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ABSTRACT

Fork-join queuecing models arise in many application areas, including parallel pro-
cessing and flexible manufacturing systems. These queue;{typically exhibit non product
form behavior and their analysis has proven to be difﬁcuit. In this work, our objective
is to obtain heavy traffic approximations for Fork-Join systems. We first demonstrate
the convergence to a diffusion process for appropriately scaled and normalized versions of
the response time sequence. Thereby the problem of obtaining the heavy traffic limit for
the response time is reduced to the problem of obtaining stationary distribution of this
diffusion. This stationary distribution satisfies a second order partial differential equation
(PDE) with oblique derivative boundary conditions. Upper and lower bounds for the sta-
tionary distribution are obtained using stochastic ordering theory. For the special case of
two dimensional Fork-Join queues, we solve the PDE for the stationary distribution to

obtain formulae for the heavy traffic limit for all moments of the response time.
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1. Introduction

Fork-join systems arise as models for parallel processing systems. For example, con-
sider a parallel processing system with A processors which is subject to an arrival stream
of jobs consisting of multiple tasks (Fig 1). Suppose that the K tasks are independent
of each other. so that they may be executed in parallel. If we assume that the number
of processors is equal to the number of tasks, all the jobs have the same task graph and
all inter—processor communication delays can be ignored, then the system can be modeled
by a Fork-Join queue (Fig 2). The problem of interest is to obtain the statistics of the
response time of a customer in this system. In general this is a very difficult problem,
because the presence of synchronization delays (in addition to queueing delays) destroys
the product form property which characterizes Jackson networks.

A number of authors have analysed the Fork-Join queue and one of the first such
analysis was carried out by Flatto and Hahn [7]. They considered the case when there
were only two quenes subject to Poisson arrivals and exponential service times, and were
interested in obtaining information about the transform of the steady state queue length
statistics of the svstem Using advanced tools from complex analysis they were able to

solve this problem Ho“e\er it was a difficult task to obtain explicit formulae from their

!

final solution, and moreover their analysis was not generalizable to more than two queues.

Later Baccelli [1] gave a more general solution to the two queue pxoblem in the sense that _
vl

he removed the restriction of exponential services, so that his analysis apphed-—for Pcnsson L\ &

arrivals and general service distributions. Nelson and Tantawi [22] and Baccelli, Makowski
and Shwartz [2] gave bounds for the average response time for Fork Join systems made up
of I queues, with general inter—arrival and service distributions. They showed that the
average response time was lower bounded by a related system with deterministic arrivals,
and upper bounded by a system with independent arrivals. Since in either case, the queues
become uncorrelated with one another, their response time statistics can be explicitly
characterized. Nelson and Tantawi [22] also obtained an approximation for the average
response time of a homogeneous system with Poisson arrivals and exponential services.
This apl')rotimntion was obtained by a clever argument that involved both theoretical as
~.J (" U .l ¢

well as e;.pcbmen{cal considerations.
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In this paper our objective is to carry out an heavy traffic analysis of the Fork—
Join quene. We first demonstrate the convergence to a diffusion process for the various
queueing delay processes in the queue. The partial differential equation that characterizes
the stationary distribution of the diffusion is then given. This equation is solved for the
special case of two queunes, and with help of the solution we obtain formulae for the heavy
traffic limit of the n™ moment of the response time.

The heavy traffic results in this paper are combined with light traffic limits to ob-
tain interpolation approximations in [29]. In [30] we present approximations for acyelic
Fork—Join networks that are used to model parallel processing systems with precedence
constraints among the various tasks in a job. In [32] we present approximations for syn-
chronized queueing networks which are used to model parallel processing systems with
precedence constraints among the tasks as well as communication delays between proces-

[0S,
2. The model.

Consider a system of I single server queues which operates in parallel on-an-ineoming
stream-of jobs a8 we now-deseribe: Each single server queue has an infinite capacity buffer
and operates according to the first—come first-serve discipline. Each job is constituted of
K distinct tasks, with the understanding the &' task is to be processed by the k" server,
1 < k < K. Therefore, upon arriving into the system, a job splits into its constituting
tasks so that the kt* task enters the buffer attending the k'™ server. This is known as
the fork synchronization constraint. After a task receives service, it 1s put in another
buffer, the so—called synchronization buffer, until that moment when all other tasks from
the same job have finished their service at the other servers. Only when all the tasks that
make up a job have been processed, is the job declared serviced and its I{ tasks all leave

simultaneously. This is known as the join synchronization constraint.

The following RVs are defined on a common probability space (2,7, P). For n =
0,1...and 1 <k < K, we set
tpqr o Inter—arrival time between the (n 4 1) and nt* job:

vk : Service time of the type k" task from the n'" job;
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Wk : Waiting time of the type k' task from the n'* job:
RE . Response time of the type k** task from the n** job; and
T, : System response time of the nt" job.
We shall assume that
(Ia): The sequences {upty, n = 0,1,...} and {vf. n = 0,1,...}, 1 € k¥ € K, are
mutually independent. Moreover, each one of these sequences is composed of
1.i.d. RVs with finite second moments.
Forn=0,1..., we set
u = Blunt1] < 00, ag = Var[un+1] < 00
and

v* = E[o}) < 00, of = Var[vX] < oo, quadl < k < K.
SRt

Under assumptions (Ia), each queue in the Fork—Join system operates like a GI/GI /1
queue. Therefore, upon assuming that the 0" job arrives into an empty system at time
t = 0. we can write down the Lindley recursion for the sequence of waiting times in the

k' queue, ie., foreach 1 < k < K,
WE=0
TV,f_*.l = [WEF +vf —u,a]t. n=0,1...(2.1)

k

The response time R}, 1 < &k < K, is given by
R =wk ok, n=01...(2.2)
and the system response time T}, of the n'" job is then given by

T.= max RE. n=0,1...(23)
— .- \

We consider the system to be stable if the sequence of queucing delay vectors
[(W),...,WEK), n=0,1,...} converges in distribution as n T oc to a proper random

vector (W7, ..., W¥). It was shown in [2] that system is saﬂ)_lc iff the condition

v cu, 1<k<K (2.4)
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holds.

3. Existence of a diffusion lmit

In this section, we focus on the task of obtaining heavy traffic diffusion limits for the
delay processes in the Fork-Join queue. Following the approach of Iglehart and Whitt
[15], we consider a sequence of stable Fork-Join systems, say indexed by r = 1.2,...,
approaching instability as r T co. We then show that a rescaled KX—dimensional stochastic
process generated by the vector delay sequence converges weakly to a /N-dimensional
correlated diffusion process in the non-negative orthant. with normal refiections at the

boundaries.

Throughout. all continuous—time processes have sample paths in D[0,00), the space
of right continuous functions possessing left limits [21]. As usual, = denotes weak conver-
gence. The convergence results give convergence over the interval [0, 00). However in the
proofs we limit ourselves to proving convergence over any finite interval [0.T], since the
two cases are equivalent as long as the limiting process obtained has continuous sample
paths [21, Thm. 3', pp. 120].

