PERFORMANCE EVALUATION OF SPIN LOCKS
IN MULTI-PROCESSORS

Subir Varma

VTAM Performance
Research Triangle Park, N.C.

SECTION 1. INTRODUCTION

Consider a multi-processor system with K processors. Assuming that the system is tightly
coupled so that the operating system maintains a single dispatching queue for all the
processors, the system can be modeled by a G/G/K queue. Assuming that all the tasks that
arrive into the system can be dispatched in paraliel, there are two sources of performance
degradation which affect the system:

« If the tasks are subject to precedence constraints of the fork-join type, then they
undergo some additional synchronization delay.

« If the tasks need to access some common data structures while executing, they have
to hold a lock before they can do so. Hence contention for the locks can lead to addi-
tional delays.

Both these effects can make the analysis of the queuing model extremely difficult,
since it no longer satisfies product form assumptions. In the past few years, researchers
(see [NeToTa] and [VaMa]) have obtained a number of results regarding systems with
synchronization constraints. However, they ignore the second effect in their studies, i.e.,
they assume that the tasks can execute independently of one another. The principal aim of
this work is to attack the second problem,i.e., obtain approximations for queueing models
in which the contention for lock delay is taken into account. The main source of difficulty in
solving this system is the fact that the executing jobs are no longer independent, and
hence may influence each other.

There are two kinds of locks that are used in computer systems, i.e., spin locks and
suspend locks. When a task is unable to obtain a spin lock, it does not release the
processor, but keeps checking for the availability of the lock at regular intervals until the
lock is is available. When a task is unable to obtain a suspend lock, it frees up its
processor and has to be redispatched. In the present work we deal with spin locks. In
multi-programmed uni-processor systems all locks were of the suspend type for obvious
reasons. However as the number of processors in the system increases, spin locks are
becoming more popular since thay do not incur the overhead of re-dispatching a sus-
pended task. Some other references that deal with the locking problem are [AgTr] . [
AgBu],[HoSc],[JaLa],[SiMuJand [Th]

The rest of this report is organized as follows: In Section 2 we describe the system under
consideration in greater detail, and provide an algorithm for the performance evaluation of
spin locks. This algorithm is applied to a sample system in Section 3, and its predictions
are compared with simulations. Section 4 consists of conclusions and suggestions for
further research.

Section 1. Introduction 1

SECTION 2. THE SPIN LOCK ALGORITHM

As mentioned in the first section, we shall assume that the multiprocessing system can be
modeled by a multi-server queue with M servers (see Figure 1).

Class 1
———-

Class 2

Class K M
_—

Figure 1. The hardware model

Assume that there are K classes of tasks arriving into the system, such that class k arrives
according to a Poisson process with rate A, . We assume that all the tasks are served in
FCFS order, i.e., no priorities are involved. Furthermore assume that the number of
instructions to be executed by a task from the k¥ class is L. If there is no contention for
the locks, the service time of the k* class is assumed to be exponentially distributed with

rate -;L where R is the MIPS rate of the processors.

Assume that there are N different types of spin locks in the system. The instruction
path of each class of tasks can be divided into a number of sections such that in each
section either the /™ spin lock is required, or no lock is required. We shall assume that the
instruction path of the k* class of tasks can be divided into /(k) sections, and we associate
a number N with the i* section of the k” task which indicates the type of lock held while
executing that section. The case Nf =0 indicates that no lock is held, while the cases
Ny =j,j=1..N indicates that the j” lock is held during execution.

We now introduce a simple example in order to facilitate the discussion. The system
under consideration has two processors and there are two classes of customers which
undergo processing. Furthermore there are two kinds of spin locks in the system. Class 1
tasks invoke both type 1 as well as type 2 locks during their processing, while class 2 tasks
invoke only type 2 locks. The instruction paths of these two classes (see Figure 2 on
page 3) are divided into a number of sections depending upon the type of lock held.

