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ABSTRACT

Acyclic fork—join networks constitute a class of queueing models that exhibit synchro-
nization delays in addition to queueing delays in their behavior. They are important
the analysis of multi—processor systems serving jobs with precedence constraints among
tasks. Our objective is to obtain approximations for the average response time in these
networks. We first obtain the heavy traffic diffusion limit for the queue delay processes.
However this limiting diffusion has a complicated form and it is difficult to obtain its sta-
tionary distribution. Basing ourselves on the class of approximations that were given for
the special case of parallel fork—join queues [24], we propose a family of approximations
for acyclic fork—join networks. These approximations are validated by applying them to a

particular acyclic fork—join network, and good agreement with simulations is observed.
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1. Introduction

Fork-join systems arise as models for parallel processing systems. For example, con-
sider a parallel processing system with K processors which is subject to an arrival stream
of jobs consisting of multiple tasks (Fig 1). These tasks have precedence constraints among
themselves, which is represented by the directed edges of an acyclic graph. There are two
kinds of nodes that characterize such a graph, i.e., fork nodes and join nodes. A fork node
has more that one arrow emanating out of it and colrresponds to the fact that multiple
tasks may commence execution, once the fork-node task has finished execution. A join
node has more that one arrow incident upon it, which corresponds to the fact that the
join node task may not begin execution until certain tasks in the job have finished their
execution. A fundamental problem in the performance evaluation of parallel processing
systems is to obtain the execution time statistics of such jobs in the system.

If we assume that the number of processors is equal to the number of tasks. all
the jobs have the same task graph and all inter—processor communication delays can be
ignored, then the system can be modeled by an acyclic fork—join queuecing network [2]
(Fig 2). (Recently a model also has been proposed that also mcorporates communication
delays [26]). The problem of interest is to obtain the statistics of the response time of
a customer in these networks. In general this is a very difficult problem, because the
presence of synchronization delays (in addition to queueing delays) destroys the product
form property which characterizes Jackson networks.

In this paper our objective is to obtain approximations for homogeneous, acyclic fork-
join networks. In Section 2 we demonstrate the convergence to a diffusion process for the
various quencing delays in the network, so that the problem of obtaining heavy traffic lim-
its is converted to the problem of obtaining the stationary distribution for this diffusion.
However, the limiting diffusion has an extremely complicated form and it seems difficnlt
to obtain its stationary distribution. Hence, basing ourselves on the experience gained in
analyzing parallel fork—join systems [24] we propose some heuristic approximations for ho-

mogenecous networks. These approximations agree extremely well with simulation results.

2. Heavy traffic limit for acyclic fork—join networks
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2.1 The model

Baccelli, Massey and Towsley [2] extended the notion of a single stage fork—join queue
to acyclic fork-join networks. The single stage fork—join queue analyzed in Section 2.2 is
a special case of these networks. To see the motivation for introducing these more general
networks, the reader may consult the survey paper [3]. We now introduce the notation
and definitions associated with this network, most of which is borrowed from [3].

The acyclic fork-join network under consideration is represented by an acyelic graph
G = (V. E) where V is a set of B FIFO queues labeled : = 1,..., B and F is a set of links
such that (7,7) in E implies 7 > 7. Also add for the sake of convenience fictitious queues
0 and B + 1, which act respectively as source and sink for the network.

For 1 <i < B, we define the set of immediate predecessors p(i) of queue 7 as the set

of queues that have direct link to queue 7, i.e.,

p(i)={j€(1,...,B)| (J,?) € E} (2.1)

and the set of immediate successors s(z) of queue ¢, as the set of queues to which 7 has a
direct link, i.e.,

s(i)={7€(1,...,B)|(:,7) € E}. (2.2)
We also denote as s(0), the set of queues with no incoming links and as p(B + 1), the set
of queues with no outgoing links. It will be assumed that the numbering of the queues is
such that

$(0) = {1;.::38'};, B'<B
and

B+ 1) ={8Y...;B}); B"LBEB.

