs.

The loss curve of the source, for a given transmission rate �, can be constructed by considering
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Figure 3: Busy periods of an example elementary video stream for various values of the bu�er size B.

various values of the bu�er size B in the range 0 < B < �(�), and computing the loss rate for each

case. This procedure, however, provides only an approximation to the actual loss rate between the points

considered. Besides, the computation of loss rate requires a simulation of the queue for each bu�er size. Our

algorithm, on the other hand, exploits the piecewise-linearity of the loss curve and calculates only the slope

of the loss curve at each point where the slope changes. In addition, we avoid a total simulation of the queue

at each such point by keeping track of only the changes in the busy periods of the queue with a change in

bu�er size. This results in an e�cient algorithm that provides the exact loss curve of the source.

A change in the number of busy periods experiencing losses constitutes the only possible case in

which the slope of the loss curve may change as the bu�er size B is decreased towards its minimum value
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of zero. This can be illustrated with an example. Figure 3(a) shows the active periods of the input signal

and Figure 3(b) the busy periods generated when the bu�er size is in�nite. The global maximum queue size

occurs in busy period 2, and is denoted by Q�1;2 in the �gure. As the bu�er size B is decreased, no losses

occur until it reaches the global maximum queue size Q�1;2. As we decrease the bu�er further, to a value

B1 < Q�1;2, losses occur in the second busy period. If the peak at time t1 corresponding to the end of active

period 5 is the only peak experiencing losses, the total amount of lost tra�c is equal to (Q�1;2 �B), which

is a linear function of B. We also observe that no losses can occur to the right of t1 in the same busy period.

On further decreasing the bu�er size to B2 < B1, the second busy period splits into two busy periods

at time t2. Both the resulting busy periods experience losses, and now the total amount of lost data is equal

to (Q�B2;2
� B) + (Q�B2;3

� B) = (Q�B2;2
+Q�B2;3

) � 2B, where Q�B2;2
and Q�B2;3

are the corresponding local

maximum queue sizes of the new busy periods 2 and 3, respectively, as indicated in the �gure. Therefore,

the amount of lost data is again a linear function of B, and its slope is determined by the number of busy

periods experiencing losses.

For a video stream of �nite duration, the values of the bu�er size B that cause either a loss in a

busy period with no prior loss or a break in a busy period that already experiences loss, form a �nite set.

We will show that we only need to compute the values of B belonging to this set for the exact computation

of the loss curve. The curve is piecewise linear between adjacent bu�er points belonging to this �nite set.

Let us denote by A(t1; t2) the arrivals into the bu�er during the interval [t1; t2], and by LB;�(t1; t2)

the number of bits lost in the interval [t1; t2] when the bu�er size is B and the transmission rate �. For

simplicity, in the special case when t1 = 0 and t2 = t, we will use the notation LB;�(t) instead of LB;�(t1; t2).

We �rst show that, for a given busy period experiencing losses, the amount of loss increases linearly

with a slope of -1 as the bu�er size B is decreased, as long as the busy period does not break into multiple

busy periods. Using this result, we can prove that the loss curve is piecewise linear.

Lemma 1 Let i be the last instant at which a loss occurs within busy period i. Then, the amount of data

lost during the busy period is given by

LB;�(�i; �i) = A(�i; i)� �(i � �i)�B; (8)

where �i is the starting time of the busy period i.

Proof: The losses from the queue during the interval (�i; i) must be equal to the arrivals into the queue

during the interval minus the total tra�c transmitted during the interval, minus the bits remaining in the

bu�er at the end of the interval. Since the queue does not underow during the interval (�i; i), the total

tra�c transmitted during the interval (�i; i) is �(i � �i). Furthermore, since losses occur at time i, the

bu�er occupancy at time i is B. Subtracting these two terms from the arrivals gives us the result in Eq. (8).

2

Thus, to calculate the losses during the busy period, it is su�cient to determine its starting time

and the last instant i at which losses occur during the busy period. Note that i must coincide with the

end of an active period of the source. Later, we will show that i coincides with the time instant at which

the local maximum queue size would have occurred during the busy period if the bu�er size were in�nite.

