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ABSTRACT 

 
In recent years there has been a growing realization that as the speed of links has increased, the communication 
bottleneck has shifted to the protocol processing in the nodes. In response to this there has been an extensive 
amount of research to find ways to alleviate this problem. The main thrust of this work has been in the following 
directions: • 

1. Improve the performance of existing protocols by tuning their implementations. 

2. Implement existing protocols in 'special purpose hardware. 

3. Suggest new protocols which are better suited for high speed networks. 
 
The objective of this report is to give a non-technical survey of this area, and point out the main 
performance issues that arise thereby. 
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1.0 Introduction 
 
One of the important trends in t he past few years has been the explosion In link capacities due the fiber-optic 
revolution. The prevalence of high bandwidth is been) driven by three forces [Ja): 

•  New high speed link technologies such as HIPPI and FCS which are capable of providing link 
bandwidths in the gigabyte range. .· · · 

•  New transmission technology services such as SONET. BISON, SMDS etc. that are designed to 
take advantage of the high speed links. 

•  Future applications such as distributed computing, full motion imag.es, multi-media etc. that will 
require throughputs in the gigabyte range. 

IBM mainframes are ideally positioned to serve as platforms for high bandwidth applications 
due to their rich storage and connectivity features. However. before this can become reality. it will be necessary 
to radically· redesign the access method technology so that ii will be capable of sup• porting high bandwidth 
applications. There are a number of different approaches that have been suggested in response to this situation. 
The purpose of this report is to provide a survey of some of 
these efforts and also point out their relevance to VTAM. 
 
 
A survey of the literature reveals that researchers have adopted three different approaches in their attempt to 
improve protocol performance. These approaches are summarized below in order of increasing deviation from 
conventional techniques: 

1. The first approach is to improve protocol implementations. An examination or the code of 
protocols that are implemented on conven1ional mainframes reveals that only a small part of the 
code is spent in protocol related functions, the rest is spent in overheads such as data 
movement. scheduling, buffer management etc.. Hence protocol performance can be improved 
by reducing these overheads. This approach is covered ln Section 2. 

2. The second approach is implement protocols on special hardware platforms or front ends. The 
justification behind this approach is that since most of the protocol processing is made up of 
overheads, moving to a special environment that is optimized for protocol processing would reduce 
those greatly. This approach is covered in Section 3. 

3.  The third approach is to design new protocols that are better suited to high speed 
implementations than conventional protocols. This approach is covered in Section 4. 

 



2.0 Tuning Existing Protocol Implementations 
 

This section is organized as follows: We first list the suggestions that have been made to improve 
the implementations of existing protocols. If possible, we also give examples from papers were the 
suggestions were implemented or tested. In the last part-of this section we explore the limits of 
throughput which can be achieved by tuning alone.  

 

Context switching:  
          

The issue of context switching is closely connected with the problem of how to map the multiple layers in a  
protocol with processes in the operating system (PoCh]. 
 
One option would be to take each layer and run it as a process. The advantages of this 
approach are: 

• The different functions or each layer can be kept within the process's context and hence 
provide a clean interface. 

• Automated tools may be used to produce the code that implements the layer. 
• It may even be possible to replace a layer by a layer or another protocol that pro- vides the 

same services. 

The principal drawback of following this approach is the heavy performance penalty due to the context 
switching overhead from one process to another. Hence by combining multiple layers into the same 
process would improve performance. However there is a limit to which multiple layers can be 
combined into processes. and it is generally prefer- able to put layers performing similar functions 
together. In the context of the OSI layers, the application oriented session, presentation and 
application layers would be in one process, the network oriented transport and networ1< layers would 
be in another process and the datalink layer would be in a third process since it is usually 
implemented in the kernel. The concurrency between the application and the network layers is 
essential in order that the network layer may be able to handle both user requests from upper layers, 
as well as network events from lower layers. 