We now describe the operation of the network. We assume that customers are being
created at the source which acts as the outside world for the network. These exogenous
customers enter the network through the queues in s{0) and traverse it upon following
certain synchronization rules (SR;) — (SR3) described below. Finally customers leave
the network from the queues in p(B + 1) by being absorbed into the network sink and

disappearing. We now specify the synchronization rules that govern the network.
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(SR;): The exogenous customers created at the source are routed instantaneously to the
queues in s(0) under the constraint of a Fork primitive, i.e.. the n'" arrival date
to each one of the queues in s(0) coincides with the n'* date of customer creation.
An alternate way of viewing this constraint is to assume that upon its creation, a
customer creates B' replicas of itself which are then dispatched at the same time
and instantaneously to the queues in s(0), one replica per queue.

(SR;): A service completion in some queue ¢ in s(0) will not systematically trigger an
arrival to a queue in s(¢). In fact, more generally, the arrivals to queue j, with
B' < j < B, are generated as follows: Assume the sequence of service completions
to be known for all queues i, with 1 <7 < jand B' < j < B. The n'? arrival date

k service completions

to queue j coincides with the latest date among all the n'
at the queues in p(7). Due to the acyclic structure of (V, E'), this mechanism will
successively define the arrival patterns to queunes B’ +1,B' +2,...,B.

(SR3): Customers leave the network through the queues n p(B + 1) in the form of a
single ontput stream by imposing the following synchronization of the join type:

The n" network departure is defined as the latest date among the dates of nth

service completions in the queues B",B" +1,...,B.

2.2 Recursive representation of the delays

In this section a recursive representation for the delays in the network is provided.
The material of this section is borrowed from [3].

Given an acyclic graph G = (V, E), the performance mecasures associated with the
corresponding network are fully specified by B + 1 sequences of IR -valued RVs with the
interpretation that for all n =0,1...,and 1 < 75 By

7 ¢ Arrival epoch of the n** customer into the network.

vl : Service time requirement of the nt* customer to be served in queue j.

We assume the system to be initially empty and adopt the convention that the 0™
exogenous customer is created at time ¢ = 0, so that 7o = 0. In terms of these RVs we
define the following quantities for all n = 0,1... andalll <j < B,

i, : Inter-arrival time between the (n + 1)™*" and n'" exogenous customers (= Tn41 —
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Tn):
D! : Delay between the arrival of the n** exogenous customer in the network and the
beginning of the n® service in queue j.
WJ : Waiting time of the n® exogenous customer in the buffer of queue j.
T, : End-to-end delay or network response time of the n'" exogenous customer.
The following recursion between these variables was established by Baccelli. Massey

and Towsley [2].

Lemma 2.1. Consider the acyclic fork-join network defined above. If the system is initially

empty, then for 1 < j < B, the recursions

D! = max {D! +vi
il iEp(j){ 0 o)

D, = max{;élza(ux){Df,+, +vi 1} D+ vk —upa} n=0,1...(23)
1e=pls

and
Wi =0
I'V,{H = max{0, W',{ + max {D;z -+ t»:l} — max {Df,_H RS U::-&-l} 4 v{, — Up41},
ep(f) €p(J)

w=0:;1:::(2:4)
hold where the mazimum over an empty set is zero by convention. Moreover the network

k

response time of the n'™™ customer is given by

T. = mz Dt + i), n=0,1...(2.5
" ie;}g;;_;”{ aTan (2.5)

Proof. Since the system is initially empty, the boundary conditions (4.3)—(4.4) are imme-
diate from the synchronization rules (SRy)—~(SRz). Customers arriving to queue j in (0}
do so according to the pattern of exogenous arrivals, so that DJ corresponds to the n'"
waiting time in a FIFO queue generated by the sequences of interarrivals {ttny1}§° and
service requirements {v2}§°,1 < j < B'. Writing the corresponding Lindley equation, we
get

D!, =max{0,D} + v} —unpa}, 1<;<B n=0,1...(2.6)
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and this reduces to (2.3), since p(j) = @ for 7 in s(0).

