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I. INTRODUCTION

In this paper we compare the performance of two multiple processor queueing struc-
tures, namely the Fork Join queue and a system of parallel queues with Bernoulli routing.
Both systems are assumed to have K (> 2) identical servers operating in parallel with in-
finite waiting rooms. Jobs that arrive to these systems are assumed to consist of exactly IX

tasks, the service requirements of the tasks being independent and identically distributed

(iid.).

Upon arrival into the Fork-Join system, a job is instantaneously decomposed into its
K constituent tasks and the kth task is routed to the k** queue where it is served in FCFS
order. As soon as a task completes service, it is put into a synchronization buffer, and
a job leaves the system when all of its constituent tasks have completed service. In the
system of parallel queunes with Bernoulli routing, an iving job is routed to the L queue
with probability 4, 1 < k < K, with the routing decision being independent of any other

event, past, present or future. In each quene, jobs are processed in a FCFS manner.

The Fork-Join queue has been proposed as a queueing model for parallel processing:
an approximate analysis of the job response time was given by Nelson and Tantawl [NT]
when the arrival process is Poisson, task service times are exponentially distributed, and
all the servers are identical. A more complete analysis that does not restrict all processors
to have the same speed can be found in Kim and Agarwala [KA). In the special case when
K = 2, and the interarrival and service times are exponentially distributed, Flatto and
Hahn [FH] have determined the stationary joint distribution of the number of customers
in each of the queues. In Nelson, Tantawi and ‘Towsley [NTT], a comparison of various
queneing models of parallel processing is carried out, and it is shown that with Poisson
arrivals and exponentially distributed task service times, the mean response time of a job
in the Fork-Join queue is less than the mean job response time in three closely related
queucing systems. In particular, the Fork—Join quene was shown have a lower mean job
response time than the system of parallel queues with Bernoulli routing, The interested
reader is referred to [NTT] for further details. Duda and Czachorski [DC] use the Fork-Join

queue to model the ParBegin and ParEnd constructs of parallel programming languages,
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and analyze the performance of parallel programs that use these constructs using a closed
queueing model. In related work, Kanakia and Tobagi [KT] examine parallel programs
that are constructed from two kinds of fork and join structures (If-Then-Else and Fork-
Join), and analyze their running time on uniproccessors and distributed systems under
various processor scheduling policies. Baccelli, Makowski and Shwartz [BMSa] analyze the
Fork-Join queue when the interarrival and service times are arbitrarily distributed, and in
contrast to the previous references, they explore the structural properties of the Fork—Join
queue. In particular, they develop a lower bound for the job response time that holds in
the increasing convex ordering, and an upper bound that holds in the strong stochastic
ordering. In [BMSb] they also present approximations for the job response times, and

compare the approximation to simulations.

This paper concerns itself with the comparison of these two queueing systems and is
organized as follows. In Section II we formalize the models of the Fork—Join queue and the
system of parallel quenes with Bernoulli routing and state all the assumptions we make.
In Section III we show that the task response times in the Fork—Join queue are smaller,
in the convex increasing ordering. than the task response times in the system of parallel
queues with Bernoulli routing. In Section IV, we show that the job response time of the
nth customer in the Fork-Join queue is increasing and concave in K. In section V we
examine the system of parallel quenes with Bernoulli routing and show that the response
time of the nt* customer is bounded below by a function that is convex i I, so that for
sufficiently large K the job response time of the nt" customer in the Fork-Join queue will
be smaller, in the convex increasing ordering, than the job response time in the system of
queues with Bernoulli routing. The value of I at which this crossover occurs depends on
the utilization of the system. In Section VI, by examining a heavy traffic diffusion limit we
chow that this is essentially the best possible result, i.e. if the arrival process is assumed
to be Poisson, for any fixed value of K the ratio of the steady state response time in the
two systems can be greater or less than 1. depending on the coefficient of variation of the
task service time. If the coefficient of variation is sufficiently small, the mean job response

time in the Fork Join system is smaller than that in the system with Bernoulli routing,.

When the coefficient of variation is large, the system with Bernoulli routing has a lower
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job response time. In Section VII, we examine the two systems in light traffic and show
that there is some po(K) > 0 such that for all utilizations strictly less than po(K) and for
all K > 2 the response time of the n*" customer in the Fork Join system is less than that
of the ntf customer in the system of queues with Bernoulli routing. Finally, in Section

VIII, we summarize our findings and discuss some open problems.

