An Efficient Timer Implementation
For HPR

Subir Varma
Bala Rajaraman

IBM Corporation
PO Box 12185
Research Triangle Park, NC 27709

Contents

Scetion: 1, Introduction . .o - Sl Do hd S EEL A sue SRR 006 1
Scction 2. SCONAFIOS . . & o o oo i e e e e e e e 3
Section 3. The Naive Implementation- .. . §
Section 4. The Clock-Tick Approach s
Scetion 5. An Hicerarchical Clock-Tick approach 8
Section 6:: CoNCIUSIONS. <cix cciw v suvie ciminie o oy o sime aus e 10
6.1 Referenees - siazive soofe sming wiele soemme 5408 e GEEeIsEes s 11

Contents i1

Figure List

Figure List iii

Abstract

High Performance Routing (HPR) is a new transport/network level protocol to be
be used in IBM SNA networks. One of its most significant features is end-to-end
rate based flow control, which replaces window based flow control used in the
present SNA architecture. It also has end-to-end error recovery and route switch
mechanisms. All these new features require the use of a number of different timers.
Since previous SNA architectures did not require such an extensive use of timers,
timer design is a critical aspect for a successtul HPR implementation. In this report
we discuss this problem and suggest some ways in which timers can be efficiently

implemented.

Abstract 1V

Section 1.

Introduction

High Performance Routing (HPR)(4), is a new transport/network level protocol to
be be used in IBM SNA networks. One of its most significant features 1s end-to-end
rate based flow control, which replaces \\I’indow based flow control used in the
present SNA architecture. It also has end-to-end error recovery and route switch
mechanisms. All these new features require the use of a number of different timers.
Since previous SNA architectures did not require such an extensive usc of timers,

timer design 15 a critical aspeet for a successful HPR implementation.

The main focus on this report will be on the efficient implementation of the burst
timer (B7), that is used to control the rate R. at which PIUs are being transmitted
into the network (3). The component of HPR that controls the rate at which PiUs
arc being sent into the network is called ARB, and it works by varying the rate R, in
reponse to changing network conditions. For example if the network s congested,
then R, is reduced, while if the source requires more bandwidth, and the network
has some available, then R, is increased. ARB controls the ratc at which data is
being sent into the network, by sending no more than B, bits dunng an mterval By,

such that the following equation is satisficd

Hence R, can be controlled cither by varying B, or by varying Br.

‘IThe rest of this report is organized as follows: In Section 2 we describe some typical
scenarios for HPR, and the resulting timer values that they lead to. This has a
bearing on the values that the burst timer is set to. In Sections 3 and 4 we discuss
some simple implementations of the timer, while in Sections 5 and 6 we present new

improved schemes.

Section 1. Introduction |

Scction 1. Introduction 2

Section 2. Scenarios

The value of By in a system can vary widely, depending upon the type of application
that is using the services of the HPR pipe. Assuming that the packet size is fixed at

1 KB, consider the following two scenarios:
I. OLTP application, with a data ratc of 10 KB/s. This leads to Br = 100ms.

2. High speed file transfer application, with a data rate of 8 mbps. This leads to

Br= s,

Any real system will have a mixture of these two types of applications, so that the
values of By are expected to vary widely. Also the number of RTP pipes supported
by the host can be quite large, as the following calculation shows: Assumc that it
takes 6000 instructions to send a PIU, then for the OLTP application, this translates
into 60,000 instructions/s per application (since cach application sends 10 PIUSs/s).
Assuming that 10% of the MIPS of a 50 MIPS processor are devoted to sending
data, this translates into a total of 83 RTP pipes that can be supported by the host.
If 50% of the MIPS are devoted to sending data, then it can support 416 RTP
pipes. The corresponding number of pipes for the high speed file transfer applica-
tions are 0 and 4. These calculations show that a good timer implementation for
HPR should account for the fact that the timer values can vary widely as well as the

number of connections using timers, can be very large.

There are two main costs involved in timer mnplementations:

- A timer implementation is basically a sorting system, since its main function 1s
to receive as input timer requests for different intervals and produce as ouput all
these requests sorted according to their interval values. Hence one of the costs

of a timer implementation is duc to sorting of the timer control blocks (TCBs).

« The other cost is due to the dispatching overhead of the timer process itself.

This overhead can be large cither when the time intervals requested are small, or

Section 2. Scenarios 3

if the number of timers is large. For example for the case when there are 16
RIP pipes with By = Ims, there is a timer expiry every 62.5 microseconds, while
for the case when there are 416 RTP pipes with Br— 100ms, there is a timer

expiry every 240 microseconds.

Hence a good timer implementation should be able to reduce the expense of TCB

sorting as well as the expense of the timer process dispatches.

Scction 2. Scenarios 4

Section 3. The Naive Implementation

The simplest implementation of the timer structure is to have a simple linked list of
TCBs, arranged according to their time of expiry. The sorting cost of this structure
of O(n), and is incurred every time a TCB is inserted into the linked list. The timer
is set according to the value of the first TCB that is to expire, so that there is a
timer dispatch with every TCB expiry. This can lead to an excessive amount of
MIPS being devoted to the timer process dispatch. The sorting cost can be reduced
to Oflog(n)) by using data structures such as heaps and left-leaning trees, however
the cost of timer dispatches still remains high. For the case of the OLTP applica-
tion there is one time dispatch on the average every 240 microseconds, which trans-
lates into a requirement of 2.5 MIPS (assuming 600 instructions are required to
dispatch the timer process). The corresponding number for the file transfer applica-

tion is 2.4 MIPS.