For B' < j < B,wefixn =0,1.... The (n+41)"* service completion at queue 7 in p(j)
takes place at time 741 +D% 4, +oi +1, 50 that by applying the synchronization rule (SR ),
we see that the (n 4 1)™¢ arrival to queue j takes place at time Tn41 +maXiep(j){ Dht1 +
v} 41}~ Since the server at queue j becomes available for service at time 7, + DI + vl we
readily obtain (2.3).

In order to derive (2.4) we just have to note the relations

W) = D! — max{D} +vs}, 1<j<B. n=0.1...
i€p(s)

We now state a result regarding the stability of these networks. First we make the as-
sumption (Ie) where
(Ia): The sequences {un41}5° and {v3}5°,7 = 1,..., B, are iid with finite second mo-
ments and mutually independent.

Forn=0,1..., we set
uw= IF(up41) < 00, ag = Var(tns)) < oo
and

v = E(vfl) < 00, G? = VCU‘(’U{,) <00, VEI=B

Again, as for the simple fork—join queue, we consider the system to be stable if the
veetor of delays {(D1,...,DE)}&° converges jointly in distribution as n T 0c to a proper
random vector (D?,...,DP). The stability conditions for this system were given in [2],

and are reproduced below.

Lemma 2.2. Assume that condition (Ie) holds. The system is stable iff

2.3 The diffusion limit



In the last section we saw that the acyclic fork—join network will be stable provided
v/ < u,1 < j < B. The system is said to be in heavy traffic if v/ & u for at least one of the
queues. In this section our objective is to develop heavy traffic diffusion limits for the delay
processes in these networks. The methodology that we employ is the same as the one used
in [10]. In short we shall use the recursions (2.3)-(2.4) to connect the delay processes to
partial sums of iid RVs and then use well-known functional central limit theorems for these
partial sums in order to deduce the corresponding limit theorems for the delay processes
by means of the continuous mapping theorem.

We now consider a sequence of these networks indexed by r = 1,2.. ., each of which
satisfies condition (Ia). Moreover assume that

(Ib): Asr T oo,
C’j(?‘)—?dj, 0S]<B

[u(r) = (P)VTr —¢j. 1<j<B

(Ic): For some e > 0,
sup {B{| ui(r) ¥}, E{] v{(r) )} < o0
g

For1 <j < B andr=1,2..., define the partial sums

V()j(r) = 07
Vi) = vd(r) + ... +vi_y(r), s, B (98)
and
UO(T) = 0?
Un(r) = uy(7) + . . - + un(r). n=12...(2.8b)

For r = 1,2..., define the stochastic processes £/(r) = {§f(r),t > 0},0 €7 < B, with

sample paths in D[0,cc) by

& (r) = U{"}(T)\;;(r)[rt], t>0 (2.9a)

and
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W) =)

g(r)= 7 , 1<j<B, t=>0. (2.95)

Let &8 = {¢,t > 0},0 < j < B, be B + 1 independent Wiener processes. Lemma
2.4.3 shows that the stochastic processes defined in (2.9) converge weakly to these Wiener

processes.