We can now use Lemma 1 to show that the loss curve is piecewise linear.

Lemma 2 For a given transmission rate �, the loss curve of an elementary video stream is piecewise linear.

The slope of the curve changes only at values of the bu�er size B where one of the following events occurs:
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i. A change in the number of busy periods in which losses occur.

ii. A change in i, the last instant at which a loss occurs in a busy period i, for any busy period i.

Proof: Consider two distinct values of B, B1 and B2, with B1 < B2, such that (i) the number of busy

periods undergoing losses remains the same at B1 and B2; and (ii) the last time at which a loss occurs in

each of these busy periods, i, also remains the same. Let Sl denote the set of busy periods in which losses

occur. Then, according to Lemma 1 the total amount of lost data over the entire duration T of the video

stream is given by

LB;�(T ) =
X
i2Sl

(A(�i; i)� �(i � �i))� nlB; B1 � B � B2; (9)

where nl is the number of busy periods in the set Sl.

Thus, the plot of LB;�(T ) and therefore that of �(B; �) with respect to B in the range B1 � B � B2

is a straight line with slope �nl. This concludes the proof of Lemma 2. 2

We can obtain the entire loss curve of the elementary video stream for a given transmission rate �

by starting from a bu�er size equal to the corresponding burstiness value �(�) (which is equal to the global

maximum queue size when the bu�er size is in�nity) and progressively �nding bu�er sizes at which either

(i) a busy period with no prior loss starts to experience losses, or (ii) a busy period experiencing loss breaks

into smaller busy periods. The time instant at which the last loss occurs within a given busy period is the

time at which the queue size reaches its local maximum within the busy period, when no losses occur from

the bu�er. This makes it easy to determine the parameter i in Eq. (9) that is required for computation of

the loss rate. The interested reader is referred to [11] for a formal proof of the latter statement.

The bu�er size at which the �rst loss occurs for a busy period can easily be identi�ed by computing

the local maximum queue size within the busy period ignoring any losses. The bu�er size at which a break

occurs in a busy period, however, is more di�cult to identify. We discuss this problem next.

Since the queue size reaches a minimum at the start of an active period, the starting instants of

active periods within the busy period are the points at which a break could potentially occur. Thus, we can

determine the maximum bu�er size at which a break occurs in the busy period by computing the bu�er size

that causes the queue size to be zero at each of these points and taking the maximum among all the points.

This procedure is cumbersome, however, because the e�ect of losses must be accumulated over multiple

active periods to determine the bu�er size that causes the queue size to reach zero exactly at the start of a

given active period. Instead, we use a more e�cient scheme to identify the bu�er size that causes a break in

the busy period.

Our approach can be best illustrated by the example in Figure 4, where a single busy period is

shown, consisting of seven active periods. The peaks and valleys for the queue size correspond to the ending

and starting times, respectively, of the active periods. With no losses in the busy period, the maximum

queue size within the busy period occurs at time t6, at the end of active period 6. As the bu�er size is

decreased from this value, losses start to occur �rst during active period 6. This causes a corresponding dip

in the valleys following the peak at t6, and a break results in the busy period if the queue size drops below

zero at any of the valleys.

As the bu�er size is decreased, losses start to occur progressively from the highest peak, to the next

highest, and so on. In addition, if a loss occurs from one of the peaks within the busy period, no losses
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Figure 4: Example of how to construct the set S that contains the active periods with increasing queue sizes,

and the last active period of a given busy period.

can occur from a following peak unless the latter is larger than the former, or the busy period breaks. For

example, in Figure 4 no losses can occur between the peaks at t1 and t4 without causing a break in the busy

period �rst. This enables us to process only the active periods corresponding to monotonically increasing

queue sizes within the busy period for identifying the bu�er size at which a break occurs.

The algorithm for identifying the bu�er size that causes a break in the busy period works as follows:

We �rst construct a sequence of active periods S within the busy period with monotonically increasing queue

sizes. In addition, we also require the last active period to be part of the sequence. For example, in Figure 4

such a sequence consists of the active periods 1, 4, 6 and 7.