 
A number of implementations, have tried to reduce the context switching overhead by providing their 
own scheduler, which has a fewer overhead compared to the operating system scheduler. Other 
advantages of this approach are that porting the protocol to another operating system becomes easier 
and work elements within the protocol can be assigned different priorities (for example control 
messages are assigned higher priorities than data messages). lnspite of the use of its own scheduler, 
about 20% of the code during SEND and about 12% during RECEIVE is due to the scheduling ,md 
dispatching overhead (for a 4K message size). This overhead is approximately equally distributed 
between protocol and OS schedulers. Hence a way must be round to reduce the scheduling 
pathlengths. One promising approach would be to examine the idea of Light Weight Processes or 
Threads [MaLeScMa] which have a much lower context switching overhead as compared to traditional 
processes. 

 

Data movement:  
 

                It has been long recognized that copying data constitutes one of the most significant overheads in 
protocol processing since i1 involves the touching of each byte in the message. Furthermore. in large 
systems it has been noted that excessive data movement indirectly decreases the performance or 
another address spaces, by increasing the cache miss rate (HaPo). A number or techniques have 
been adopted to overcome this problem: 

• Pass buffers in-between layers by reference pointers, rather than by copying. Space for headers 
can be reserved in the buffer i t se l f .  Alternatively, or each 
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 layer may construct its header separately, and when the packet is ready to be trans- mitted, these 
elements are gathered together into a single buffer. 

• The solution suggested above does not solve the problem of having to move the data from 
pageable user storage to fixed system storage. One solution that has been suggested for the S/370 
environment, is page table manipulation as in CLAW [AnDaCIEdRa]. The basic idea in this 
technique is to adjust the users page table entries to point to the data, rather than actually moving 
the data. However, this can only be accomplished if the 1/0 buffers have a fixed size of 
one page.  Another solution is a common storage manager (CSM) [lo]. The intent of this 
technique is to transfer data from storage devices to a data space that is shared among 
several address spaces including that of the Protocol stack. Hence it .is possible to build a 
channel program and send the data directly from this address space, without having to do 
another move. 

 

Exploiting protocol parallelism:  
 

                The following classification of the types of parallel processing pos- sible in a protocol 
implementation, Is a condensation of the ideas of Jain et.al. (JaScBa] and Zitterbart [Zi]. 

• Coarse grain parallelism: This involves assigning tasks belonging to different sessions to different 
processors. Contention between multiple processors is eliminated because activities on each con- 
nection are independent of the others. However note that the concurrency which can be achieved 
is limited by the number of sessions that are active simultaneously. 

• Medium grain parallelism: This involves assigning successive packets to the next 
available processor, even if they belong to the same session. This scheme is capable of 
significantly improving the throughput of a single session. However the interference among 
multiple processors is increased since packets belonging to the same session are likely to 
reference the same data structures. Moreover the packets may have to be resequenced before 
being delivered to the upper layers. 

• Structural parallelism: This is derived directly from the layered protocol stack model. Pipelining 
of packet processing so that several packets from the same session 
undergo processing in different stages of the pipeline at the same time is an example of structural 
parallelism. Each pipeline stage can be mapped lo one or more layers in the protocol stack. The 
fact that the SEND and RECEIVE for a single session can be executed in parallel is another 
example of structural parallelism. 

• Fine grained parallelism: This involves using several processors simultaneously to process a 
single packet. For example in the context of pipelined processing discussed above. if a layer were 
to-be split up into a number of parallel processes, then it would be an instance of fine grain 
parallelism. This idea is closely related to the idea of integrated layer processing in Section 4. 
In a pipelined implementation, fine grained parallelism can be used to reduce the processing 
delay of the slowest stage in the pipeline. 

 
Header Prediction:  
 
The basic idea behind header prediction [CIJaRoSa], is the following:  
 
On SEND side, is to keep a fixed template of headers (which is the same for every packet), and attach  
it to the outgoing packet. The packet dependent parts of the header such as the sequence number are  
obtained and attached separately for each packet On the RECEIVE side, pre-compute what values  
should be round in the next incoming packet header, and then a few simple comparisons suffice to  
complete the header processing. In an experiment carried out at Cray Research [NiGoBoYoRo], .the  
authors observed that the throughput went up from 394 Mbits/s to 423 Mbits/s on an 800 Mbits/s hostto  
host channel connection, because of the header prediction algorithm. 
 