Lemma 2.3 Asr T oo,

(L) s £2(r)) = loatioib s ,out?) (2.10)
in D[0, 00)B 1.
Proof. Equation (2.10) follows directly by Prohorov’s functional central limit theorem for
triangular arrays [16] under assumptions (Ia)-(Ic). |
Forr=1,2..., we set
S3(r) =0
SI(r) = V2(r) = Un(r), n=12...(2.11)

and define the stochastic processes (/(r) = {C,’ (r),t > 0},1 < j < B, with sample paths
in D[0,00) by

”
"‘1( ) 1<5 < B, 430 (2.12)

¢(r) = e <j<
We also define the stochastic processes (7 = {(},t > 0},1<j < B, by
¢l =0l —0pt? —cit, 1<j<B;, t=20. (2.13)

The process ((},...,(*) is a K-dimensional diffusion process with drift vector ¢ and
covariance matrix R given by

¢c=(—C1y-5:5—CK)

and
af + g ag . 0'92)
ol o2 +of ... ol
R= g
A o .. ok}



The next result shows that the stochastic process (¢(r),...,(P(r)) converges
weakly to (¢?,...,¢P).

Lemma 2.4 Asr T oo,

()=o) = (€15--567) (2-14)
in D[0,00)B.
Proof. Fixr > 1 and t > 0. For all 1 < k < K, we see from (2.11) that

e V[’r‘q('r) = U[rt]
B VT

_ V[fq (r) — v*(r)[rt] B U[';"t](r) — u(r)[rt]  [rtllu(r) - o*(r)]
vr va Vr

= &) - £00) — () - IV

Ce(r)

From assumption (Ib) it is clear that as r T oo,
1 ;
[%—]'[u(r) — ¥ —at, 1<k<K

and we conclude to (2.14) by invoking Lemma 2.1 and the continuous mapping theorem

[4, Theorem 5.1]. i

For r = 1,2. .., we define the stochastic processes n?(r) = {n{(r),t >0} and pi(r) =
{/:,(1) t > 0},1 < j < B, with sample paths in D[0, o), by setting

D}y (r)

ni(r) = s LEFEB. 20 (2.15)
and
rq(7)
() = —%%-‘ <j<B, tz0. (2.16)

The processes 77 = {ud,t > 0},1 < j < B, and g/ = {n!,t > 0},1 < j < B, are now
defined by

7 =g(¢ — max 7 Y+ maxn', 1<j<B (2.17)
ep(1) i€p(7)

and



w=g(¢’ - g%n) 1<j<B. (2.18)

In contrast with the situation for single stage fork—join queues, we note that the limiting

processes (2.17)~(2.18) for acyclic fork—join networks are much more complicated.

Theorem 2.1 As r T oo,

('(r),--- 0P () = (0" --5n") (2.19)
in D[0,00)5.

Before providing a proof for Theorem 2.1, we present the following two corollaries
which identify the diffusion limit for the waiting times and the end-to-end delay of the

system respectively.

Corollary 2.1. Asr T oo,
(B )y 1 B()) = (W 1P) (2.20)

in D[0,00)B

Proof. Note that for all r = 1,2. .,

Wi(r) = Di(r) — rnd,\{D (r)+oi(r)}, 1<j<B n=01...

so that for all r =1,2.. .,

: : )l -
A (r) = 2 (r) — max {ni(r) + o gseB. 130 (2.21
ui(r) = ni(r) se,I},-){ 1(r) s } J | )

We obtain (2.20) from (2.19) and (2.21) by applying the continuous mapping theorem and

the converging together theorem [4, Theorem 4.1].

g
For r = 1,2..., we introduce the stochastic processes &(r) = {k((r),t = 0} with
sample paths in D[0, 00) by
T -t (7')
POV A oS (2.22)



Corollary 2.2 As r T oo,

Kr) = se?(lg“inni @28
in D[0, o).
Proof. Using the fact that for all r =1,2...

i vfrfl
re(r) = max {n(r) +

i€p(B+1) T

b, =20 (2.24)
we obtain (2.23) from (2.19) and (2.24) by applying the continuous mapping theorem and

the converging together theorem. |

We now proceed with the proof for Theorem 2.1. For 1 <1 < B, we define the level
I(z) of queune ¢ by