We can now look for potential points for a break in the busy period, starting from the end of the

sequence. For each active period in the sequence, starting from the end, we can identify the bu�er size at

which the queue size becomes zero within the interval between the current active period and the previous

active period of the sequence. For example, in Figure 4, the algorithm �rst calculates the bu�er size for the

queue size to reach zero at the valley between t6 and t7 (this is the di�erence between the queue sizes at t6

and at the valley following it). If this bu�er size is larger than the next peak in the sequence (the peak at

t4 in the example), a break will occur between t6 and t7 before any losses occur at time t4, as the bu�er size

is reduced. No further processing of the sequence is then needed. If the peak at time t4 is smaller than the

bu�er size identi�ed so far, however, the algorithm calculates the bu�er size that causes a break between t4

and t6. This continues until a peak that is larger than the currently identi�ed bu�er size is reached, or the

sequence of active periods in S is exhausted. The algorithm then chooses the bu�er size identi�ed last as

the point at which the break occurs.

A high-level pseudocode of the entire algorithm for computation of the loss curve is shown in Figure 5.

The algorithm starts by computing the busy periods when the bu�er size B is in�nite. This is done by

function process active periods() which processes the active periods 1 to na to determine the busy periods.
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After computing the busy periods, the algorithm inserts into the heap all the bu�er points at which each busy

period starts experiencing loss, and the cause associated with each bu�er point (LOSS). These bu�er points

correspond to the maximum queue size for each busy period. The algorithm also computes the maximum

bu�er sizes at which each busy period breaks, and inserts them into the heap for further processing.

In the main iteration (Step 2), the algorithm proceeds to process the maximum bu�er point extracted

from the heap. Each bu�er point is associated with a busy period b and a cause. The cause takes two values:

LOSS, if the bu�er point causes a loss in the busy period b, and BREAK, if it results into a break. In case

that the cause is a loss in the busy period, the algorithm updates the loss variables (LB and nl variables)

that are used in the computation of the total loss for the current value of the bu�er size. The total amount

of loss is given by (LB � nlB). In the case of a break cause, the algorithm updates the loss variables again

and then processes the break by calling the function process break(). First, the function computes the new

busy periods generated after the break of busy period b, and checks them for possible losses. For each busy

period computed that experiences loss, the function updates the loss variables. For the remaining new busy

periods, it inserts into the heap the maximum bu�er sizes at which loss starts occurring in the busy periods.

Finally, it computes the bu�er sizes for the �rst break of all the generated busy periods, and inserts them

into the heap. To avoid multiple output points with the same bu�er size value, the algorithm outputs a (B,

�) pair only when a new bu�er size is processed by calling the function output point().

The procedure described above repeats for the new maximum bu�er point extracted from the heap

and the associated busy period. The procedure ends when no bu�er point is left. The loss curve is obtained

by connecting the loss ratio (�) values at all such bu�er points by linear segments.

The worst-case time and space complexities of the algorithm can be determined by considering the

computations performed at each bu�er point. The number of bu�er points is O(na) since a bu�er point

corresponds to either a break or a loss occurring in a busy period. It takes O(na) steps to process a busy

period for a speci�c bu�er size B, where na is the number of active periods. This includes the time to

compute any new busy periods and the bu�er size values at which either a loss or a break occurs in each

of these busy periods. Therefore, the total worst-case time complexity for the execution of the algorithm is

O(n2a). The space needed to store the output of the algorithm is proportional to the number of bu�er points

processed by the algorithm. Thus, the space complexity is O(na).

The loss curve can be used for the computation of the B versus � curve, i.e., the plot of the minimum

bu�er size B versus the service rate � for a speci�c loss rate �. To compute the B versus � curve for a speci�c

value of �, we need to compute the loss curve for every �, and then read o� the values of B for the speci�ed

value of �. This procedure can be done using some granularity of the rate �, or using the rate points of the

burstiness curve.