 The concept of header prediction has been generalized to that of Protocol Bypass by Woodside et. 
al. [WoRaFr). They make the point that in most complex systems, 80% of the code is devoted to 
processing special cases and only 20%of the code is sufficient for executing the mainline functions. 
Applying this concept to communication protocol implementations, Woodside et. al. provided a 
bypass test at the top of the SEND stack and the bottom of the RECEIVE stack. If a packet satisfied 
the bypass test, then it was executed by a special fast path, while if it fails the test, then it is executed 
by the usual protocol stack. Interestingly enough, they observed that an OSI protocol stack imple- 
mented  with bypass  mechanism on  a  uni-processor,  out  performed  a parallel implementation 
of the protocol on 4 processors without bypassing. 

 
 



 
   Caching information:  
 

                 The SEND and RECEIVE operations in most protocols involve control block searches in several 
places. Clark et. al. [CIJaRoSa] in experiments with the TCP/IP protocol. have observed that the use 
or a cache with just one entry can reduce the search overhead substantially. In fact the hit ratio to 
this cache, even for traffic to a diverse set of connections, approached 90%.  

 
Interrupts:   
 

                The overhead or interrupts from the channel can be substantial. One way to reduce it, as VTAM has 
done. would be to implement a timer mechanism, whereby messages arriving within the timer interval 
are blocked and transmitted together thus generating a single interrupt for the entire block. This solution 
is able to achieve high throughput, especially in heavy message traffic, but it increases the amount 
of transmission delay that individual messages experience. One solution to this, is to have threshold 
message size such that all messages smaller than the threshold are transmitted immediately, while 
messages larger than the threshold are blocked using the timer mechanism. The justification behind 
this approach is that smaller messages would be from interactive response lime sensitive sessions: 
while larger messages would be from non-interactive throughput oriented sessions. 

We now describe the concept or a never ending channel program, that has been adopted by the 
designers of CLAW. This is designed to reduce the interrupt overhead significantly. The READ 
channel program operates as follows: The basic idea is to use a list of READ CCWs and an array of 
flags, with one flag associated with each CCW. When a READ CCW completes normally, then the 
corresponding flag is set by the control unit. Thus CLAW can keep track of the channel programs 
progress without receiving interrupts. When CLAW discovers that READ CCWs have completed 
normally, then it a p p e n d s  t h e  R E A D  b u f f e r s  t o  t h e  e n d  o f  t h e  C C W  c h a i n .  
In this way, a finite number of READ buffers are kept circulating continuously. At times when 
The host goes into a wait state, it explicitly asks the channel for a PCI interrupt at the end of 

 



 

 
 

the CCW. The WRITE channel program operates basically operates along the same lines. There is a 
list or WRITE CCWs and array of flags, with one flag associated with each CCW. When a WRITE 
completes normally, then the corresponding flag is set by the control unit, thus avoiding an 
interrupt. As new data arrives, WRITE CCWs are built for them, and appended to the end of the 
CCW list. In this way the WRITE channel program can be kept operating continuously. Moreover 
there is also a facility for CLAW to receive a PCI interrupt every nth frame, when it can check whether 
previous WRITE CCWs have completed normally, and also to append new CCWs if necessary. 

 

 
Locking 
Mechanisms 

' 
 
 
 

 
Since, communication software by its very nature has a high level of con- 

currency, locking mechanisms play a significant role in its performance. There are two broad 
varieties of locks, spin and suspend. In most concurrent programs, either one or the other 
is exclusively used. however recent research in operating systems has revealed that using 
a combination of the two would be more beneficial than using either alone [KaliMaO]. In the 
case of suspend locks, the significant overhead is the cost of a context switch, while in the 
case of a spin lock the significant overhead is the waste of processor resources. A middle 
path would be to spin for a while. and then suspend if the lock is still not available. Note that 
the number of cycles spent spinning should not exit C (the number of cycles required to do a 
context switch). 
Karlin et. al. present a number of different alternatives for choosing !he threshold T, which 
should be spent spinning. The discovered that adaptive algorithms, in which the T is 
dynamically adjusted perform better, than algorithms in which T is fixed, and both perform 
much better than algorithms in which T is set to 0 or infinity. The best adaptive algorithm is 
known as random walk and it operates as follows: If number of spins spent waiting for the lock 
is more than C then decrease T by 1, otherwise increase T by 1 up to a maximum of C. They 
observed a decrease in elapsed time of 32% by using random walk, as compared to a pure 
block policy and 56% over a pure spin policy. 