For each r = 1,2..., we consider a Fork-Join queues generated by the sequences
{tn4a(r), n=0,1,...} and {vF(r), n=0,1,...}, 1 €k < K, under assumption (Ia). In
addition, we assume (Ib)—(Ic), where

(Ib): Asr T oo,
or(r) - or, 0LZk<K,

[u(r) = *(")Vr — e, 1<k<K.
(Ic): For some e > 0,
sup {B{| wa(r) [} B{| of() [} < 0.
Forr =1.2..., we define the following partial sums

Vi) =0,

VEr)y = vf(r) + ... +vk_(r), 1<Ek<K, n=1,2...(3.1a)
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and

Uo(r) =0,

Un(r) = uy(r) + ... + ug(r). B=1.2..:(3:1b)
The stochastic processes £¥(r) = {£¥(r),t > 0}, 0 < k < K, are then defined by

_ Uprg(r) — u(r)[rt]

& (r) S 3 ) (3.2a)
N _
‘ "7 Y
and
vk —vk(r
E(r) = Ll \/; : )[rt], 1<k<K, 120 (3.2b)

Lemma 3.1 Let £ = {€F,1 >0}, 0 <k £ K, be K + 1 independent standard Brownian

motions. Asr T oo,
(E%(r), E4(r), .. . EX (1)) = (00€%, 18Y, . .. ok EN) (3.3)

in D0, 00) 5+,

Proof. Equation (2.6) follows directly by Prohorov’s functional central limit theorem for

triangular arrays [24] under assumptions (Ia)—(Ic). E

Forr=1,2..., we set

Sk(ry=0
Skr)=Vir)—Un(r), LSk<K n=12. .. (54)
and define the stochastic processes (*(r) = {C,"( M)t Z0) TR S IG by
Sk (v
EEr)= l—”]f—) 1<k<K, t20. (3.5)

We also define the stochastic processes (¥ = {(F,t > 0},1 <k < K, by

(f=oxlf —aofl —axt, 1SkLK, t>0. (3.6)
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The process (¢*,...,¢(%) is a K-dimensional diffusion process with drift vector ¢ and

covariance matrix R given by

¢=(=¢1,...,—¢K) (3.7)
and
2
ay -}; ag : oa e a§
ag; G5+ 0g e Ty
R= : ; 3 : . (3.8)
5 3 ‘
oh oy O 7

Lemma 3.2 shows that the stochastic processes (3.5) generated by the random walk (3.4)
converge to ((,...,¢(") in the limit. The cross-correlation terms in the matrix I reflect

the correlation between the I queues due to the common arrival process.
Lemma 3.2. As r | o,

g ) O 0 ) - R ) (3.9)
in D[0, 00)¥.

Proof. Fix r 2 1 and ¢ > 0. We see from (3.2), (3.4) and (3.5) that

chry = Jira") — Uiy
' Vr

= &(r) — €(r) - M[u(v‘) - )V, 1<k<SK

r

Assumption (Ib) readily implies that as » T oo,
TP
[u(r) =¥ (r)Vr — ext, 1€k<K
=

and we conclude to (3.9) by invoking Lemma 3.1 and the Continuous Mapping Theorem

[6, Theorem 5.1]. [

The Lindley recursion (2.1) for the queueing delays can be reformulated in the fol-
lowing way, which proves very useful in establishing limit theorems. For r = 1,2... and
1 <k < K, we observe that

WE(r) = max{Sk(r) — S¥r), i=0,1...,n}

= S¥(r) —min{S¥(r), i=0,1...,n}. n=0,1...(3.10)
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Next, we define the stochastic processes u*(r) = {uf(r),t >0}, 1 <k < K, by

I""’[,;t] (r) .

;tf(r) = 7 <k< K, t=0 (3.11)

We also define the stochastic processes ¥ = {nf,t >0}, 1<k < K, by
nf=g(*), 1<k<K, t20. (3.12)
where g : D[0, 00) — D[0,00) is the the reflection mapping defined by

g(x) =2 — oigﬁi_‘gt Ty b 20 (3.13)

In Lemma 3.3 we show that the vector process associated with (3.11) converges weakly
to a K-dimensional diffusion process (3.12) with drift (3.7) and covariance (3.8). This
limiting diffusion stays in the non-negative orthant in IR* and exhibits normal reflections

at the boundaries.

Lemma 3.3 As r | oo,

(},l,‘(r),...,pK(V‘)) = (1)1,...,17".) (3.14)
in D[0,00)%.
Proof. From (3.10) and (3.11), we conclude that
wf ) = g(Ck(r)), 1<k<K. r=1,2,...(3.13)

Since g is a continuous mapping [36}, the result follows by the Continuous Mapping The-

orem and Lemma 3.2. B

For = 1,2..., we define the stochastic processes ¥ (r) = {nk(r),t 20}, 1<k < K,

by

1<k<K, t>0. (3.16)



The vector process defined by (3.16) converges weakly to the same limiting process as the

vector process generated by the waiting times.

Theorem 3.4 As r T oc,

(' (r)s - () = (95 5m ) (3.17)

in D0, 00) .

Proof. Fix T' > 0. For each r = 1,2..., we see from (2.2} that
RE) - WEr) =ok(r), 1<k<K n=0.1...
whence

; 1
k k ko P
su max -_ — max maxivi(r):0< n<r 0
0<¢£7-1<ka<‘}\’ | ne(r) — pe(r) | Jr l<lk<\1\'1 {va(r) Sn<r}—

as r T oo [14]. We conclude (3.17) from Lemma 3.3 and from the Converging Together
Theorem [6, Theorem 4.1]. I

For r =1.2..., we define the stochastic processes k(r) = {r(r),t > 0} by

T[rt](")

Kg(?‘) - —'\/1_'—‘, i Z 0. (318)

Also define the stochastic process & = {#¢, 1 > 0} by

K¢ = max nf, t=0. (3.19)
1<k< K

The stochastic process (3.18) generated by the end-to-end delays converges weakly to the
process (3.19), which is the maximum of K correlated Wiener processes with drift, in the

non-negative orthant and normal reflection at the boundaries.

Lemma 3.5 Asr T oo,

kir)=~x (3.20)

in. D[0,00) .



Proof. From (2.3) and (3.17) we conclude that

mr) = max ni(r), t20. r=1,2,...(3.21)

The convergence (3.20) now follows from Theorem 3.5 and the Continuous Mapping The-
orem, Upon noting that z — max;<x< 7 is a continuous function on RN i
4. Properties of the diffusion limit

4.1. A Markov property

To present the results, we begin by defining a K -dimensional process 1% = {v}.1 > 0},
1<E< K, by

v =infocscei(f, 1<k<K, t>0. (4.1)
The K -dimensional reflected diffusion process (', ...,7%) is then given by
ne=Li =% 1<ksSK, 130 (4.2)
Finally, let {F;, ¢ > 0} be the filtration associated with the (K 4 1)-dimensional Brownian
motion (£%,...,6%),ie., Fi =0 _—\{fi’, 0<s<t 0<k<K}foreacht>0.