I(i) = max I(j) +1 (2.15)
1€p(i)

where by definition I(z) = 1 if p(:) = 0. The level N of the graph is defined by N :=
max;cy {(2)-
We denote the set of queues on level 1 as ¢(1),1 < 1 €< N and assume that the

cardinality of ¢(1) is B;. The gueues are numbered in such a way that

a(1) = {1,..., B1)
q(2) = {B] +],...,B| + Bg},

g(NYy={B1+...+ By-1+1,...,B}
Note that the sets ¢(1) and ¢(N) have already been defined earlier as s(0) and p(B + 1)
respectively, with B' = By and B" = By 4 ...+ Bn-1 +1

Proof. Our proof proceeds by induction on the levels of the acyclic graph which underlies

the queneing network. First consider the queues belonging to the set ¢(1), i.e.,queues j
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such that {(j) = 1. Recall that for these queues p(j) = @, so that for r = 1,2... we have

that
D} y4(r) = max{0, DJ(r) + vi(r) — unsa(r))
s in _§ et
na(r) = 051132514 «(r)
so that
’7‘(")—9(( ( ))'-? tZOS j=1,'°'7Bl7 (2.27)

upon taking note of (2.13) and (2.15). From (2.27) and (2.14) it follows that
R Co MRl € W € T {5V I O o SN <.l (2.28)

as 1 T oo, so that (2.21) is verified for the queues belonging to the set ¢(1).

As the induction hypothesis, assume that
(@) wesn ), )y () = (P Pt B (B) (229)

as r T oo, which implies that (2.21) holds for the queues belonging to the first 7 levels.
Using (2.29) we shall prove that (2.21) holds for queues belonging to the first 7 + 1 levels,
thus completing the induction step.

Consider queue j such that I(7) = I + 1. Expanding the recursion in Lemma 2.1 for

r=12.5n=0;1:..and § =Bi+1,...;B41, we.obtain
n+1(’) - 1‘?3’\ {D} +1(7 )+’«n+1(")}

+ max{0, DJ(r) = max {Diyys(r) + vhys ()} +vA(r) — (1)),

= max {Dn+1(") -+ ”n+1(’ )} + Sn+1(') - ,-lélpa(‘i%{D:H“l(’.) + ‘05:4-1(")}

tEp(y)
o e 3 (oY =i TDE i 2.30
Usggll“{sk(r) ggl;(n}){ x(r) +vp(r)}} (2.30)

Note that by (2.30), we have for j = B; + 1,...,Bi41 and t > 0,

7 (r)

12



v} vi
. i [r] j i {r]
= max o\ @ — max I Ly ¥ 2.31
mmeiny(r) \/;} g (C )~ main ) tog }): (2.31)
From (2.29), (2.31), the continuous mapping theorem and the converging together

theorem, we conclude that as r T oo,

(@ (r)ye ey B B(r), (1), CB()) = (0P B L () (232)

-

as r T 0o, which completes the induction step.

3. An heuristic formula for the heavy traffic limit

In the last section we obtained a heavy traffic diffusion limits for the delay processes
in an acyclic fork—join network. In order to obtain heavy traffic approximations, we now
have to solve for the stationary distribution of this diffusion [23]. This seems to he a
very difficult task due to the complicated nature of the diffusion. In another paper [24]
we obtained approximations for the average response time for the special case of parallel
fork—join queues. These approximations were based on the following formula for the heavy
traffic limit that was proposed in [24]. Consider a K—dimensional parallel fork-join quene
subject to an arrival process with variance of and rate A and a service process with variance
o? and rate g. Then the heavy traffic limit for the average response time Tr(N) is given
by

Bmf e — AT g (A)
Alu

'*‘O'g 2

2
= [Hx +(4Vk —3Hk — 1)+ 2(1 + Hx — 2Vi)5’] a—o—ll w DR,

<

where

Equation (3.1) was validated by extensive simulations in [24] and was shown to give ex-

tremely good results. It was obtained by using the following line of heuristic reasoning:
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Note that the parameter § always lies between 0 and 1. The heavy traffic limit is easy
to obtain in the cases f = 0 (deterministic arrivals) and § = 1 (deterministic services).
The heavy traffic limit for the case f = % is obtained by postulating the following equality
between the heavy traffic limit and light traffic derivative, for the case when the arrivals

are Poisson and services are exponential,

#T (0) = lim(p — NT(V). (3.3)

Having obtained the heavy traffic limit for § = 0,-;— and 1, we carried out a quadratic
interpolation in @4, for 8 € [0, 1] to finally arrive at (3.1).