II. PRELIMINARY NOTATION

We follow the notation used in (Baccelli and Makowski [1]) and (Shaked and Shan-
tikumar [11,12]). The set of rcal (resp. non-negative real) numbers is denoted by IR (resp.
IR:). The k** component of any element z in IRX is denoted by z¥, 1 €< k < K. For
any two vectors x and y in IRX, the ordering « < y is interpreted componentwise to read
a* < y*, 1 <k < K. A mapping f : IR¥ — IR is then said to be increasing (resp.
decreasing) if # < y in IRY implies f(z) < f(y) (resp. f(z) = f(y)).

We find it convenient to define all the random variables (rvs) of interest on some
common probability triple (2.7, P). A probability distribution function F on IR® is
routinely identified with an IR"—valued rv X = ( X*',...,X*%) which has distribution F,
in which case

Flz) = PIX* <2',...,X¥ <o), ze R~ (2.1)

Two IR —valued rvs X and Y are then said to be equal in law if they have the same distri-
bution, a fact we denote by X =4 Y. Moreover, for any IR—valued rv X with distribution
function F, we denote its mean and variance by m(X) and var(X), respectively, whenever
these quantitics are well defined; the notation m(F) and var(F) is used interchangeably
for m(X) and var(X).
For any scquence of IR ~alued rvs {Xn, n = 0,1,...}. we denote its weak limit
(as n goes to infinity) by Xuo whenever it exists, 1.e., X 18 any IRE —valued rv with the
property that
P[Xs < 7] =lim, P[X, £ 7] (2.2)

for all = in JR¥ which are points of continuity for the distribution of Xao. We call X the

stationary (or steady—state) version of the sequence {X,. n=0,1,.. s
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The reader is referred to the monographs by Ross [10] and Stoyan [14] for additional
information and properties of the orderings <, and <., on the collection D{IRY) of

probability distribution functions on IR™.

IIT. MODELS: NOTATION AND ASSUMPTIONS

In order to facilitate the comparison between the two queueing systems, we construct
them from the same set of basic rvs. With this in mind, we start with the integrable
IR:-—valued rvs {Th+1, n = 0,1,...}, the integrable ]R_’; —valued rvs {og, n = 0,1,...},
and the {1,..., K}-valued rvs {v,, n =0,1,...}. With this last sequence we associate a

new sequence of {0, 1} valued rvs {u,, n =0,1,...} by setting

uf = 8(vn, k), 1<E<K n=0,1...(21)

n

with 8(¢,7) =1 if ¢ = j and §(3,j) = 0 if i # j. We also need to introduce the IR -valued

rvs {Gn, n=0,1,...} which are defined by

h and

These quantities are interpreted as follows: The interarrival time between the n'

the (n + 1)™*" jobs is given by 7,4, with the convention that the 0™ job arrives at time
= 0. The n'* job consists of K independent tasks; the execution of the k' task from
the n'* job requires of units of time, 1 < k < K, so that the total execution time of the

n'*job is exactly &,. In the system of parallel queues with Bernoulli routing, v, = k (or
ez % k_ . . 4 Ib')" hklh
equivalently u®* = 1) indicates that the n'" job joins the queue.
Tn each case we define the performance measures of interest under the simplifying
assumption that the system is empty at time ¢ = 0:
For the Fork-Join queue, the IR¥—valued rvs {W,, n=0,1....} are generated com-

ponentwise by the recursion

+
“v-: - ["V'k g O',k — Tn+l] P k < e .
+1 n ¥ n:O.l,.(23)

Wk =0,



where W represents the waiting time of the k** task from the n™ job. The corresponding

response time R¥ (through the k" channel) is thus

RE=Wkiok, 15k<K n=0,1...(24)

n

The system response time T, of the n** job is then given by

T. = max_ RE. n=0;1...(2:5)
1<k<R
For the system of parallel queues with Bernoulli routing, we generate the IRY —valued

rvs {Vy, n=0,1,...} componentwise by the recursion

+
Ktk-H = [V,f 5 “ﬁ"u == "'n-H] ¢ ERERK
IS
V=0,

We take the view that each job brings work to every queue but that only the work executed
by the processor of the queue which the job joins has (possibly) non-zero service duration.
Clearly, V¥ represents the work (expressed in remaining processing time) present in the
k' queuc as the n™ job enters the system. In other words, V¥ is the amount of time
it would have to wait in the queue before receiving service if it were assigned to the kth
h

processor, i.c., if uh = 1. The waiting time Uy, and the system response time Sy, of the n'

job are thus given by

i
0, =3 iV "=01...07
k=1
and
K
Sn=zuﬁ.(Vn"+an), nw=0,1...(2:8)
k=1
respectively.