Theorem 4.1 We have
(1) : The process {(Ceaye), t 2= 0} s a stationary (P, F;)-Markov process;
(i) : The process {n, t = 0} is a (P, Fy)-Markov process;

Proof. Fix ¢t > 0 and & > 0. For each 1 < k < K. we notice that

. S ks 3 3
Yern — ¢ =inf {77, infrescern’} =0
=inf{0,inf¢,<sgz+h<tk — %'}

=inf{0, ¢F — ¢¥ + infecscernlF — 5}

With this in mind. we set

.-\-r
I " 'k-“‘
iy, 70) = Blexpi 3 [0 (Chon — CF) + #Finf{0,2* +infrcocnct — 387 (43)
k=1
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We now recall thaty, and (; are F-measurable. Furthermore, from basic properties of
Brownian motion, we conclude that the increment process {(. — (¢, t < s} is independent
of the o-field F; and statistically indistinguishable from . from these remaarks, we now

conclude that

Elexpi [y Cen + 2" yen) | Fi] = exp i [¢'C + 2"ve] - aly, 756 — ) (4.4)
and the proof of (i) is now complete. To obtain (i), write (4.4) with y = —z so that

Elexpiz'neinlFe] = expiz'ng - ®nlz, —2z5m0)
upon making use of (4.2). I

4.2. The stationary distribution

We now provide a necassary and sufficient condition for the diffusion (',..., ") to

have a stationary disyribution.
Proposition 4.1 The condition ¢ > 0,1 < k < K, is necessary and sufficient to ensure
that the I - dimensional process (n',...,n") converges in distribution to a proper vector

(disain s 75) a5t T 0os

Proof. Foreach r =1,2..., set
VE = g K S k<K 4.5
Wa(r): 0‘2.'2‘" Si(r), 1<k<K (4.5)
and observe that
(Wir), ... . WE@)) =0 (Walr),...,WEr)). n=0,1...(4.6)

For r = 1,2..., we now define the stochastic processes i*(r) = {if(r),t 2 0}.1 <k < K,

X7k ol e
L L {\7}—(’)
=
= max ﬁlél(,—) (4.7)

0<s<t 1

I3 -
— < a7 <k< t > 0.
LF G 1sksE b2
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Also define the stochastic processes ji* = {jif, 1 > 0},1 <k < K, by

jif .= sup Cf, 1<k LA, 320,
n<s<t

Using Lemma 3.2 we conclude that as r T oo,
(@ (r),., 85 () = (B BY) (4.8)
in D[0,20)", and in particular
(e o BEC)) 28 (oo ), 220, (4.9)
However, (4.6) is equivalent to
(PN F)) St s crnli (O FE L2, 20 (4.10)
and (4.9) thus implies that as r T oo,

Y D . g
(i(r)ye- oot (1)) = (ft5---1 8 ), £20. (4.11)

Consequently,

("lly"'snt,\’) st (ﬂtla--‘aﬁtt‘-)-. tZO (412)

upon invoking Lemma 3.3.

The monotonocity of the sample paths ¢+ — i¥, 1 < k < K, yields the convergence

a1 pk =supcf, 1<k<K (4.13)
>0

as t T o, hence by (4.12)

n o ~K ;
(e s ) = (fihes- - fiRS) (4.14)

ast T oo.
It is well known [13] that jif, < oo a.s. iff ¢x > 0,1 < k < K, so that (*,..., n) has

a stationary distribution iff ¢ > 0,1 <k < K. |
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In order to obtain heavy traffic approximations for the fork—join queue, we have to
solve for the stationary distribution of the limiting diffusion x. This in general is a difficult
problem due to the fact that & is the maximum of K diffusions 5*, that are correlated
with one another. For all ¢ > 0 and 1 < k < K, it is well known [13] that the marginal

distribution of each RV nF = ¢(¢*), is given by

Ppf<z)=2 (—""“kt )-e";if’"o’@ (——’“""t ) x> 0.

of + o5t oi + ajt

However we do not know the joint distribution of the vector (n},...,7{) due to the cor-
relation that exists between the different components. Hence, since the distribution of &,
depends upon this joint distribution, we are unable to evaluate it directly.

The traditional method of overcoming this difficulty is by deriving a partial differential
equation (with appropriate boundary conditions) that the joint distribution satisfies. We
explore this option in the next section. In the Section 4 we obtain diffusions that bound
the limiting diffusion for the end-to-end delay from above and from below in the sense of
stochastic ordering, The significant fact is that the stationary distributions for the bound-
ing diffusions can be easily obtained and they serve to bound the stationary distribution

of the original diffusion.

5. A PDE for the stationary distribution

It was shown in the last section that (7'.....n%) forms a K dimensional Markov
process. The next step is to obtain the Fokker-Plank equations that are saftisfied by the
stationary distribution of this process. The process of deriving this PDE is exactly the
same as given by Harrison and Reiman [11] in the context of two single server queues with
symmetric routing. Here we just give the final PDE and the reader may consult [11] for
further details.

Define the following matrix.

2 5.2 2
o} + of 204 0 205
2a2 aE oz ... 202
0 2 0 0 —
II= . . . . - {5.1)
9 3 2 .)0,2 U'.’ _;_ 02
<0y =Ty e K 0

13



Let w(z1,...,zx) be the stationary density of the process (5',...,7n"). Then 7 satis-
fies the following PDE.

K K K
1
52D Rijz a~'a~: + Zc_, =0, (5.2a)
t=1"7=1
K
e aﬂ' i
' ]Hija_:—) 2eir =0 if 2; =0 (5.2D)
J:

Hence in order to obtain the stationary distribution = for the limiting diffusion, we
have to solve a second order elliptic PDE in A independent variables (5.2a) and oblique
boundary conditions (5.2b). We obtain the solution for a special case when K = 2, in

Section 7.

6. Bounds for the stationary distribution

In the last section we exhibited a PDE for the stationary distribution = of the limiting
diffusion. In general this PDE is difficult to solve and in this scction our objective is to
obtain some additional useful information about the stationary distribution by bounding
the limiting diffusion from above and from below by two other diffusions whose stationary
distribution is easier to characterize. The lower bound is obtained by using by using ideas
from stochastic ordering theory, while the upper bound is obtained by using the concept of
associated RVs. These results constitute an extension to the continuous time case of results
that originally appeared in [2]. Appendix A contains a collection of the basic definitions

and results regarding stochastic ordering theory that we shall use.

6.1 A lower bound

It is a well-known fact that for certain queueing systems operating in their stable
regime, determinism in either the arrival or the service processes minimizes queueing delays.

Our results in this section imply that this property continues to hold for the limniting

14
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diffusion of the end-to-end delay of the Fork-Join queue in heavy traffic. We prove this
result by working directly with the limiting diffusion.

Recall that for each 1 < k < K, ¢ > 0. we have

¥ =ortf — ool —ext, ny =g(C*) (6.1a)
and
Kt = max nr. (6.1b)

1<k<K

We now construct a new limiting diffusion for the Fork-Join system which is the
same as the original one, except for the’Wiener process £°,.which no-longer-appeara<in
thesequations. The intuitive reason for this may be understood as follows: The stochastic

eIvey

. . - - - - - ' »
process £°( 7‘)’obtamed after appropriately scaling a deterministic input sequence converge=
!

to 0 as r T oo, instead of to a Wiener process as was formerly the case. We shall use the

1

. Mo f "'; Ot .
same notation to denote (.p.u&.:.w.ws in the new system except that we shall underline them.