Section'2. The spin lock algorithm 2

5

1800 156008 1008 56068 106

N=0 N=1 N=0 N=2 N=0
Class 1, 1(1)=5

40060 50000 40000

N=0 N=2 N=0

Class 2, 1(2)=3

Figure 2. Example of an instruction path

Let us first consider the simple case when there are an infinite number of processors
available in the system. Then there is no delay due to hardware contention, and the only
delay that exists is due to software contention for the spin locks. This case can be modeled
by the queueing network shown in Figure 3 on page 4.

Section 2. The spin lock algorithm 3

—_
v i
I |
| | |
:: 2] |
| | |
= |
— i
i | |
L |
v |
——
|
| |
1 |
' |
[
—_ conid
v '
i [|
| 1
i 1§]
P—]
e
2 |
il
'
v v
|
'
| 2 | 2 |
o |

Figure 3. The case of an infinite number of processers

The case where there is no lock contention is modeled by infinite server queues 1L/
and J,J> . The case where there is contention for locks is modeled by single server queues
Lil.. Since only Class 1 tasks contend for lock 1, queue L, has a single input class,
however since both Class 1 and Class 2 tasks contend for lock 2, queue L; has two input
classes. The service times at each of the queues are given by execution path length of that
segment (obtained from Figure 2 on page 3) divided by the MIPS rate of the processors.

The mode! presented above ignored the delay due to hardware contention at the
processors. In order to take this effect into account, we now present a two level model in
which the software contention is modeled by a closed queueing network, while the hard-
ware contention is modeled by a multi-class multi-server queue. For the specific system
under consideration, this two level maodel is depicted in Figure 4 on page 5 and Figure 5
on page 5.

Section 2. The spin lock algorithm 4

",

| | 1 |

Pttt | Clasy 2 | |

i | | i

P 1 | l
i

i | |

| l a | I a ' |

| | | | |

“F B ?

v | |

| | | |

} 1 | |

| | | H {

I | ! |

| | S | |

— |

| Jut |

| e |

| v I

| — |

| | | |

i | | | |

= | |

i : i |

. i

v . |

A O P | |

| [!
|
h
A\ v

o3 | T I

! ‘ RN | i

Il B===% —_ |

| ! !

1 :__.___A!

Figure 4. The software level model

Queue Buffers Processors
Class 1

Class 2

Figure 5. Hardware level model

Section 2. The spin lock algorithm 5

Our basic objective is to obtain response time estimates for both classes of cus-
tomers. The response time can be expressed as the sum of the waiting time in qusus
buffer of Fig. 5 (due to hardware contention), and the service time in the processor.
However the service time is not fixed as in classical queueing systems, but depends on the
level of software contention due to the presence of the spin locks. This software contention
is captured by the closed queueing network in Fig. 4. Hence we propose the following two
level scheme for obtaining the response time estimates.

1. Obtain estimates for the effective service times for both classes, with the help of the
software level model. For example, the effective service time for a class 1 task will be
the sum of the service and waiting times in chain 1 of Fig. 2, which will depend on the
population of chains 1 and 2. The population m, of chain 1 is the number of class 1
tasks currently being executed, while the population m, of chain 2 is the number of
class 2 tasks being executed. Since there are only two servers, the vector (m;m,) can
only assume the values (1,0),(0,1),(2,0).(1,1).(0,2). For each of these chain popuiations
we obtain estimates of the chain response time by using Mean Value Analysis (MVA) [
Rela] In order to find the effective service time, we multiply the response times for
each chain population by the probability of that chain population, and then sum up the
numbers. The exact formuia for doing so is equation (6) in the next sub-section.

2. Use these estimates of the service times to obtain estimates for the waiting limes at
the hardware level, with the help of multi-server queueing theory formulae.

The detailed steps required to carry out this program are now outlined for the case of a
general system with M servers and K customer classes. There will be K clesed chains in
the software level model for this system. As illustrated in the example, segments of code
that do not require locks are modeled by infinite server queues, while segments of code
that require a lock are modeled by a single server queue. Each such single server queue
has as many input streams as the number of times that the corresponding lock is invoked
by the tasks. We now present the general algorithm for obtaining the response time.