We are interested in comparing the system response times Ty and S,. either in tran-

sient or in statistical equilibrium. Throughout this discussion, we assume conditions (Al)—

(A4) to hold, namely



(A1): The sequences {Tn41, 7 = 0,1,...}, {on, n = 0,1,...} and {vp, n = 0,1,...}
are mutually imndependent;

(A2): The Ry-valued rvs {741, n = 0,1,...} form an #.i.d. sequence with common
distribution A;

(A3): The IRy valued rvs {ok, 1 <k < K, n=0,1,...} form an i.i.d. sequence with
common distribution B; and

(A4): The {1,..., K} valued rvs {v,, n =0,1,...} form an i.i.d. sequence with com-

mon distribution

Pl ==

. SRS K: ) = .
7 1<k< K n=0:1:..(29)

For future reference, we point out that under the assumptions (A1)—(A4), we have
Vi =t oo =ut Vit =ot Un n=0,1...(2.10)

as the system is symmetric, so that
Sn =st Un + Gn- n=0,1(211)

It is well known that the stability condition of both systems is given by
E(B) < E(A). (2.12)

Wer ecall that under (2.12), in each of the queueing systems under consideration, the
sequences of waitng times and response times have stationary versions. We also note that
this stability condition (2.12) does not depend on K, the number of processors, and 1s

equivalent to

pi=—==<L (2.13)
Since p is the utilization of a single processor in either queueing system, we see that the
comparison attempted here is indeed a fair one.

Throughout this discussion, we shall use the superseript (K) in the notation to indi-

cate that the quantities of interest are defined for systems with K parallel servers. It is
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convenient to view the service times as a two-dimensional array of i.i.d. IRi-valued rvs

{ok, k=1,2,...,K;n=0,1,...} with common distribution B.

IIT. A BASIC COMPARISON RESULT

QOur first comparison result is contained in

Theorem 3.1. Under the assumptions (A1)—(A4), we have the stochastic ordering rela-

tions
WE<uVE, 1<k<K n=0,1...(3.1)
and
k .
Rﬁ Sice Un+20:‘, 1€ k< K. n=0.1...(32)
=1

Proof. lnvoking Proposition C.1 from Appendix C. we note that

o’ﬁ(icruﬁ-&", ISkSIx’ n=0.1(33)

and (3.1) immediately follows from (2.3) and (2.6) with the help of (Ross 1983) and (Stoyan
1983). Under the foregoing independence assumptions, the inequalities ( 3.2) are now simple

consequences of (3.1) and (2.10)~(2.11) since oX < Y% oi.

Since
Elo¥| = E[ut -5, =m(B), 1<k<K n=0,1...(3.4)
we see that (3.3) cannot hold in the stronger sense of the ordering =g, for this would

otherwise imply % =, uk - 5,. Therefore, (3.1)-(3.2) cannot be expected to hold in the

ordering < at least in the transient regime.

; s : i k ~ . L
The scalar inequalities RE <o Un + 3.0 04,1 € k £ K., are usually not sufficient
to imply a comparison between T, and S,,. However, for GI/D/1 systems, this simple

comparison result already yields a complete answer to the question discussed in this paper.
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Corollary 3.2. Assume conditions (A1)—(A4) to hold with deterministic service fumes,

i.e., for some fized constant A >0,
oF=A, 1<k<K. n=0,1...(3.9)
Then. we have the stochastic ordering relations

Tr <icz Sne n=0,1... (36)

Proof. Fix n = 0,1,.... For GI/D/1 systems, we have W} = ... = W so that
R =...=RE =W} + A and T, = maxi<k<k RE = W} + A. The result is now

immediate from (3.2).

O

Theorem 3.1 also yields the following comparison result for A4 /M /1 systems in statis-

tical equilibrium.
Corollary 3.3. Assume conditions (A1)—(A4) to hold with Poisson arrivals and expo-
nential service times, i.e., for some X >0 and p > 0, we have
A@y=1—¢™ and B(f)=1-¢*, t20 (3.7)
Under (2.12), the comparison
E[T9) < E[S{) K=1,2,...(38)
holds.

Proof.

IV. A CONCAVITY RESULT FOR THE FORK-JOIN QUEUE

In this section we show that the response time of the nt" customer in the Fork-Join
queue is increasing and concave in I, Loosely, the concavity comes about because the
response time for a job is the largest order statistic of the response times of its constituent

tasks. It is a simple matter to show that the expcctation of the maximum of a set of
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K iid. rvsis increasing and concave in K. and as {R},...,RX} form a set of weakly
correlated (in fact associated) random variables [NT.BMSa], their maximum exhibits a
very similar behavior. Our principal result in this section is a stronger version of this
statement, namely

Theorem 4.1. For each n = 0,1...., {T,‘.K),If = 1,2,...} 18 SICV{st), 1.¢e., for every

increasing mapping f : IRy — IR, the mapping K — E[f (_T,E,m )] 1s increasing concave.