 
Buffer management:  
 

                We describe the way in which buffers are in managed environments. There is pool or fixed size buffers 
in fixed storage, into which the message is transferred before being transmitted. Not more than one 
message can be put in a single buffer and large messages may span multiple buffers. The buffer 
pool is capable or expansion and contraction, such that if the number of free buffers decreases below 
a threshold, then the pool is expanded by a fixed amount Conversely if the number of free buffers 
exceeds another threshold the pool is contracted by the same amount During expansion, additional 
buffers are obtained by means of OS calls, which can be very expensive. 

 
The use of fixed size buffer leads to a more efficient implementation, however it may lead lo 

wasted buffer space if the messages are significantly smaller than the buffer size or it may lead to long 
channel programs if the messages are significantly bigger. Moreover, both extremes in message sizes 
are usually mixed in the same traffic stream, since control messages are smaller than data messages. 
Solutions to this problem may include monitoring the traffic now and automatically changing the buffer 
size and also multiplexing several small message-s in the same 1/0 buffer. The buffer pool expansion/ 
contraction algorithm may also benefit by changing from linear expansion/contraction to exponential 
expansion and linear contraction. 

 
The I/0 buffers in CLAW are fixed at 4096 bytes in size, and this size cannot be varied by the user. 
The designers chose this size in order to implement their data movement scheme by means or page 
table manipulation. Another notable feature of their buffer management scheme is the inter-mix buffers 
belonging to different messages together so that a single buffer belonging to a small message may be 
put among the buffers of a large message. The advantage of this scheme is that the small message 
will 
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not have to wait for an excessive amount of time, for the large message in front of it to be transmitted. 
 
Queue management  

 
 It is necessary to maintain queues of control blocks in most protocol implementations. If the queue size becomes 

too large, then retrieving control blocks may become an expensive operation [Co]. There are 
several ways in which this overhead may be reduced: 

• If the control blocks are added and deleted only from the end of the queue then double headed queue is 
indicated. If several processes manipulate the double headed queue, then a lock is required to preserve 
its integrity. To avoid using the lock, one may use a single headed queue and reverse the queue pointers 
at the time when a control block has to pe dequeued. 

• If the control blocks have to be searched from a list, and there is a key associated with 
each block, a more efficient data structure such as a hash table or an AVL tree should he used. 

 
It would be interesting to estimate the minimal number of instructions required to implement a protocol, provided 
all overheads due to the operating system, data movement. buffer management etc. were removed. This would 
provide an intrinsic upper limit to the speed of the protocol, independent of the environment. ClarK et. al., 
(CIJaRoSa), have carried out precisely this exercise for the TCP/IP protocol. They were able to show that it is 
possible to implement the SEND or RECEIVE operations for a single packet, by using about 300 CISC 
instructions or about 400 RISC instructions. Assuming that the packet size is 4000 bytes, the code is run on a 10 
MIPS processor and the TCP/IP processing overhead is the bottleneck, this translates to a throughput of 530 
Mb/s after taking acknowledgment overheads into account. Wicki [Wi] estimates that the total number of 
instructions after taking all overheads and the device driver code into account would be about 2000. which 
translates into a throughput of 16.0 Mbits/s. 
 

., 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.0 Implementation in Special Purpose Hardware 
 
We concluded in the last section that if conventional protocols are to sustain gigabyte transmission rates, then 
the system ·overheads need to be cut down drastically, as well as processors with a largej ty,IPS rating would 
be required. An alternative approach is to implement the protocol using an board connected to the main 
processor. The processing environment in the outboard would be optimized. for protocol processing, thus 
cutting down on the system overheads. In the LAN arena, several products have been available for the past 
few years that Implement the MAC and lower layers in a front-end board [KrSa). Some of them also perform 
the front-end functions of their link level protocols. The intent of most of the work described in this section, is 
not only to implement the lower layer functions in hardware, but also upper layers such as the network and 
the transport, thus achieving a greater degree or independence from the main processor. 
 