For 1 <k < K.t>0, we define

¥ = oty —ext, nt =9(C) (6.2a)
and
k P
L : 6.2h
&= max.u, (6.2b)

We now present our first result.
Lemma 6.1 Let 5 be the o— field of events generated on the sample space Q@ by the
stochastic process (€1,...EM). The inequalities

0¥ <Ef|B), 1<k<K, t2>0 (6.3)

hold, whence

& < IE[r | B], t20 (6.4)

Proof. Foreach 1 < k < K and t > 0, we have
e = g(¢* )

k k
= sup (Ct — Ss )
0<s<t

15



Since

m= g (=) 20 -G 1SkSK, 0<s<t,

we readily conclude that
E(n; | B) 2 B | B) - E((; | B), 1<k<K, 0<s<t

so that

Enf | B) > oiulzt[E(C‘k | B) — E((S | B))

3 0 k
=t s<up (oréy —oolEE; — et — o€, + UoIEfg + ers).
0<a<t

Since IEE) = 0 for all £ > 0, we get
E(T]f I:E) Z sup (O'ké:: — cptl — a’kﬁf + eps)
0<a<t
k_ pk
= sup ((, ——5\*)
0<a<t
=g* 1<k<K, t20

and this proves (4.3). In order to prove (4.4) we note that

. ~ Lk
E(s | S) = Ilsnkag}‘.ﬂf(m |5), t=0

and (4.3) now implies

E . AS' = ol k= e > .
(0| 5)2 max 0, =g, +20

Theorem 6.1 The following inequality holds

£y Sice K1, 12 0.

16
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Proof. Let f: IR — IR be a convex non-decreasing function. By Lemma 4.1, we have
fIE(se | B)) = f(sy), t=20.
Therefore, upon applying Jensen’s inequality, we see that
Ef(re) 2 Ef(r), t20
and (6.5) now follows. E

According to Proposition 4.1, the condition ¢x > 0,1 < k < K, is sufficient to ensure
that the RVs g,, and x; converge as t T oo to proper RVs k., and ks respectively. Our

next result shows that the the RVs g_, and k. continue to satisfy (6.3).

Theorem 6.2 Under the condition ¢ > 0.1 < k < K. the following inequality holds

Koo Zier Koce (66)

Proof. Recall from the discussion in Section 4.2 that

Kt =gt Ky and £y =it .&'_(-. t=0 (07)

where

fi = max f;:‘ with 17," = sup Cf, 1<kE<K, 120

1<k<K 0<s<t

and

- 15 3 ~ ok -

, = max with = su y A<hSK, 230

= Gk 1 05,2154 = ?

From (6.5) and (6.7) we conclude that for all convex non-decreasing functions f, we have
Ef(&) < IEf(fe), t20. (6.8)

Since the RVs 'f}:‘ and ﬁf for 1 < k < K, are non-decreasing with ¢, it follows that the
RVs #; and £, are also non-decreasing with . An application of the monotone convergence
theorem now ensures that

Ef(k,.) < IEf(f), (6.9)

17



from which (6.6) is now immediate. i

6.3 Upper bounds by association

By using the concept of associated stochastic processes, we exhibit a family of diffu-
sions that bound the diffusion for the end-to-end delay in the sense of strong stochastic

ordering.
Lemma 6.2 For cach t > 0, the RVs {nF,... ,nK}, are associated.

Proof. In order to prove this property we use Lemma A2 from Appendix A. First note

that the RVs
{gtl—é.nln---: tl\'_{f\-a_(é?_ég)}a OSSSt

are independent and hence are associated by property (i). By property (iv) the RVs
for[eE —e5) —ou[e) — ) —er(t—35),1 Sk <K}, 0<Zs<t
are associated, i.c., the RVs
{6l =Gl =G0l 05 & (6.10)

are associated.

Fix ¢t > 0. Define the set ID; by
kt
Di={—0<k<nn=12...}
n

and note that 1D, is a countable dense subset of [0,t]. Since the process { is separable, it
follows [6] that

sup (¢F — ¢&) = max(¢f —¢F), 1<k<K (6.11)
0<s<t ) sel,

For each n = 1,2..., define the sets of RVs A}, 1 <k <n, by

£ I e K
.42={CL-ng—1)11~--3gﬁ—ctz-l)l 3 1£k£n'

n
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By (6.10) it follows that the RVs in each A},1 < &k < n, are associated. But since the
processes ( has independent increments, it follows from property (i7) that the RVs in

A" = AT U...U A} are associated. By taking sums of RVs in A" it follows that the RVs

1 I
{C‘,l'.. z\
~1 1 - K
Gt —Ciy---5G; ‘_Q.{.-
" n
~I
7Ct—C" 11,... \ g"\ 11} n=132..., tZO

are associated. Another application of property (iv) assures us that the RVs

1 1 '[9 -~
max — ..., INax — = el B30
{0<L< (G C%)’ ’ogkgn( X L“T.")}‘ =

are associated. Letting n T oo it follow that the RVs

~ IV N
{lna;\C -G comax((h =G}, 20

are associated. Finally from (6.11) we conclude that the RVs

{mmax (G = G)eees max (GF -9} 120

are associated, just another way of saying that the RVs {n},...,nf} arc associated.
| |

We now define the stochastic processes ¥ = {7jF.t > 0},1 < & < K, which form
independent versions of the stochastic processes (n',...n%) in the sense of Definition A3.
For this purpose define K additional independent Wiener processes £7,... JEME | For

1< k<K, andt >0, define

—k : ; »
Ci=—= Tkl — Uoﬁg"L — Ckl, (6.12a)
= g(Zk)t and ®, = max 7. (6.120)

1<k<K
From Lemma 6.2 and Lemma Al, it directly follows that

ke = max 7 __91 max I[ = R
1<k<K i 1<k<K
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This is stated in the next result.

Theorem 6.3 The following relation holds true for t > 0,

Ky <ql Kg. (6-13)

It was shown in the last chapter that the condition ¢x > 0,1 < &k < K, is necessary
and sufficient to ensure that the RVs &, and %, converge weakly as t T o to proper RVs r
and T, respectively. The following result is then an immediate consequence of Theorem

6.3 and Proposition 1.2.3 in [27].

Theorem 6.4 Under the condition cp > 0,1 < k < K, the following inequality holds

Ksa St Kog- (6.14)

6.4 Some computations

In this section we carry out explicit calculations of the distributions of the bounding
diffusions in the transient as well the stationary case. We shall denote as a symmetric Fork—
Join guene, the one in which all the K service times have identical probability distribution

functions, so that
ci=cy=...=cg=c¢, andoy =03 =...=0K =0

We also use the notation Hy, K = 1,2... for the partial sums of the Harmonic series, i.e.,
K 1
H,—:EF K=1.2...

Lower bounds are computed in Section 6.4.1, while upper bounds are computed in

Section 6.4.2.

6.4.1 Lower Bounds



The results of Theorem 6.1 and Theorem 6.2 imply that
FEg, <IExy, t2>20
and
Fr,, < Eko-

Qur objective in this section is to give explicit formulae for [Fx, and Fx__.