Proof. Fix n =0,1,.... As pointed out in (Shaked and Shantikumar 1988), it suffices to

show that for every ¢ > 0, the mapping K — P[T,(;K) > t] is increasing concave. To do so,

we first observe that
PV,I: =&, (Uﬁ;-. DE<m<niTmer, 0Sm< n) s I5REK (4.1)

for some mapping ®, : IR} x IR} — IR;. ;From this representation, we readily see under
the assumptions (A1)—(A4) that the rvs {R),...,RE} are conditionally ii.d. given

T1....,7Tn. Therefore, for every t > 0, we have

g5
=E |[] PR £t Iriyeccima] (4.2)
k=1
=B [Fl i) (4.3)
where we have set
Pty nstn ) s==» [(I>,, (af,',, 0<m<nitnsy, 0€Em< n) + 05 <t ] (4.4)

for every (ti,...,tn) in IRY; this definition is clearly independent of k owing to (A3).
In passing from (4.2) to (4.3) we have used the independence of the service and arrival
sequences. It is now plain from (4.3) that the mapping K — P i t] is increasing

concave.

O
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The following corollary is a simple consequence of Theorem 4.1.

Corollary 4.2. Fizn =0,1,.... For each a > 0, the mapping K — E [(T,“,K) - a)*] is

mereasing concave with

1 i I
; L (Y a¥H = =
limg KE [(Tn a) ] 0 (4.5)

Proof. Fix n = 0,1,.... For each K = 1,2,..., it is known [BMSa] that the rvs

{R},...,RE} are associated. Therefore,

T <y maxicr<nclth (4.6)

where the R:f—valued rv (R}, ..., RE) is an independent version of the rv Ry, i.c., the rvs
{R),...,RE} are mutually independent with Rf =, R 1 < k £ K. Consequently, for

each a > 0, we have

E [(T,(‘K) — a)+] <E [T,(,K)] <E [max,sksl\-Rﬁ] - (4.7)

Since the non—negative rvs {RY,..., RY} are i.i.d. integrable rvs, a simple application of

Proposition C.3 yields

. 1 7 :
1111'1;{ -—&;-E [max;skgng,] =1 (48)

and the convergence (4.5) follows by combining (4.7) and (4.8).

r

V. CONVEXITY RESULTS FOR QUEUES WITH BERNOULLI ROUTING

b customer in a system of K

In this section we show that the response time of the n'
parallel queues with Bernoulli routing is bounded below by a linear increasing function of
K. implying that for sufficiently large K, the Fork-Join queue will offer lower response
times, both in transient and steady state, than the system of quenes with Bernoulli routing.

The following result proves useful.
Theorem 5.1. For each n = 0.1,..., each of the sequences {U,(,K), K=12..}&id
{S,(.K), K =1,2,...} is increasing in the sense of the ordering <icz, 1.€.,

UK <ies Ulk+)  and gAY i, QRIGET). K=1,2,...(5:1)
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Proof. Fix K = 1,2,.... The {0.1}-valued rvs {ﬂf.m, n=0,1,...} defined by
8 = (LK) 1) n=0,1,...(5.2)
form an i.i.d. sequence with

2

(1") = —
PO =1)= ¢

=1- P =] n=0,1,...(53)

2 ; K _—
Moreover, this sequence of Bernoulli rvs {ﬂs. ‘), n = 0,1,...} is independent of the sequence

of 1.1.d. rvs {65{0, n=0,1,...} defined by
I
ge=Y ;. n=01,...(54)
k=1

Now consider the IR;-valued rvs {Z,(,K). n = 0,1,...} which are generated through the

Lindley recursion
(K) I £y = (K 8
Zys1 = Zf(z s ﬁf;")‘?f.‘) - TH-H] 3
.
z{M =o.

and which are the successive customer waiting times in a GI/GI /1 queue with interarrival

times {7p+1, n = 0,1,...} and service times {_a’3S;K)&f‘I") .n=0,1,...}. Under the foregoing

assumptions, it is plain from (2.10)}-(2.11) that
Crr(ll\’) =, Z1(11<) and 57(11\’) o Z’(f\) + 5’!:. n= 0, 1’ S (5,6)

i From Claim 2 of Proposition C.1 we conclude that

B <, BTG 1=01,...(5)
so that
Z;(J\’) Sicx Z1(AK+ N n=0,1,... (SS)
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by making use of ([Ross]). The monotonicity of the sequence {U,(,m, K =1,2,...} now

follows from (5.6). That the sequence {$t¥) K =1,2,...} is increasing in the ordering