Spin Lock Algorithm

1. The first step is to obtain an estimate for effective service rate after taking the lock
contention into account. For this purpase, set value of variable m = 1.
2. Choose all values of m, ... mx such that

m1+...+mK=m (1)

Let m, be population of the closed chain k.

3. Using the MVA algorithm [Rela] , solve the system of K coupled chains and obtain
the response time of each chain, given by x{m., ..., m«m) for all values of m, ... m, satis-
fying (1).

4. If the value of m equals M, then go to the next step. Otherwise increase the value of
m by one, and go back to step 2.

5. Set X, equal to the average service time of the ¥ class, assuming that there is no lock

contention, i.e., X, = e .
6. Let pii=1,..,M—1 ge the probability that i servers are busy in a M-server queue, with
arrival rate A given by

A=A1+"'+AK (2)

and average service time X given by

Section 2. The spin lock algorithm 6

i

The relevant formulae for i=1, ..., M — 1 are given by

(AX)
pi= 7 Bo
where
M=
o (A" y(m“
Po =Hii—p) T LS K
k=0

and p is the utilization for this queue given by
AX

L0 4

= (@)

Also define px to be the probability that there are M or more tasks in the queue. This is

given by the following formula.

M
_ PolMp}

= 5

. Define the variables o by

P = A X,
and the variables @, ... gx by
Py

K
2

=1

gy =

The adjusted value of the service time)?., for a customer belonging to the & class,
after taking lock contention into account is given by

m
£k= i; Z : [m1 mx]
¥y ZZ...Z[m1TmK]q1’" e GK"Prm

m=1 M My

@ e GRP XMy o) (6)

The summations over m, to m, in the numerator and denominator are over the range
m++mg=mm=1.

For each k, compare the values of)?. and X,. If there is no significant difference then
put X, = X, and go to next step. Otherwise replace X, by X, and go back to step 6.

. With A defined as in (2), X defined as in (3) and p defined as in (4), (using new values

for X, in calculating X and p), obtain the avarage waiting time W in the multi-server
queue with the formula

(A" poX
ML m(1- p)®

Note thal the average wailing lime is the same for all classes. The average response
time of the k* class is given by the formula

Section 2. The spin lock algorithm 7

R, =W+ X,

Equation (6) has been obtained with the help of the following heuristic: Recall that
xi{(m, ... m,, m) is response time of the k* chain, given that the population of the i* chain is
given by m, and (1) is satisfied. In terms of the hardware model this corresponds to the
case when a total of m servers (out of M) are busy, and m; of those are serving cusiomers
belonging to class i. The probability that m servers are busy is given by p., and we assume
that the probability that m, servers are serving customers of type i is given by the following
multinomial distribution:

m
p(my ... mg, m)= [m1 mK]q{"‘ I

Finally taking into account the fact that only those chains having one or more customers of
type k contribute to the effective service time of class k, we arrive at (6).

Section 2. The spin lock algorithm 8

I »

SECTION 3. COMPARISON WITH SIMULATION

In this section we compare the predictions of the algorithm with simulation results.
The sample system with two classes and two servers is the one that was chosen for vali-
dation. Table 1 gives the response times of the two classes for the case when no locks are
used, Table 2 gives the response time with locks obtained by using the algorithm, whiie
Table 3 gives the response time obtained by simulation. The reader may note that the dif-
ference in percentage degradation predicted differs from the simulated value by less than
3% in light traffic to about 8% in heavy traffic.

Table 1: Resp. Time w/o locks
Arrival Class 1 | Class 2
Rate Resp. Resp.