We first proceed with the caleulation of IEx,. Recall that

k .
K, = max 1, =0
¢ eR ey S

where 1_)4" = g(or€¥ — ex)iyt = 0,1 < k £ K. Note that since the stochastic processes

£5.1 € k < K, are independent, it follows that the stochastic processes Q"', 1<k<K are

also independent, and therefore

i
P, <2)=[[P(nf<=), t20
k=1

(6.15)

for all z > 0. Note that n*,1 < k < K, are diffusion processes with drift —¢ and variance

o, which are reflected from the origin. The transient distribution for these processes is

well known [13]. For all z > 0,

B 5 z + ¢t = —z + cit
Pai<a=e (S0 - e (). 20

From (6.15) and (6.16) it follows that for all z > 0,

opVt oxVt

K 2¢c,.2
. 2 i —z 4 cpt
IP(g; < z)= [‘I)( +th)——c Tk ¢I)( ok )], it > 0.
1

k=

Since

Py K
Br, = [ =T Pl <z, €20
9 k=1

21
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(6.17)

(6.18)



it follows that

" 2ep 2
2 z+ cxt - (—z+ckt>)
Eg, = 1-— iy —e Tk | —m dz, t20.
= /o [ H ( ( Gk\/?> ) orVt B

k=1

In the symmetric case, equations (6.17) and (6.19) reduce for all z = 0 to

K
z+ct _Ze: —z 4 ct
Ple, <z)=|P —e «T P )] , t>0
(& < %) [ (0\/Z) ‘ ( oVt =

and

i z +ct _zes oo o NN
A — | ® ~— oz P dz, t=0.
i /o ll ( (rf\/?) ’ ( o/t )) ] B

{(6.19)

(6.20)

(6.21)

We now proceed with the ealculation of IEx__ under the condition ¢ > 0,1 <& £ K.

Recalling that

= F k
Ko 1_I<_nk23\'ﬂo°’
we see from (6.16) that
Pn* <z)=1 P S
so that
K 2cp 2
o
P(r., <2 —"—’H[l—t %], 220
k=1
Hence IEk,. is given by
o0 K _2(
FEg,, = [I—H(l—-r %k )]dz
0 k=1
It is clear that
K —2sgs K = Z Eﬁi
1~H(1_e Ty )=Z(_1)k+l Z e kel %
k=1 k=1 =

22

(6.23)

(6.24)

(6.25)



where

Tp=dT C{lvw: i) D=kl 1 Sh&K
For any non-empty subset I of {1,..., K}, we see that
2¢
/ B T =3 “"‘)‘1 (6.26)
kel

so that

Z( —1) §" zi‘-)— (6.27)

ren, ker 7k

In the symmetric case, equations (6.23) and (6.24) reduce to

Pk, <z)=[1—eFF, 220 (6.28)
and
Eﬂm=/ [1—e 1% dz (6.29)
0

Taking note of the fact that | I |= (") and of the identity

Z( 1)*+1(1\) }:k Hg, K=12...

equation (6.29) reduces to

2
Exy =

—oC

Hy. (6.30)

¥

For the homogencous case it is also possible to obtain explicit formulae for higher moments
of &, and we proceed to do so next. Note that the density f(z),z = 0 of £ is obtained

by differentiating (6.28), so that

Hence




oty I

After making a simplifications and integrating, we obtain the following formula for the n'h

moment.,

2 K - 3
. 2 I L) k+1
E&x=nK%ﬂ"§:(;)Lj%f“ n=1,2...(6.31)

- k=1

6.4.2 Upper Bounds
The results of Theorem 6.3 and Theorem 6.4 imply that
IEfy 2 IEry, 120

and

Ry > IPRao:

Our objective in this section is to give explicit formulae for IE%; and [FF. Since all the
calculations involved are exactly the same as in the last section, we only give the final
formulae in each case.

Proceeding exactly as in the last section, it is possible to show that

i 2ep
- z + it =y —z 4 cit
IE% ::/ 1- II P e )i “TTO D _ dz.
o [ k:l( (V(U§+03)i> (\/(Jit+0§)i))]

t=0 (6.32)

and in the symmetric case,

K
= z + ct -'—}s’—f —z 4+l
IER, = 1—[®| ——= ] —¢ "™ dz,
" /o ( (V(a"’-}-a&)t) . (\/(ai’—i—oo)t)) '
t>0. (6.33)

Under the condition ¢x > 0,1 < k < K, we further have that

EW_Z(W“ (6.34)

1ely LGI
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and in the symmetric case

o +a}
Efg = TQH,{. 4 (6.35)
u l“ 7,-.' NG
As in the last section, we can obtain the following formula for the n'" Of T
o2+ 08 e O\ (=1)F2
E'—:ﬂ = ! 0 \n (‘.3
Roo = nl(—5—") ;(L)—k (6.36)
Equations (6.30) and (6.35) imply that in the symmetric case
a* % + o}
THK < FExgy £ ——Hg, (6.37)
2¢ 2¢

and (6.31) and (6.36) imply that

2 k 2 PRy
N'( )"Z( )( 1) +1 SIEKZOSn(U +00)112<I;)(__%‘_:*._1. n=2‘3(638)

Note that since

log(I{ +1) < Hyg <logI

it follows from (6.37) that the expectation of the normalized end-to-end delay of a sym-
metric Fork—Join queue in heavy traffic, increases logarithmically with I

Equation (6.37) reveals an interesting difference between the asymptotic behavior in
K, for Fork-Join gqueues operating in heavy traffic with those operating in their stable
regime. It was shown in [2] that moments of the end-to—end delay of a stable Fork-Join
queue increase logarithmically in K provided the following condition is satisfied;

Let 4*(s) and B*(s) denote the Laplace-Stieltjes transform of the interarrival and

service times. The transform B*(s) is assumed to be rational so that the function

s — f(s) which is initially defined for Re(s) =0 by
f(s) = A*(s)B*(~s)

is continuable in the region Re(s) = 0.



Under this assumption it is shown in [2] that the response time of each queue has an
exponential tail. which leads to the logarithmic behavior. However in heavy traffic the
response times always have an exponential tail provided they satisfy assumptions (Ia)—
(Tc) from Section 3. Hence even those Fork-Join queucs whose end-to-end delay does
not grow logarithmically with & when they are in their stable regime, (since they do not
satisfy the above assumption), exhibit logarithmic growth of their end-to-end delay with
K, once they are in heavy traffic. The inequality (6.37) has also proven to be useful in
the comparison of the Fork—Join quene with alternative queues with different scheduling

strategies for the tasks [31].

7.1 Solution to the PDE

In this section our objective is to obtain a solution to the PDE for the stationary
density of the diffusion process for the queue delays in a Fork-Join queucywhich-was
_derived in-Seettorr3- From this stationary density we can then recover some heavy traffic
information about the queue. We only consider the solution of the PDE for the case of two
independent variables, so that the results of this chapter are applicable to two dimensional
Fork-Join systems. The technique that we shall use for solving the PDE is similar to the
one used by Harrison [10] and Foschini [8] in the context of a system of single server queues
in tandem. For this technique to be applicable, it is necessary to assume that oy = 0y = 032.
In Section 7.3 we obtain formulae for all the moments of the diffusion for the end-to-end
delay for this case. These moments are combined with light traffic results [29] in order to
obtain interpolation approximations.