<;cr then follows from (5.6) and (5.8) upon observing that &&"" < Fare

([
We are now in the position to prove the following result.
Theorem 5.2. Fizn = 0,1,.... For every increasing conver mapping f : IRy — IR with
f(0) = 0, the inequality
E[f(SUN] = E[f(S)] + (K — DE[f(e})]. K=1,2...(59)
holds true.
Proof. Fix n =0,1..... From Theorem 5.1
S'(.‘f\-) — br'(’h') 4+ 5,511\‘)
Siez UM + 04X K =1,2,...(5.10)
since the rvs U,(,l) and af.m are independent. Consequently, for any increasing convex

mapping f : IRy — IR with f(0) = 0, we conclude from Lemma C.2 that
E[f(S{) = BfUY + oV + E[f(ok + ...+ o ). K =1,2,...(5:11)

The inequality (5.9) follows immediately from (5.11) upon applying Lemma C.2 to the
second term in the right handside of (5.11) and using the fact that the rvs {o},..., oK}

are 1.1.d.

O

As an immediate consequence of Theorems 5.1-5.2, we have the following result which

is to be compared with Corollary 4.2.

Corollary 5.3. Fizn =0,1,.... For each a > 0, the mapping K — E [(Sfl") — a)+] s
increasing with

fimy B (S~ a)*] 2 B (0} - a)*]. (5.12)
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As St is lower bounded by a function that is increasing and convex in I, and as
TX is concave in K, it follows that for sufficiently large K, the response time of the i
job in the Fork Join queue will be lower than that of the n'* job in the system of queues
with Bernoulli routing. We have been unable to show that Sf,"') is increasing convex. If

this could be shown, and as the two systems are identical when K = 1, the following

stronger result would immediately follow: There is some Iy such that for all ' < RNy,

iy Zier T and for all K > K, T <., S

n

VI. HEAVY TRAFFIC

In section VII we shall compare the Fork—Join queue and the system of parallel queues
with Bernoulli routing in their heavy traffic regime. To do so, we need the heavy traffic dif-
fusion limits for each of these two systems, which we now present. Following the approach
of Iglehart and Whitt ([IgWhitt]), we consider sequences of stable Fork-Join queues and of
stable systems of parallel quenes with Bernoulli routing, say indexed by r > 1, approaching
instability as r T co. In order to simplify this discussion, we assume that the service times
and routing variables remain unchanged and that only the interarrival times vary with r
<o as to let the utilization increase to the critical value 1.

More precisely, as in Section II, for each r > 1, we start with the integrable IR, -
valued 1vs {Tp4a(r), n=0,1,...}, the integrable IR —valued rvs {on, n = 0,1,...}, and
the {1,..., K}-valued rvs {vn, n=0,1,...} under conditions (A1)—(A4). We define the
corresponding Fork-Join queue and the system of parallel queues with Bernoulli routing
through (2.3)-(2.5) and (2.6)—(2.8). respectively. For all quantities of interest, we explicitly
incorporate the dependency on r.

In addition to conditions (A1)—(A4), we enforced the following heavy traffic condi-
tions (HT1)—(HT2), where

(HT1): There exist finite constants v > 0 and gy > 0 such that
lim, /r [m(A(r)) = m(B)] =7
lim, var(A(r)) = o}
as 7 T 0o;
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(HT2): There exists e > 0 such that

sup,. , {E[]o},|2+‘],E[|7'n.+1("')12+(]} < 0.

For our purposes, we find it convenient to realize the heavy traffic conditions (HT1)—

(HT2) by selecting the interarrival distributions {A(r), » = 1} such that

m(A(r)) = m(B) + %, r> 1 (6.1)
with lim, var(A(r)) = of.

Throughout the discussion, let {B], t = 0}, {B], ¢t = 0}, ..., {BK, t > 0} denote
I + 1 independent IR—valued standard Brownian motions.

VI.1. Results for the Fork—Join queue

In the following proposition, we summarize the relevant results obtained in (Varma
and Makowski [REF]) for the Fork-Join queue. The results are stated in terms of the

IR¥ —valued process {Ry, t > 0} which is defined componentiwise by

Rf = supyc,<; {00BY +0(B)BY —9s}, 1<k<K, t>0. (6.2)

Theorem 6.1. As r T oo, we have

R[.,.g] ( 7'_)

T 120} = {f, 120} (6.30)

{

and
{ Iirf] {r)

JF

, 120} = {nléleSkS[\'R,k, t > 0}. (6.3b)

Moreover, since v > 0, the Markov process {Rt, t > 0} has a stationary distribution
Re = (’IA{LO,...._RQ;) given by