 
There are three important issues that have to be addressed if a front-end protocol implementation is to show 
significant performance gains over host implementations: 
• The interface between the host and the front-end: If this interface is poorly designed, then the host will not 

be able to realize the performance gains in offloading the protocol. 
• Taking advantage of the concurrency in the protocol: Since context switching in a front-end will be less 



expensive than that in the host,  there are greater variety or parallel implementations that become feasible. By 
taking advantage of parallelism between protocol layers within protocol layers and between successive 
messages, it would be possible to achieve gigabyte speeds by using a sufficiently large number of processors 
each with a modest MIPS rating. 

• Designing the memory structure in the front end: All the issues raised in the previous section regarding 
data movement apply to the front end too, so that it has to be designed carefully to reduce this overhead. 

 

In the rest of this section, we present the techniques that have been used by some front-end implementations 
to address the issues presented above. The specific front end implementations that we will discuss are: 

• The VMTP Network Adaptor Board (NAB) [KaCh] from Stanford University. The NAB was designed to 
implement VMTP, a new transport protocol specifically created for efficient implementation in a high 
performance network adapter. The adapter uses a host interface that is designed for minimal latency, 
minimal interrupt processing overhead and minimal system bus and memory access overhead. 
Measurements show that the NAB with an onboard processor rated at 2 MIPS, is capable of a throughput 
of 44.3 Mbits/s per connection on a host-to-host connection, with a packet size of 1 Kbyte and user message 
size of 16 Kbytes. Delay measurements for small packets showed that only 5.9% of the response time was 
due to NAB processing and bus transfers, whereas 88% was due to the host. With t h e  onboard 
processor ratedt 20 MIPS, the NAB achieved a throughput of 88.6 Mbits/s. 

 
• Transputer based front-ends from IBM Zurich (TRAZ) [Wi] and the University of Kahlrusche (TRAK} [Zi]. 

The main objective of these projects was to demonstrate the feasibility of a high performance 
implementation of OSI using a general purpose processor such as the transputer. They sought to do so by 
exploiting the structural and fine grained parallelism in the protocol layers. Measurements were performed 
on TRAK, for an implementation or the OSI Network protocol and the OSI Transport protocol (TP4). Without 
including the checksum and segmentation free assembly, a throughput of about 60 Mbits/s was 
reported using S Kbyte packets. An implementation of the LLC layer in the TRAZ front end showed a 
throughput of 100 Mbits/s for a 2Kbyte message size. 

 
• The MPP front end from Columbia University [JaScBa]. An architecture is proposed for accomplishing transport 

protocol processing at Gbps/s rates. The key concept is that of processing packets on distinct processors in 
parallel. The architecture assumes suitable hardware support to perform any necessary lower level protocol 
processing but makes no significant assumptions 
about the protocol to be implemented in the system. The authors carried out a throughput analysis based on 
the architecture (since an implementation was not yet available). and concluded that Gbits/s rated would be 
possible with about 5 processors. 

 
• The AX9t-J host-network architecture [StPa]. This project is especially interesting since it seeks to optimize a 

mainframe environment for data transfer. The architected another network interface to provide a path directly 
between the network and host memory, without the intervention of a channel subsystem, thus delivering high 
bandwidth directly to applications. Another significant aspect of this architecture is the support provided for 
virtual shared memory on loosely coupled systems, i.e., paging is supported across multiple hosts. 

 
• The Protocol Engine (PE} front end [Ch]. The PE is designed to implement in VLSI, the XTP protocol which 

combines the functions of transport and network layers into a single layer, called the ransfer layer. XTP was 
designed for LANs, MANS and WANS with a suitability for VLSI implementation. The initial implementation of 
PE was designed for 100 Mbi1s/s FDDI LANs and a later version is planned to reach 1 Gbits/s. 