3 Application of the Algorithm to MPEG-2 Transport Streams

The algorithm presented in the last section can be modi�ed for computation of the loss curve of MPEG-2

Transport Streams. In this section, we present how the algorithm can be applied to MPEG-2 Transport

Streams.

The MPEG-2 Transport Stream format is a grouping of one or more programs into a single stream,

with a program de�ned as a grouping of elementary streams (audio, video, teletext, etc.) that have a common

time-base for delivery. The MPEG-2 Transport Stream is the preferred choice for error-prone environments
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as in the case of packet-switched networks. A basic characteristic of this format is that the rate throughout

the stream is piecewise constant [7]. Therefore, an MPEG-2 Transport Stream consists of a sequence of

constant-rate segments (see Figure 6). Detailed description of the MPEG-2 Systems Layer can be found

in [7, 9].

Using the same de�nition for the busy period, a busy period in the MPEG-2 Transport Stream case

always starts at the beginning of a rate segment i at which ri > �, with ri being the rate of the segment.

An example busy period is shown in Figure 7 which consists of rate segments 2{12.

As in the case of elementary video streams, the amount of data that is lost in a busy period is again

given by Eq. (8), where m(t) corresponds to the transport rate of the MPEG-2 Transport Stream. Similarly,

the total losses throughout the whole stream is again given by Eq. (9). Therefore, to compute the exact

loss curve in this case, we need to consider only the bu�er points at which either (i) a change in the index

of the last rate segment experiencing loss in a busy period occurs, or (ii) a change in the number of busy

periods experiencing loss occurs. A di�erence between the cases of the elementary video stream and the

MPEG-2 Transport Stream is in the computation of the next bu�er size at which a break occurs for a certain

busy period. The set of rate segments with increasing peaks of the queue size (occurring at the ending time

instants of the rate segments) is again computed �rst. The time instants within the busy period that need

to be checked for a possible break are only the ones corresponding to the valleys inside the busy period and

not all the time instants corresponding to the end of a decreasing line segment of the busy period. As an

example, the rate segments 3, 5 and 8 of Figure 7, are inserted into the set of increasing queue peaks, and

it is su�cient to examine the valley points at the end of rate segments 4, 7 and 10 for determination of the

bu�er size that will result in the �rst break of the busy period.

4 Validation and Results

To evaluate the time- and space-complexities of the algorithm, in this section we show results from applying

the algorithm to several actual video traces available over the Internet. For simplicity, we focus on elementary

video streams. The performance on MPEG-2 Transport Streams can be expected to be similar.

We applied the algorithm to a number of elementary video stream traces taken from [1, 6]. All the

traces except Garrett's are approximately 30 minutes in duration, while Garrett's trace is approximately 2

hours long. The execution times of the algorithm for the various traces are shown in Table 1. The execution

time is relatively small for all the traces, typically within a few seconds on a Sun Ultra-2 workstation. The

number of points on the loss curve varied from 9,632 for \lambs" to 89,489 for Garrett's trace, comparable

to the total number of frames in the respective traces. An example loss curve and typical B versus � curves

for the \lambs" trace are shown in Figures 8 and 9, respectively.

The algorithm for the computation of the loss curve along with the algorithms for the computation

of the burstiness curve presented in [10] have been implemented in a JAVA tool that can be used for the

derivation of the characteristic curves of video traces. The tool provides the ability to analyze video traces

and view the resulting curves graphically. It can be downloaded from

http://www.cse.ucsc.edu/~tryfonas/mpeg-neat.htm.
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Trace Frame Rate Number of Video Length Running Time Space

(Hz) Frames (mins) (secs) (# points)