~

R'r_fo = sup;>g {GOB? - a(B)B,"' - -yt} i ISESK (6.4)



and

R (r -
j; g Reoo. (6.5)
It follows from Theorem 6.1 that
T o
—\/_(’.12 = maxX)<i<K Réo. (6.6)

Varma and Makowski have shown that the identically distributed rvs {RL,,..., RK} are
also associated; it is also well known (Harrison) that each of these rvs is exponentially

distributed, i.e., for each 1 < k < K, we have

Vs
A r _ . 4 a)
P[Roo > t] = e “lx t .>_ 05 Wlth = m (61)

VI.2. Results for the system of parallel queues

The heavy traffic imit for the system of queues with Bernoulli routing is presented
next, and follows from standard results available in (Harrison [REF]). To do so, we fix
1 < k < K, and consider the corresponding single—server queue embedded in the system

of quenes with Bernoulli routing. Elementary arguments show that
m(ufa,) = m(B) n=0,1,..:(6:8)
and
var(uﬁ&,,) = var(B) + (K — l)m(B)z. n=0,1,...(6.9)

Consequently, under (HT1)—(HT2), the k** single-server queue (and therefore, the entire

system of parallel quenes with Bernoulli routing) reaches instability according to
lim/rm(A(r)) — m(uban)] =~ (6.10)

and (6. ).

We can now invoke classical results from the heavy traffic theory for the GI/GI/1

queue. To do so, we define the JR-valued process {S:, t >0} by

S = supgc.<t {0055 +o(K)B —vs}, t20 (6.11)
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where we have set
o*(K) = ¢*(B) + (K — 1)m(B)* = m(B)* [C'"’(B) + (I — 1)] : (6.12)

Making use of (2.10)—(2.11}, we readily conclude to the followingresult.

Theorem 6.1. As r T oo, we have

S[,.,](r) X
—_—_ > A O )} :
{ o , 120} = {5, t =0} (6.13)
Moreover, since v > 0, the Markov process {S;, t > 0} has a stationary distribution S,
given by
Seo = supyso {00 B} + o(K)B} — 1t} (6.14)
and
Sac(r) & &
I = (6.15)
Here we have
A 2
P8 >t =t /1 >0, with oK)= —'— (6.16)

of +o(K)?

VII. COMPARISONS IN HEAVY TRAFFIC

Combining the heavy traffic results of Section VI, we observe for every a > 0 the
relations

limr E [(TOC(T) == G‘)+] g 1imr

E[(Se(r) —a)t]

= E[r{w]. (7.1)
E[S5s)
The relation (7.1) can be exploited as follows. If E[Th] < E[Sac), then (7.1) implies
that for large r, say for r > r(a), E [(Tac(r) — a)*] < E[(Sx(r) — a)¥]. Now, if we could
select, r(a) uniformly in @, then we would conclude that for high utilization, the response
time of the Fork—Join queue with K processors is smaller than the response time of the
corresponding system of parallel queues with Bernoulli routing, the comparison being in

the sense of the ordering <;cx.



To carry out the program outlined above, we need to evaluate the right handside of

(7.1) as we now do. ;jFrom (6.16) we conclude that

1 ol +o(K)? (72)
aK) 2y ’ -

E[goc] =

As pointed out in (Varma and Makowski [REF]), the explicit evaluation of E[T.] is diffi-
cult, if not impossible. except in very few cases. However, the stochastic bounds derived
in (Baccelli, Makowski and Shwartz [REF]) still hold in heavy traffic as shown by Varma

and Makowski ([REF]). In particular, we have the bounds

2 2 2
7B e < Bl g W (B)

2 > Hy. (7.3)

The first inequality in (7.3) is the heavy traffic equivalent to the lower bound obtained
by Baccelli, Makowski and Shwartz {REF). This lower bound holds in the ordering <;.,
and corresponds to the response time of a Fork—Join queue with deterministic arrivals,
everything else being equal. In heavy traffic this is characterized by of = 0, in which
case the rvs {Réo, Rﬁ,} are 1.1.d. The second inequality in (7.3) is the heavy traffic
version of the upper bound by association developed in (Baccelli, Makowski and Shwartz
[REF], Nelson and Tantawi [REF]). This upper bound is in the ordering <,, and can be
mterpreted as the response time of a system of parallel queues with independent arrivals

and Join synchronization.

iFrom (7.1)-(7.3), we conclude that

2 . - .
oD S BE) < Ao 2
or equivalently,
Lx < E[:{q'”] < Uk, (7.5)
E[55]
where for convenience we have defined
Foiin e OB) g sos i BT OB g (7.6)

T a2 + oK) of + o*(K)
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We first discuss the implications of (7.4) in a general GI/GI/1 setting, and then

consider several special situations.