We use the following notation. As in the last chapter, the non-negative quadrant in

the (z,y)-plane will be referred to as .UZ'i For each 0 < # < 1, the region in the first

and fourth quadrants that is bounded by the lines y = %{—%z and y = — i—f%;r will be

referred to as IR?,, i.e.,

A,
2 2. }_+ﬁ <y < 1+8
Rﬂ_{(‘l'vy)em-‘}-' l_gm-—y—- 1__’3‘1}

7.2 The queue delay processes: Symmetrical case
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We consider the problem of determining the stationary density for the waiting time

processes of the Fork-Join queue in the case when K = 2. B-Ve start by writing down the

PDE obtained in Section 5. which the stationary density satisﬁ%

1 Pr(z,y . Pr(z,y 1 Pz, y
5 o3 +03) ( )"a(;.E(__—a—y_)-_*_E(a%_*-ag)_a(yg—l
Im(a.y) Om(z,y) _ : 2
a—p -+ 5, 0, (=,y)€ Ry
BO( = 0): (0% + o) T 4 7P n(0,4) = 0
2 Y
2 On(z,0) 0) Bﬂ'(m 0)

2 1
BC(y=0):0y—F— e 2( 2 + 0)

+ cam(x,0) = 0.

(7.1a)

(7.10)

(T.1¢)

We further make the assumption that the two queues are identical with oy = 02 =0

and ¢; = ¢ = ¢, and we set a® = of + 0? in what follows. The equilibrium equations then

simplify to the following.

1 ,&n(z,y) o Pr(z,y) 1 ,0%w(z,¥)
2% T oa2 ¥y Oxdy g 2% Oy?

817(:1' y) Brr('r ¥) =0, (o) € I

dx $ dy
9 W(,'A 70'0,‘ 3 X
BC(z=0): ;i-a‘a 4(9')ry) +a§a g)y v) +em(0,y) =0
0) 1 ,0m(x,0
BC(y=0):0 0—"((;—)- + 5a? ”‘a"y (&) ol 1) =

(7.2a)

(7.20)

(7.2¢)

We now scale the co-ordinates according to the transformation T : (2,y) — (r1,¥1)-

\ 2 -
so that so that (z;,41) = (az,ay) where a = g—}, and we set § = 907% in what follows.

Denoting m(%-, %) by ma(2y,11), (7.2a)~(7.2c) can then be written as

Pra(21,1) ‘)Bazﬁa(mlgyl) FPra(zr,1n)
dx i) - dzy Ay, allf
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+07ra(wn,yn) . Ora(z1,91) _

05 (Ilvyl)em’i

a.’(fl 0!]1
BC(zy = 0) - 2el0tn) 4 op0malOitn) | 6 0y =0
day y
a a ] ﬁa N N
By = ) 5pTeal) | ORlin0) o b, 0y =0
Jay 3y1
Since
a2 a2
f3 = bl | 0

o T o )
a?  oi + o?

(7.30)

(7.30)

the parameter 3 is constrained to lie in the set [0, 1], and we shall therefore seek solutions

to (7.3a)—(7.3¢) with 3 constrained to lic in this set.

7.3 The solution in polar co-ordinates

In this section we recast our basic equation (7.3a)-(7.3c) into the form V¢ = 4,

where V2 is the two-dimensional Laplacian in polar form. This is accomplished by several

transformations as shown below. The development of this section is inspired by Foschini

[8] and Harrison [10].

The transformation is achieved in the following five steps:

(1): We start with an exponential substitution to eliminate the drift terms. Let us intro-

duce a new function 7, defined by
mi(@1, 1) = Talzr, 1 )e P ET) (2, 41) € IRT

where b = —-_le—f—;ﬂ—) The PDE can then be re—written as

Pm . 0®m 9%m _om

. 2 = 3 R IR?,
da? % Oz:0p Oy 2(1+47) (e1,3) € Ry

071'1 y .),;3771 + T -0

BC((Bl =0):81'| -+ 2f ayl 2(1+ﬂ)

ary  Om ™
(yy =0):23 — =0
Belye =47 ory + dyy e 2(1+ 3)
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(2): The term with the mixed derivatives can be removed by the orthogonal transformation

Tl : (mlqyl) T (11:2, y2)1 defined by

1 1
T2\ _ [ V&2 2 T , 2 "
()-(5 3)G) @men. (=

This transformation maps the quadrant ﬂ??,_ in the (xy,1 )-plane into a region IR;
in the first and fourth quadrants of the (z3,y2}-plane that is bounded by the lines
g = yo and o = —Yo.

Denoting m(Ti{zy,v1)) by m2(22,y2), we obtain the following PDE.

8271'2 o

(1 +ﬁ) 0 R ) (x2,72) € IR} (7.8a)

w2

Va(1+8)

BC’(;EQ =1

o
‘+@ﬂ—Ua;+- (7.8b)

BC(x2 = —ys) : 02

-3

MY (1 iy e i

(3): The next transformation T : (x2,42) — (x3.y3) is defined by

” f] 0 ;
(.Lg) _ 1+3 : (ﬂ,2> < (332.![2) € mg (7.9)
3 0 = Y2

. p 3 i . i . 2 .
This transformation maps the region IR; in the (2,y2) plane into a region I} in

the first and fourth quadrants of the (x3.y3)-plane that is bounded by the lines y3 =

:+g7’3 and 1 Yz = — i—f%:cg. Dcnoting Wg(Tg(wg,yg)) ])y 7!'3(:1,‘3,3]3), we obtain the
PDE
2 w3 2 -
2y = ———0. (z3, R 10a
Vim, 51+ 8) (z3,y3) € Ry (7.10a)
H 260+1)0 23—1)0r g i
By e (9P 1) D (B0 1) Oy 5 __ =0 (7.108)

1-5 ’) V1+5 0a:a+\/1-38y3+\/2-(1+ﬂ)
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1+K3 ) (’;3’-{-1)673 ('2}3—1)07!’3_*- 3
B TEB 025 V1P Bys 21+ P)

BC(_y3 = —

(4): The next transformation Ty : (23,y3) — (24, y4) is given by

T 0
(j’) N ( 2((1)-’.:}) _—‘_) (Is) s (z3,y3) € ﬂ?f,
: Vam ) b

Denoting w3(T3(x3,y3)) by m4(x4,y4), we obtain

Viry =7y, (T4,94) € IR?;

BO(n =[50 S - Y BT
BC"('!I4=—\/1+:;1’4) (2 ﬂ+1) Vl—ﬂ( 28 — )-a.)—%-i-'n—()

= (.

(7.10¢)

(7.11)

(7.12¢)

(3): Finally we recast this equation into polar co-ordinates with the the transformation

Ty : (za,y4) — (7, 8) given by

x4 =rcosf and y4 =rsinf

We retain the notation I[Z,zg for the region in the (r,#) plane that is bounded by the

straight lines # = tan™' ,/%‘3— and § = —tan™! -if—g Denoting m4(T(24,14)) =

¢(r,8), we finally obtain

BC(f = tan™"

146, 28 3 _,VITBO 5,
ﬁ)'\/l——ﬁar_z - ae“Lﬁ‘b‘O

BC(6 = —tan™" - + ﬁ

)' =3 ‘a—,“*'...
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(7.13a)

(7.13b)

(7.13¢)



We shall find a solution to this equation in the case when # = 1. In this case the

equation becomes,

Vip=¢, (r.0)€lR:, (7.14a)

v T\ 09 BO .