Section 3. The Naive Implementation 5

Section 4. The Clock-Tick Approach

The clock-tick approach tries to reduce the cost of excessive number of timer dis-
patches by periodically dispatching it once every clock-tick interval, which is usually
fixed. At these times, all the TCBs are decremented by the clock-tick value, and
those that have expired are then dispaiched. The cost of doing the update cvery
clock tick is now O(r), however the cost of inserting a new TCB is O(1). There is
also a certain amount of im-precision introduced due to the fact that certain timers
may now expire at a time slightly later than their sct value. For example, for the
OLTP casc if we set the clock-tick interval T = 5y, then there can be an error of at
most 5 ms between the set and the actual value of timer expiry. The timer dispatch
overhead for this case would be .12 MIPS. In order to get a comparable 5% error
margin for the file transfer application, onc would require that 7°= 50 microseconds.
However this makes the clock-tick solution for high speed applications even more
expensive than the linked-list solution (which led to a timer dispatch cvery 230

microsceonds).

lence we are led to conclude that the clock tick approach is more suitable than the
linked list approach for OL'T'P applications, while neither of them seems to be suil-
able for high data rate applications. We now present a modification of the clock-tick

approach, to make it more suitable for high speed applications, by taking advantage

of the rclation

B
Ry= B;

The basic idea behind this approach is to suitably modify B, in order to achieve a
cortain rate R,. Since the burst-timer is always reset as soon as it expires, all the
burst timers belonging to a particular set can be synchronized so that they are
always set at the clock-tick instant. However depending upon time interval values,

they expire at different times. For example if T = lmy and 0 < Br < Ly, then the

Section 4. The Clock-Tick Approach 6

effective value of By, let us call it B¥, will always be greater than the st value. In

order to compensate for this, we can increase B; to BY, such that

o_ B
B‘,‘f: ?T— B.‘.

Section 4. The Clock-Tick Approach 7

Section 5. An Hierarchical Clock-Tick approach

In this section we present an approach that utilizes multiple sets of timers, with cach
set arranged according to the clock-tick design. Specifically, we proposc that there be
three timer sets, such that 7= Ims for the first set, = Sms for the second sct and
7= 105 for the third set. Sets | and 2 are organized in the conventional way as
described in the last section, while set 3 is organized according to a timing wheel
structure, which is desenibed later in this section. The followings rules should be

used in order to decide the set to which a timer should belong:
o If Ums < By < 2.5ms then choose set L
o If 2.5ms < By < 7.5ms then choose set 2.

« If By= 7.5ms then choosc set 3.

We now describe the timing wheel which is the proposed data structure for set 3.

—_— 0 ms pumumnm | ot of timers that

B are to expire at this
Set 1 | 19 ms !—» time
set2 | 2om |—
Set 3 36 ms l—*b

Set 4 40 ms

Current Time |—1

>

Set N Max Interval —»

The basic idea behind the timing wheel technique is to sort the TCBs into different
sets, depending upon the time of expiry. For example i I'ig. 1, all TCBs for whom
7.5ms < By < 10ms, are in Set 1, those for which 10ms < By < 20ms are in Set 2 ete..

Furthermore, there is a pointer that points to the current time, and at every clock-

Section 5. An Hierarchical Clock-Tick approach 8

tick it is incremented so that it points to the next sct. At any instant of time, when a
new TCB is inserted into this structure, the appropnate set is choosen according to
the time of expiry for that TCB. I we know in advance the value of maximum

burst time value, Max_Interval, then the number of sets required is given by

Max_Interval
10

tick book-keeping time are both O(1) operations.

. The advantage of this scheme is that the insertion time and the per-

Some of the reasons for choosing the hierarchical clock-tick structure with timing

wheels, are:

« The scan time per clock-tick interval is reduced as compared to the usual clock-
tick approach. This is because of the timing wheel structure for normal values of
Br. For small values of By, a scan is still required, but since the number of
applications which lie in this high speed range is limited, the scan overhead 1s

small.

+ The timer dispatch overhead is reduced, since the clock-tick value 15 not
allowed to decrease below Imys, the difference being adjusted by changing B.
Moreover, if there are no TCBs in the | ms or Sms sets, then the clock-tick can

be adjusted to 10ms, thus reducing the timer dispatch overhead even further.

Section 5. An Hierarchical Clock-Tick approach 9

Section 6. Conclusions

The proposed burst timer design solves the central two problems for an cfficient
implementation: It optimizes the TCB insertion overhead as well as the overhead of

the timer process dispatches.

Section 6. Conclusions 10

6.1

References
(1]

(2

(3]

(4]

G. Varghese and 'T. Lauck, "Tashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facility”,
Proc. 11th Symp. Oper. Syst. Principles, 25-38, (1987).

D.E. Knuth, “The art of computer programming, Volume 37, Addison
Wesley, Reading, MA (1973).

L. Huynh and R. Bird, “Iligh Performance Routing”, 4 WP-xxxx,
IBM Corporation (1993).

E. Mumprecht, D. Gantenbein and R. Hauser, “T'imers in OSI proto-
cols: Specification vs implementation”, Undates Research Report, IBM
Zurich Rescarch Lab.

Section 6, Conclusions 11