Theorem 7.1. Assume the heavy traffic conditions (HT1)—(HT2) to be enforced with
the additional constraint

ol + 0*(B) < 2m(B)*. (7.7)
Then, for all K =1,2,..., we have

E[Te] < E[Sc0- (7.8)

Proof. We shall readily obtain (7.8) from (7.5) provided it can be shown that Ux <1 or
equivalently, that

(62 +0*(B))Hi <of +0°(B) + (K — 1)m(B)>. (7.9)

We now show that (7.9) holds for all K = 1,2,... by induction. For K = 1, the

inequality (7.9) trivially holds as an equality, thus establishing the basis step. To proceed,

_ 22mR)*

I\+1

§0;',)'+(72(B) Inn (B)? L(K 1>+ K—l—' J h(@)))

where we have used (7.7) to obtain the second inequality. This completes the indnctive

step. K-(1~) = &

We now specialize Theorem 7.1. to the M/GI/1 case. We have m( (A(r)) = /\m and

we assume that (7.9) holds for some K > 1, in which case

(0f + 0*(B))Hisa <log +0*(B) (I\ — m(B)* +

var( A(r)) = ‘X‘(‘l;')'f for all » > 1, where A(r) is chosen according to (6.1), so that

T
v+ rm(B)’

Under (HT1)—(HT2), we get lim, A(r) = m(B )~!, whence of = m(B)?, and the bounds

Alr) = r (7.11)

(7.5) take the form

C*(B) e wed D= 1+ C%B)

L= C2%(B) K + C%(B)

Hy. (7.12)
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Since imyg Ux = 0, we see that for large enough K, in fact for K < K(B), with K(B) :=
inf{K > 1: Ug < 1}, the heavy traffic performance of the Fork-Join queue with K
processors is better than the heavy traffic performance of the corresponding system of
parallel queues with Bernoulli routing. However. we see from (7.5) and (7.12) that the
comparison for a small number of processors is crucially dependent on the variability of
the service time distribution B through its coefficient of variation C?(B), and consequently,
for any given number K > 2 of processors, there are service time distributions for which

Soe = Too, and others for which T < S

Corollary 7.2. Consider M/GI[1 type systems, i.c.. Poisson arrivals, and assume the
heavy traffic conditions (HT1)—(HT2) with C*(B) < 1. Then, for all K = 1,2,..., we
also have (7.8).

Proof. As pointed earlier, we have o2 = m(B)?, which implies that (7.7) is equivalent to

C?{B) < 1, and the result then follows from Theorem 7.1.

El
Observe that this last result applies to the M/M/1 situation where C*(B) = 1. In fact,
we find from (7.12) that

Hy 2H s
i ; ¢ 'k = — 3 £ B
Ly = ] and Uy Tl (7.13)
and a direct inspection shows that Ux < 1, whence
(M/M/1) : E[Tw] < E[goo]~ (7.14)

The GI/M/1 situation is characterized by the relation o?(B) = m(B)?, so that

m(B)*
o + Km(B)?

o2 +m(B)?
of + KKm(B)?

Liyeni= Hi and Uy := Hy. (7.15)

Theorem 7.1 easily specializes to this case and reads

Corollary 7.3. Consider GI/M/1 type systems, 1.e., exponential services, and assume

the heavy traffic conditions (HT1)—(HT2) weth
a5 <m(B)*. (7.16)
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Then, for all K =1,2,..., we also have (7.8).
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APPENDIX A
STOCHASTIC ORDERING

APPENDIX B
STOCHASTIC CONVEXITY

In this appendix, we briefly recall several notions of stochastic convexity which have
been recently introduced by Shaked and Shantikumar [11,12]: Throughout, © iz a convex
subset of JR and {X(#), 8 € O} is a collection of JR-valued rvs. For any Borel mapping
f: IR — IR, we define the mapping f: © — IR by

£(8) == E[f(X(8))], 6€0 (2.1)

whenever these expectations exist. The collection of rvs {X(8), 8 € O} is then said to be

1. stochastically increasing (resp. decreasing) convex in the usual stochastic ordering
— in short SICX(st) (resp. SDCX(st)) — fis increasing (resp. decreasing) convex whenever
f is increasing;

2. stochastically increasing (resp. decreasing) convex — in short SICX (resp. SDCX)
- if £ is increasing (resp. decreasing) convex whenever f is increasing convex;

3. stochastically increasing convex in the sample path sense — in short SICX(sp) — if
for any four points #;, ¢ = 1,...,4,in ©. such that 8, < 8, < 6; <6, and 6 + 6, = 6, +6,.
there exist four rvs X;, 1 = 1,... .4, defined on a common probability space such that

Xi=u X(8;),i=1....,4, and

t

X;<Xi, 7=1,23 and X+X3< X +X, as. (2.2)

A few words on these definitions: When the rvs {X(6), § € ©} are non-negative rvs,
we note in the definition of SICX(st) and SICX that we need only consider IR —valued
mappings f, in which case f is always well defined. Moreover, when © is a subset of
{0.1....}. convexity is understood as integer convexity.