BO(§=3):5-———gg t#=0 (7.14b)
g T .00 V89S . _ 1

BC(6 = 3). 8r+ = ae-i-(.‘b—O. (7.14¢)

The case § = % is of importance because it corresponds to the situation when oy = @,
i.e.. when the inter-arrival and service distributions have the same limiting variance. This
will always be the case if the service and inter—arrival time distributions are taken from
the same family. For example consider the case of a Fork-Join queue with exponential

inter-arrival and service distributions with rate T an :‘- respectively. Then as A T p in

heavy traffic,

Equations similar to (7.14) have been encountered earlier by Harrison [10] and Foschini
[8] in the context of the diffusion limit for queues in tandem. Guided by their work, we

try a solution of the form
. ) SR 9 Y 2 =
#(r, 8) = 7_.;'6 cos(;), (r.8) € IRy 5. (7.15)

Note that it satisfies the PDE as well as the boundary conditions (7.14b)-(7.14c), as can
be verified by a direct substitution.

Our next objective is to obtain an expression for the density in terms of (z,y). Note
that the transformation T : (r,8) — (z,y), which is a composition of the transformations

T =T, "I T, T, T, can be written as
az = (14 B)rcos8 — /1 — F?rsind
ay = (14 B)rcosf + /1 —p2rsind, (r,f)€ T (7.16)
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If we undo the transformation which corresponded to a multiplication by

c'%“"‘*"“), we obtain the function ¢(r, 8), where
. 0 . 1 —r{l+cos §) 3 9 LA 2 -
-Qf)(7, ) = ﬁe Cos(g), (7,0) = ‘lRO.S' (l.].t)

Letting ¥(T(r,0)) = @(x,y), the final solution is of the form Ky(z,y) where the

constant J{ is chosen so that
o0 o0
/ / K(z,y)dzdy = 1. (7.18)
0o Jo

We shall evaluate this integral on the (r,8) plane where the calculations are much easier.

It can easily be checked that the Jacobian J for the transformation (7.16) is given by

J=21+8)V1-p2=3% V3. The integral (7.14) then transforms to

.
3

V3K / Jre—{1tcosf) cos(;e)-)clrde = a®. (7.19)

#=0 v r=0

Making the substitution v(8) = 1 + cos #. it follows that

>0 4 o0
/ Ve Oy = 7‘?(9)/ Vue " du
0 0

=461 (3)

Substituting this back into (7.19), it follows that

T 7 7]
a® = 3—-4@\/;]\' /:0 sec“2(§)(l()

3v3 [r.. 0z
= -4— :—2-1& [ta.n(§)]0
3K [x
-9 V2



so that

Hence the final solution 1s

2(12 2 ) o

Making use of the fact that

2a —— :
.’.:_L. 1'"""17'y+y2, COSGZ ’£+y (7.21)
3 2¢/z?* — zy + y?

and substituting for r and cos @ in (7.17), we finally conclude to the following result.

Theorem 7.1 The stationary density w(x,y) of the diffusion for the waiting times in a

symmetric two dimensional Fork-Join queue in heavy traffic, which satisfies o = og s

given by
= \/g‘ [22 —zy+y2 + o+ yc—z'-:‘ 22—ry+y?—§(zty)
w(z,y) = a\[ % = 3
3 Vr? —zy + y?
(z,y) € IR5 (7.22)
where a = 5.

o

Knessel [19] has also considered the problem of solving an equation similar to (7.3)
from the point of view of the theory of singular perturbations, and obtained an expression
for w(z,y) in the case when z and y are very large. As expected, our solution (7.22) agrees

with his for large z,v.

7.4 Calculations of the moments of the end—to—end delay

In this sub-section our objective is to obtain some information regarding the stationary

density and the moments of the diffusion for the end—to—end delay of the Fork—Join queue.
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Our first objective is to find an expression for the density of the equilibrium response time
Kooy Where
2
Koo = Max{ni.. Mo}

It 15 clear that
F(z) = P(feo € 2) = IP(03, £ 2,73, £2) = / / w(x,y)dedy, =z=0. (7.23)
0o Jo

We make a change of co-ordinates from (z,y) to (r,8), by using the transformation
(7.16). The square [0,2] x [0,z] in the (z,y) plane maps into the rhombus with sides of
length -2—5}‘3 and vertices at (0,0), ("‘;‘ 555 (342,0) and (2—“-=- —Z) in the (r,8) plane. Using
the law of sines for triangles, it is clear that the limits of integration for r are from r =0

sin -

tor= i"m(?*—a 753111(2 —8)" Hence

[/ GEr i e \/_ o =T(1+cos ) o g(lr dfl, > 0. (7.24)
0.

As before, let 4(8) = 1+ cos@ , so that with the substitution u = v(#)r we obtain

as w(H

axr )
—\755in( %i—n \/r—-e—.’(a)r(] slh(?-? \/_(- "(lu

r=47%(8) /

r=A0 o u=0

The resultant integral above is known as the incomplete Gamma function and ocours

frequently in analysis. It is well known that

/I Vie tdt + /m Vie tdt = I‘(f—:—) = \/E (7.
0 x 5

-1
[V
[u §
S

2

Hence (7.24) can be re-written as

6 "‘ 9 =% s o2 i
F(z)= '2\/;/=0 cos 5 f(ﬁ)[g — /%_l - Ve " duld

=58
3 m‘;—ﬂ
-3/ 0 — —u
=1-2 v~ 2(8) cos -/ue " dudd
=0 Azﬂ(ﬂ 2
m(ﬁr 0)
& -0 -
_—_1_,/§/“/ ‘/_‘;addo 2> 0. (7.26)
T = u=27°§c057 %sin( : —8) £as
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Using (7.26), the density function f(z) of the response time is given by

f()— \/—/ Vo(0)ze5D2d6, 2 >0 (
d" .90(.05-—

20

COs™ ¥
where §(8) = 3 m

=1
[SV]
=

th

Using this expression it is possible to obtain a formula for the n'™ moment of the

response time, as is done next. Note that

o0
E&&:/ 2" f(z)d=z
z={

= \/g/3 df ] /°° Pl TR L
T Jo=0 T g Jr=0
3. /3 (5 1 1
= /= —df. 7.2
P(7l+ 2)\/:/(;=0 Coszg"sn(ﬁ)d {7.28)

Substituting for () and a, we finally obtain the following result.