50 6.47 5.55

180 6.89 5.97

150 7.56 6.84

200 g.44 8.52

250 13.23 12.31

Section 3. Comparison with simulation 9

Table 2: Simulated Resp. Time| Calculated Response Time

Arrival Class 1 | Class 2 | Class 1| % Class 2 | %

Rate Resp. Resp. Resp. Diff. Resp. Diff
56 7.09 5.79 6.86 3.24 5.72 1.21
100 8.22 6.59 7.88 | 5.11 6.45 2.12
156 18.27 8.39 9.56 65.91 8.01 4.53
200 15.00 12.88 13.74 8.4 11.98 6.41

We now use the validated model to predict the performance degradation when there are

six processors instead of two. These numbers are provided in Table 3.

Table 3: W/0 Locks With Locks

Arrival Class 1 | Class 2 |Class 1|Class 2

Rate Resp. Resp. Resp. |Resp.
250 6.34 5.42 9.66 6.74
300 6.36 5.44 11.20 | 7.37
3590 6.38 5.46 14.84 | 8.74
460 6.43 5.51 25.082 17.08

Section 3. Comparison with simulation

oLl

%

b

h

SECTION 4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

The results presented here can be extended in a number of directions some of which

are outlined here.

One of the restrictions in using the MVA algorithm in Step 3 is that it restricts ali
instruction paths under a single lock to be of the same length. This restriction can be
removed by using an approximate form of the MVA given by Reiser [Re]

If any one of the modules executed under a lock has more than one task which can
execute it, then it can be modeled by a multiple server queue in the software level
model. The approximate MVA algorithm by De Silva and Muntz [SiMu] is capable of
handling multi-server queues.

An extension of the ideas presented here can be used to model suspend locks. In

these systems, the tasks that are suspended can be represented by another class of
arrivals into system. Research is presently underway to solve this system.
The case when processor is subject to arrivals from multiple classes with differing pri-
orities can be analyzed with the help of the approximations in the paper by Buzen and
Bondi [BuBo]. However all the classes which hold locks are restricted to be in the
same priority class.

Acknowiedgement The author would like to thank Mr. Srinivas Bharadwaj for devel-
oping a program to implement the spin lock algorithm.

Section 4. Conclusions and Suggestions for further research 11

41 REFERENCES

[AgrTr]

[AgBu]

[BuBo]

[HoSc]

[JaLa]

[NeToTa]

[Re]

[Rela]

[SiMu]

(Th]

[VaMa]

J.R. Agre and S.K. Tripathi, "Modeling recentrant and non-reentrant software”. Per-
formance Evaluation Review 11, 163-178, (Aug-Sept 1882).

S.C.Agrawal and J.P. Buzen, "The aggregate server method for analyzing serialization
delays in computer systems”, ACM Trans. Comput. Systems CS-1, 116-143, (1833).

I

J.P.Buzen and A.B. Bondi, “The response times of priority classes under preemptive
resume in M/M/m queues”, Operations Research Vol 31, No. 3, 456-465, (May-June

1983).

J.Hoffman and H. Schmutz, "Performance analysis of suspend locks in operating
systems”, IBM J. Res. Dev. 26, 242-259, (March 1982).

P.A. Jacobson and E.D. Lazowska. "A redusction technique for evaluating queueing
networks with serialization delays”, PERFORMANCE’83, 45-59, (1983).

R. Nelson, D. Towsiey and A.N. Tantawi, "Performance Analysis of paralle! processing
systems”, JEEE Trans. Software Eng. 14, 4, 532-540, (April 1988}.

M. Reiser, “A queueing network analysis of computer communication networks with
window flow control”, IEEE Trans. Commun. 27, 1109-1209, (1979).

M. Reiser and S.S. Lavenberg, "Mean value analysis of closed multi-chain queueing
networks”, JLACM 27, 313-322, (1980).

E. de Souza e Silva and R.R. Muntz, "Approximate solutions for a class of non-product
form queueing network models”, Performance Evaluation 7, 221-242, {1987).

A. Thomasian, “Queueing network models to estimate serialization delays in computer
systems”, Performance’83, 61-81, (1983).

S. Varma and A.M. Makowski, "Interpolation approximations for fork-join queues”, To
be submilted to Operations Research.

Section 4. Conclusions and Suggestions for further research 12