The following implications were discussed in (Shaked and Shantikumar [11,12]):
SICX(st) = SICX(sp) = SICX. (2.3)
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In general, the implications SICX(sp) = SICX(st) and SICX — SICX(sp) are not true

as can be seen on simple counterexamples.

APPENDIX C

Sk 33 3 e s e e s SRR

n

Sui=) Xi n= 1,2 (81)
k=1
with the convention Sy = 0. Moreover. let {b,, n =1.2,...} be a sequence of {0, 1}-valued
rvs such that
: 1
P(bn=1)=;=1—P(bn=0)- n=1,2....(c.2)
Proposition C.1. Assume the sequences {X,, n = 1,2,...} and {by, n = 1,2,...} to

be mutually independent. If the non-negative rvs {X,, n = 1,2,...} are i.i.d., then the

following statements hold true.

1. The stochastic ordering relations

Xn Siex bnsn =12 s (C-})
hold true; and
2. The sequence {b,Sn, n=1,2,...} is increasing in the sense of the ordering <;..,
t.e.,
bnSn Sicz bn-HSn-H- n= 1,2, vieie (C4)

The proof of Proposition A.1 makes use of a well-known property of increasing convex

funtions which we state here for easy reference.

Lemma C.2. Let f : IRy — IRy be any increasing conver mapping such that f(0) = 0.

The inequality

n

$ V) < O ) =1 (C5)

k=1
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holds true for arbitrary z, >0, 1 < k < n.

Proof of Proposition A.1. First we observe for every mapping f : IRy — IR, that
: 1 1
E[f(bnSn)] = SEf(Sa)+ (- ~)£(0). n=12...(C.6)

In order to establish Claim 1, we need only show that for every increasing convex

mapping f : IRy — IR, the inequality
R | 1 -
E(f(}*n]) < ;E(f(sn)) +(1- ;)f(()) n=12,... (A‘)

holds true. Of course, there is no loss of generality in assuming f(0) = 0, in which case

(A.T) reduces to

R 1
E(f(X,)) < ;E(f(Sn)) n=1,2...(A38)
This last inequality is an immediate consequence of Lemma A.2 upon observing that
nE(f(Xa)) = B f(Xk)). n=1,2...(49)
=1

since the non-negative rvs {X,, n=1,2,...} are i.i.d.
Claim 2 is equivalent to the fact that for every increasing convex mapping f : IRy —

IRy, the mapping n — E(f(b,S,)) is increasing. Again there is no loss of generality in

assuming f(0) = 0, as we do from now on, in which case we only need to show that

1 y
%Hﬂ&DS;:THﬂ&H»- n=1.2,...(4.10)

This is now done by induction on 7.

e The basis step: For n =1, (A.10) reduces to the inequality

E((%:)) < 3E((52)) (A411)

which is exactly (A.8) (with n = 2 since X, =,; X>).
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e The induction step: Assuming now that (A.10) indeed holds for some n = m > I
we want to show that (A.10) also holds for n = m + 1. With this in mind, we define the

mapping fr, : IRy — IR, by
fm(2) :i= E(f(Sm-1+2)), >0 (A.12)

and observe that f, is increasing convex whenever f is increasing convex.

Under the enforced asssumptions, the rv S,y is independent of the rvs X, + Xpa1.

so that
E(f(Sm+1)) = E(fm(Xm + Xmt1))
= fm(0) + E(fin(Xm + Xmt1) = fm(0)). (4.13)

Since (A.10) holds for n = 2 by virtue of the basis step, we conclude that

E(f(sm+l)) Z fm(O) + 2E(fm(-"£m+]§"‘ frn(o))
= .)E(fm(}{m ))— fm(O)

where the first equality follows from the fact that X,, =, Xn11. Therefore, (A.10) will

hold for n = m + 1 provided we can show that

1
m Sl S oy

(2E(f(5m)) . E(f(sm-—l))) (A.15)

By simple arithmetic we see that (A.15) is equivalent to (A.10) for n ={m)and this
S |

establishes the induction step.

1
Proposition A.3. If the i.4.d. rus {X,, n=1,2,...} are integrable, then
: 1 .
lim,, 7E(max,<,-<,,.&,-) ==k (A.11)
- <
Proof.
O