MrBean 25 40000 26.7 2.3 18812

asterix 25 40000 26.7 2.8 24345

atp 25 40000 26.7 2.5 22641

bond 25 40000 26.7 2.9 27169

dino 25 40000 26.7 1.9 14293

lambs 25 40000 26.7 1.6 9632

movie2 25 40000 26.7 2.1 17634

mtv1 25 40000 26.7 3.3 28262

mtv2 25 40000 26.7 5.2 22525

news1 25 31515 21.0 2.1 20036

news2 25 40000 26.7 2.1 16888

race 25 40000 26.7 4.2 33317

sbowl 25 40000 26.7 2.5 24044

simpsons 25 40000 26.7 2.3 20527

soccer1 25 40000 26.7 3.2 30265

soccer2 25 40000 26.7 3.1 27129

star 25 40000 26.7 1.8 12189

talk1 25 40000 26.7 1.9 14110

talk2 25 40000 26.7 2.0 15683

terminator 25 40000 26.7 1.7 11396

Garrett's trace [6] 24 174136 120.9 11.2 89489

Table 1: Performance results of the exact algorithm on several elementary video streams taken from [1]. The

peak rate is set to 10 Mbps whereas the service rate � of the second server is set to 1 Mbps. The running

time is the user time as measured on a Sun Ultra-2 workstation.
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5 Conclusions

In this paper, we developed e�cient deterministic algorithms for exact computation of the loss curve of both

elementary video streams and MPEG-2 Transport Streams. The algorithms enable the exact computation

of the loss curve of a video stream or any bursty ON-OFF source such as voice or data. In addition, they

facilitate the computation of the B versus � curve for a �xed loss rate � of a video stream.

Our experiments with several video traces suggest that the proposed algorithms can be used not

only in o�-line environments in which the video stream is stored (e.g. video servers), but also in on-line

systems such as in real-time TV broadcasting. In the latter case, the video stream can be segmented to

�xed time intervals and the loss curve can be constructed for each segment, facilitating per-segment QoS

provisioning and call admission control.
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Loss Curve Algorithm Pseudocode for Elementary Video Streams

1 /* INIT. B holds the available bu�er, LB holds the sum of the unrestricted queue sizes of the busy

periods with loss at the time instants at which the maximum queue occurs, nl holds the number

of busy periods with loss, nb the number of busy periods, and na the number of active periods.*/

1.1 B  1; LB  0; nl  0; M  stream size;

/* Compute busy periods for rate �, and bu�er size B. */

1.2 process active periods(1, na, B);

/* Insert into the heap the bu�er point at which a loss occurs

for each busy period, compute the bu�er size for the �rst break for

each busy period and insert it into the heap as well. */

1.3 For b = 1 to nb /* for each busy period b */

1.3.1 heap insert(Q�
b , LOSS, b);

1.3.2 B0
 compute next break(b);

1.3.3 heap insert(B0, BREAK, b);

1.4 endfor

2 /* Extract the maximum bu�er from the heap, and process

the corresponding busy period until the heap becomes empty. */

2.1 (b, B, cause)  heap extract max();

/* Let (sp; tp); (sp+1; tp+1); : : : ; (sq; tq) be the active periods contained within the busy period b.

Also, let (sp; tp); : : : ; (sj ; tj) be the active periods contained within the interval (�b; �b). */

2.2 If (cause = LOSS)

/* update nl and LB variables */

2.2.1 LB  LB +
�Pj

i=p
r(ti � si)� �(tj � sp)

�
;

2.2.2 nl  nl + 1;

2.3 else /* cause = BREAK */

/* update nl and LB variables */

2.3.1 LB  LB �
�Pj

i=p
r(ti � si)� �(tj � sp)

�
;

2.3.2 nl  nl � 1;

/* Process the break in busy period b: Compute the new busy periods, and update nl and LB

when a busy period already experiences loss. For the remaining new busy periods, insert

into the heap the bu�er points at which the �rst losses occur. Finally, for all the new

busy periods, compute the bu�er sizes for the �rst break and insert them into the heap. */

2.3.3 process break(b, B);

2.4 endif

2.5 output point(B, LB�nlB

M
);

2.6 If (heap not empty)

2.6.1 goto Step 2;

2.7 endif

/* Output the last point of the loss curve */

2.8 Output (0; r��
r
);

2.9 STOP;

Figure 5: Top-level of the algorithm that computes the exact loss curve of an elementary video stream. A

representative description of the function heap extract max() can be found in [3].
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