Proposition 7.1 The n'" moment of the stationary density of the diffusion for the end-
to—end delay in o symmetrical two dimensional Fork-Join queue in heavy iraffic which

satisfies o = ag, 1s given by

= 3, [3 V3ao? ——
IEK.OO — F(TL + 5) ;(‘—2' T) P (729)
where
3 (2n+1)(2n—1)...3.1 -
I(n+ ;)-)= XES) ﬁ (7.30)
and
¥ sin® —6)
Py= T JH, 7.31
L 0 (05271-0-2 i ( )

C%Eader may check that for the case i = 1, this formula-agrees with-the expression
«far‘EK&“déri\-‘ed'eafﬁ% The integral (7.31) is evaluated for some values of n in Section

-
i

D
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Equation (7.29) suggests the following formula for the heavy traffic limit of the nth
moment of the response time: Consider a symmetric Fork—Join queue governed by an
arrival process with mean } and variance 03(/\), and a service time distribution with mean

+- and variance o?. Further assume that limar, §(A) = 0. The heavy traffic limit for the

n* moment of the end—to—end delay of this queue T_n(A), is given by
Lim(p — ,\)"—T-(n)(/\) =D(n+ §)\/§( —\/-—gog,uz)"l’n (7.32)
ATp 2 2

where T'(n + §) and P, are defined in (7.30)-(7.31).
We now provide a formula for the normalized correlation between the delay processes

of the two queues in heavy traffic. This is given by

5 oo o0
Bok) = [ [ srlepdody

Making the usual change of co-ordinates from (x,y) to (r,6), we obtain after some caleu-
lations that

(72

11(—)2- (7.33)
o

E(nbn) = 5

Note that the two queues by themselves behave like GI/GI/[1 queues, so that

and

It follows that
o

o 3 2 -
Cov(nlnZe) = B(naende) — BB = 3(—-)" (7.34)

This implies the following result.

Proposition 7.2 Consider a symmetric I —dimensional Fork-Join queue governed by an

arrival process with mean ]X and variance o2()\), and a service time distribution with mean
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:7 and variance 0. Further assume that limyy, of(\) = o, If (W(A),..., WK

represents the steady state vector of queuneing delays in the system, then

3

Eﬁcmqw%nu”u»=g,

1<i,j <K, i#j (7.35)

It is a remarkable coincidence that the asymptotic correlation 2, almost equals the
constant 1 that was obtained by Nelson and Tantawi [22] as part of their heuristic approx-
imation. We also note that the correlation between two queues in the system is erucially
dependent on the parameter 3. We just showed that for the case 3 = %, the coefficient
of variation is given by %. For the case § = 0, it is given by zero, since in this case the
two queues are independent, while in the case § = 1 it is given by one, since in this case
both queues are perfectly synchronized with one another. Hence we observe that as the

service times become more deterministic, i.e., as J increases, the two queues become more

correlated with one another.

7.5 Tables for P,

The co-efficient P, defined in (7.31) have been calculated for n = 1,...,4, with the

help of the symbolic computation langnage MACSYMA, and set down in the table below.

1 P Ex7,
11 11

1 9 Ra

¢ 3 81

3 1759 10,3
1260 at
55123 43.3

4 GRO40 3 av

8. An heuristic formula for the heavy traffic limit for general values of 3
Recall that the parameter # was defined by

2
T4

=
f ol + o?
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where g 1s the variance of the inter-arrival times and ¢ is the variance of the service
times. The heavy traffic limit (7.32) when K = 2 was obtained for special case 3 = 7. In
this section we propose an heuristic approximation for the heavy traffic limit, for general
values of 4 in [0,1]. We do so by taking advantage of the fact that the Fork-Join quene is
easy to analyze for § =0 and # = 1. In particular we note that,

(1): 3 = 0: In this case the two queunes are decoupled from each other since the arrival

stream is deterministic, and using (6.31), we can write
1 ""(") ‘72#2 n '
hm(;l—)\)' (A)=n !(T) (2——) n=12...(8.1)

“)n

(2): 8= 4: In this case gp = ¢ and according to (7.32),

hm(;z MN'T(n)(A) =T(n+ = )\/,(4 P n=12...(8.2)
(3): B = 1: In this case ¢ = 0 and the system bchaves like a GI/D/1 queue so that
hm(,u — T k(X)) = nl(—— u,u ——)" n =12 (8:8)

Observing the structure of (8.1)~(8.3), we may venture to write down the following

expression for the heavy traffic limit for a general value of 3.
o’ + o; "
lim(p — NT™() = Ma(8) [ - u*] , 0<8<1, n=12...(84)

where forn =1,2...,

Ma(0) = nl(2 — =) (8.54)
1 - R I O 1 o
Ma(1) = n! (8.5¢)
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In the absence of any further information we may use a quadratic approximation for

M,(3),0 < 5 < 1. This leads to the following formula.
S
4T (n + 5)\/?(—{—3)"’P,, —nl(7T— ,)—3"-)] /3

1 8 % al3 a2 +af 1"
- [211!(3 — 27) — 4 (n + 5)\/—;(—2—) P,,] %) [—-2—0—;&‘]

0<p<1, n=1,2...(8.6)

Lim(p — /\)"—T-(n)(,\) = (nl(2 - -1—) +
Alp n

f gd st

We combine the heavx traffic limit (8.6) with light traffic limits in [29] to obtain interpo-
Jeavx tral L

lation approximations for all values of the traffic intensity.
APPENDIX A
We first give a definition of convex—increasing and strong stochastic orderings for

continuous time stochastic processes.

Definition Al.Let X and Y be two real-valued RVs. The RV X is said to be smaller

than the RV Y in the sense of strong stochastic ordering iof
Ef(X) < Ef(Y)

for all non—decreasing funciions f: IR — IR. This 1s denotfed as X <o Y.
The RV X is smaller than the RV Y in the sense of convex increasing stochastic
ordering if

Ef(X) < Ef(Y)

for all convex non—decreasing functions f: IR — IR. This is denoted as X <;.. Y.
Let the symbol < denote one of the stochastic orderings <g or <jcz. Let X ={Xi.t >
0} and ¥ = {Yi,t > 0} be two real-valued stochastic processes. The process X is smaller

than Y with respect to <, denoted as X <Y, of

Xy = }/.t, t > 0.
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We now introduce the concept of associated stochastic processes.

Definition A2. The real-valued RVs {X',... . X®}, are associated if and only if, the
inequality

E[f(X)(X)] = E[f(X)ERX)]

holds for all pairs of monotone non-decreasing mappings f.h : IRY - IR for which these
cxpectations ezxist.
The real-valued stochastic processes X* = {XF,t > 0},1 < k < K, are associated if

and only if. for allt >0, the RVs {X]},..., X[} are associated.

Definition A3 The stochastic processes X = {Xf,t > 0hL1 €k <K, are said to form
independent versions of the stochastic processes X = {Xf, 1 >0}, 1 <k < K, if

(i) : For allt =20, the RVs {:\—'::,. i ,—;—\;:\'} are mutually independent, and
(12): For every 1 < k < K and t > 0, the RVs XF and X:: have the same probability

distribution.

The following result [BarPr] is an immediate consequence of this definition.

Lemma A1l. If the stochastic processes X = {XF,t > 0},1 < k € K, are associated, then

the wmequality

L —k
max ,X," <s¢ max X, t>20
1<k<K 1<h<K

holds true.
The following lemma [5] is very useful.

Lemma A2.
(i) : Independent RVs are elways associaled.
(ii) : The union of independent collections of associated RV forms a set of associaied
RVs.
(iii) : Any subset of a family of associated RV forms a set of associated RVs.

(iv) : A monotone non-decreasing function of associated RVs generates a set of associated

RVs.
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