 
 

Host to front-end interface:  
 

One of the important issues involved in designing an efficient host to front-end interface is movement of data 
from the host to the front-end. There are two main techniques used for moving data from the host: 

• The host reads data from and writes data to the front end. The disadvantages of this approach are: The 
host wastes processor cycles in moving data, the- data passes through -the cache and corrupts it and 
two bus cycles are required for each byte transferred (from memory to processor and from processor to 
front end). The advantages are: If the host has to do additional processing such as encryption of check-
summing. it can do it while moving the data and it can move data that is dispersed in memory to the 
front end and conversely disperse data from the front end to various locations in memory (adding this 
scatter-gather capability to the front end increases its complexity). 

• The host passes a descriptor control block to the front end that has pointers lo locations in memory 
where the data is to be found, and a special OMA mechanism in the front end actually transfers 
the data. The advantages of this approach are basically the disadvantages that are listed for the 
host based approach. The main disadvantage is the additional complexity in the front end. 

The NAB project combines these two approaches by making the host directly write to the NAB board for short 
messages (that can fit in the fixed size packet header), and passing pointers to main storage to the NAB 
for long messages. For the second case the NAB has a high speed block copier that transfers data from 
the memory in a single cycle. The AXON front end has a similar mechanism for transferring data to and 



from the host. In the TRAK and TRAZ projects, the host writes the data to the front end memory and passes 
pointers pointing to that data to the front end and this has been recognized by the authors to be a 
weakness in their implementation. The MPP front end uses an OMA to transfer to and from the host. A 
novel feature in this architecture is the presence 

of two internal buses in the front end. One of these buses is used for high speed data transfers into the 
front end (from the networks) and the host bus. while the other bus is used lo provide access to shared 
memory for all the processors in the system. 

 
Another important issue involved in designing a host to front end interface is the frequency of interrupts 
to the host. Since this is one of the disruptive influences to the host that we would like to remove 
by offloading the protocol, its design is especially important. The NAB implementers presented only 
one interrupt to the host for every message received or transmitted. Since a large message may contain 
multiple packets, the frequency of interrupts for that case is reduced. The implementers of TRAZ, 
TRAK and MPP do not talk about this issue in their papers. A constructive suggestion in this regard 
would be to borrow the interrupt avoidance strategies of CLAW in this environment, i.e. provide an 
array of flags in the host that would be set by the front end as it writes or reads data. The host needs 
to be interrupted only if it has gone to sleep. 

Exploiting protocol parallelism:  

By implementing a protocol on front end, we increase the opportunities of exploiting concurrency since the 
cost of a context switch is smaller than in a host, and a large number of processors can be dedicated 
to the task of protocol processing. In the previous section we classified the types of parallelism found 
in protocol processing and we now discuss how some of them are exploited by front-ends. 
In the NAB and AXON front ends, structural parallelism in the transport layer was exploited by 
implementing a pipeline to carry out the byte intensive functions such as check-summing and 
encryption/decryption. Furthermore, there were separate pipelines for the SEND and RECEIVE 
operations. The TRAZ and TRAK front ends implemented the protocol layers with transputers 
providing another example of structural parallelism. For example in TRAK, there was one transputer 
for the API, two transputers to implement the transport layers for the SEND and RECEIVE, and 
another transputer to implement the lower layers.  Furthermore, fine grain parallelism was also 
exploited by splitting up a 
process in a single transputer into a number of processes that can be executed in par- 
allel (since the cost of doing context switching in a transputer is minimal, this is feasible). In the MPP 
front end, medium level parallelism was exploited by putting several processors on the front end lo 
carry out the transport level functions, and routing an arriving packet in a cyclic round-robin fashion 
to each one of the processors, irrespective of the session !o which it belongs. 

 
Memory design of the front end; The appropriate memory management technique for the front end depends 

upon the type of parallelism that is exploited in the implementation. Most conventional front-end 
implementations for the MAC layer in LANS employ a bus based architecture for access to the 
onboard memory by the resident processor, the OMA channel to the host and the network 
interface. At high speeds, this bus can become the system bottleneck and constrain the amount 
of parallelism that can be exploited. An alternative to this design is a multi-ported memory [Si], 
with one port devoted 10 each interface. We now briefly review the memory design of the front 
ends being examined. 
The NAB front end has a single common buffer for sending and receiving packets. It is implemented 

in a Video RAM and can be accessed in parallel by the DMA controller and the on board processor. 
Hence processing of a packet can proceed in parallel while another packet is being received or sent. 
The AXON architecture provides a similar mechanism. However it also provides an option for 
transferring data directly to the network from the host memory without any buffering in the front end. 
This is possible only if the network transmission rate, the host to front end transmission rate and 
the front end transmission are rate matched to each other. 

• Since multiple processors could process the same packet in a pipelined fashion in the transputer 
based implantations TRAZ and TRAK, it was necessary to provide global memories that could be 
accessed from all processors. This avoids expensive data movement from processor to processor. 
Accordingly two global memories were provided, one for SEND and the other for RECEIVE.  The 
SEND and RECEIVE 
processor pipelines receive pointers to the location of the data units in the memories and they process 
the packet headers, but they do not move the data. Another global memory for storing connection 
and state information required for the SEND and RECEIVE pipelines is used. Furthermore. each 
processor has a private memory in which code and locally required data structures are stored. 

• The MPP front end does not require a global memory for transmitting and receiving packets, since 
each packet is processes entirely by a single processor. Hence the 
packet resides in the processor's local memory. However a small common memory is required for 
storing the context records for each session. Another common memory is required to required to 
manage the resequencing of packets before they are passed to the host. 

 



Note that the intent of all the front-end processor projects described in this section has been to 
offload the transport layer from the host. This is because in protocols such as OSI or TCP/IP, the 
transport layer is a major bottleneck. especially if it provides connection oriented services with flow 
control, error recovery, segmentation etc. In SNA however, the transport layer has much smaller 
functionality, in fact it is lumped with the network layer to form the path control layer. Hence if SNA 
is to gain any significant benefit from front-ends, it will be necessary to offload the transmission 
control layer and the datalink control layers. (which correspond-to the session layer in OSI) in 
addition to the path control layer, to the front-end. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.0 New Protocols 

Most of the innovations that have been suggested for new protocols, are in the area of transport layer design. 
Some of the· services provided by the transport layer are connection management, flow control, error handling 
and acknowledgement of data at ·the receiver.  Most of these functions assume that the network and data-
link layers are connectionless and unreliable.  However, IBM protocols such as SNA and APPN operate under 
a virtual circuit oriented network service and a fully reliable data link transmission. Hence except for end-to-
end connection management, they do not provide any other service to the upper layers. (The application layer 
is responsible for detecting end-to-end errors, and on detection, the connection is aborted. This happens 
relatively infrequently since the network layer never discards packets, and the data-links error recovery is 
effective most of the time [GrHaHolePo]). The new transport protocol called Rapid Transport Protocol (RTP). 
which being proposed for Autobahn ls closer to conventional protocols. in fact it has the same functionality 
as ISO/TP4 (GaMa). Many of the suggestions made below to improve transport protocol performance have 
been incorporated into RTP. 
 
Connection management: The presence of a connection implies the existence of state information regarding 
the data transfer in the transmitter and the receiver. In a connection oriented transport layer, upto 3 handshaking 
signals may be required to start or end a connection. The opening packet exchange guards against opening 
due to duplicate packets and allows resource negotiation; the closing exchange assures that all data have been 
received, and both parties are prepared to close. This is inefficient for cases in which the message to be 
transmitted is small and/or the propagation delay between the two end- points is large. An alternative that has 
been suggested is timer based connection management (WaMa). which open connections when the first packet is 
received. and close connections under timer control. The main problem wi1h this approach is determining timer 
intervals and bounding packet lifetime. Another approach that has been adopted by APPC is to keep a pool of 
active connections always ready, and assign a conversation request to one of these connections when requested. 
 

Packet organization: There is a close relationship between packet organization and the ability to exploit 
parallelism while processing the protocol. For example, in the NAB front end for the VMTP protocol, we noted 
that the checksum was computed in a pipelined fashion while the packet was being moved in or out of the 
main buffer. This was made possible by placing the checksum in the trailer of the packet, rather than in the 
header as most conventional protocols do. Other aspects of packet organization than can speed up processing 
are: All fields within a packet should be in fixed places and of fixed length, the boundaries of fields should fall on 
byte or word boundaries and the fields in the header should be so organized so as to facilitate parallel 
processing. 
 
Flow control: In order to adapt traditional window based flow control techniques to high speed links, two 
changes had to be made: The size of the window had to be increased because a larger number of packets 
could now be transmitted during a time interval, and secondly some kind of rate control had to be introduced at 



the interface between the source and the network. This is because the size of the window only indicates the 
amount of available buffer space at the receiver, not the rate at which the network can transmit !hose 
packets. This rate is negotiated at the lime of connection establishment, and is either specified in terms of a 
burst rate and a time interval, or an inter-packet gap. Mechanisms such as the leaky bucket are used to enforce 
the agreed upon rate. 

 
Error recovery: The classical method of error recovery at the transport layer in conventional protocols is 
by means of timers at the transmitter. The receiver only returns ACKs for successful packets receives in 
sequence, and so when a timer for a packet expires, all packets succeeding it also have to be transmitted. 
This scheme leads to redundant re- transmissions and loss of network capacity. Two new schemes that 
have been suggested to solve this problem are packet blocking as in NETBLT and periodic state exchange 
[NeSa]. The packet blocking scheme implements a single timer in the receiver for a large buffer containing 
several packets. When the timer expires or any of the packets are received in error, then the receiver sends 
a list of these packets to be re- transmitted to the transmitter. Periodic state exchange-tries to eliminate 
the use or timers in either side, by exchanging complete state- information periodically and independently of 
the state of the protocol. 
 · 

     Integrated layer processing (ILP):   
     The idea of ILP is from the paper by Clark and Tennenhouse 

[CITe]. They make the point that the naive implementation or a layered protocol suit involves the 
sequential processing of each unit of information, as it passes through the layer entities of the transmitters 
and receivers protocol stack. !LP captures the idea that 
the protocol be so structured as to permit the implementer the option of performing all the manipulation 
steps in one or two Integrated processing loops, instead of performing them serially. For example session 
specific encryption operations can be entwined with data link level operations. 

 
A similar idea has been proposed by Zitterbart and Tantawi [Zi], [ZiTa] and Haas [Ha]. They propose that 
the transport component no longer be designed in terms of protocol layers but as a set of protocol 
functions. Several of these functions can be performed in parallel and to guarantee that all the functions 
are performed before the packet is transmitted, a synchronization point should be provided. Also each 
application would be allowed to choose a set of functions appropriate for it, rather than go through the 
entire stack. This technique would be especially useful. in supporting multi-media applications. since each 
traffic stream such as voice, data. video etc. may have its own requirements. 

 

Application fever framing: Clark and Tennenhouse point out that presentation processing by the application 
layer is a bottleneck in the overall network throughput. In order improve its performance, the application should 
be allowed to perform presentation conversion as soon as data arrives from the network. However lost or 
re-ordered data prevents this from happening. If the application is to have the option of dealing with the 
lost data unit, then losses must be expressed in terms meaningful lo the application. One way to 
achieve this would be for the application to break the data into suitable aggregates and the lower levels 
preserve the frame boundaries as they process the data. This concept is known as application level framing. 

 
Transport protocol support for voice/video traffic: Many of the traditional transport protocol support 
provided for data applications such as error control and recovery, window based flow control etc. become 
useless in an environment where the traffic consists of voice and/or video packets. For this new environment 
Anastasi el. al.. have defined a new transport protocol called TPR (transport Protocol for Real-Time Services) 
for an FDDI environment, which provides the following new types of services: 

• Delay jitter compensation at the receiver: This mechanism is used to eliminate the variability of end-to-end 
delay for successive packets. It consists or delaying each packet by an amount so that the end-to-end 
delay is the same for all packets. 

• Drift correction mechanisms at the receiver: This mechanism is used to correct the drift between the 
transmitter and receiver clocks. This issue becomes important at high bit rates, when a mismatch can 
lead to overflow or underflow or the transmitting buffer. 

Lost packet compensation at the receiver: Since lost packets are not re-transmitted for real time traffic, they 
are compensated by inserting a dummy packet in place of a missing packet 
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