We plan to carry out a similar program in order to obtain a formula for the heavy traffic
limit for homogeneous acyclic fork—join networks. Hence we start with the hypothesis that
the heavy traffic limit for homogeneous acyclic fork—join networks is given by

—_— 41 OF + of
lim(u — NT(A) = [A+ BB+ CF] ——u*, 0<p<1 (3.4)
where the values of the constants A, B and C depend upon the topology of the network.
However, unlike in the case of parallel fork—join queues, exact heavy traffic limits arc
unavailable even for the cases 3 = 0 or 1. Hence we will have to rely exclusively on (3.3)
to obtain the heavy traffic limits with the help of the light traffic derivative.

The light traffic derivative can be obtained by simulating the system near A = 0. As
pointed out earlier, in [24] we assumed that (3.3) was valid only for Poisson arrivals and
exponential services. However note that for the case of a single server quene, it holds for
Poisson arrivals and general service distributions, since

14 p?o?
9 e

(f*T(0) = lim(p — AT(N) = (3.5)
"

Moreover, in [24] we made the observation that (3.3) was satisfied for parallel fork-join

queues subject to Poisson arrivals, whose service times had coefficient of variation less than

one. When the coefficient of variation exceeded one (as in the case of hyper—exponential

services)., then (3.3) was no longer true. However, for the particular fork—join network that
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we chose to analyze in this paper, it was observed that (3.3) continues to hold even when
coefficient of variation of the service time exceeds one. The following conclusions may be
drawn from this:

(a): Equation (3.3) is satisfied for acyclic fork—join networks subject to Poisson ar-
rivals, whose service times have coefficient of variation less than one.

(b): Equation (3.3) may not satisfied in case the coefficient of variation of the service
times exceeds one (with the arrivals still being Poisson). However, this varies
according to the topology of the network, and there arc certain networks for
which (3.3) holds even for general service times.

We shall illustrate these ideas by considering the example of the homogeneous fork—
join network depicted in Fig 2. Our plan is to obtain the heavy traffic limits at § = 0, ;
and 1, and then combine them in the manner discussed above, in order to obtain a heavy
traffic formula for B € [0,1].

(1): The case 3 = }. Assume that the arrivals into the system constitute a Poisson
stream with rate A, while the service time distribution at each queue is exponential
with rate g, so that 8 = -;- Based on our experience with the parallel fork-join
queue, we would expect that the light traffic limits for the average response time

T()) are given by

T(0) = 2 (3.6)
7

=y D

T (0) = 3 (3.7)

where ' and D are constants. The heavy traffic limit can be obtained with the
help of (3.3), so that
lim(pe — M)T(N) = D (3.8)
Aln

The only task left is to identify the value of the constants C and D. Even though
it is possible to calculate them using the light traffic theory, the calculations are
quite tedious for most networks. A more viable method would be automate the

caleulations using some symbolic computation tool such as MACSYMA. However,
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(2):

this is a subject for future research and here we only give a simulation based
technique for obtaining C' and D). The main idea in this technique is to simulate
the system with g = 1, and use the simulation output for obtaining C' and D.
For e.g., for the network in Fig 2, for the case when the services are exponential

with rate p = 1, we found that the average response time T()) satisfies
T(0.0005) = 5.05 and 7(0.01) = 5.10

so that
C =500and D =4.35

Hence it follows that

lim(p — A)T()\) = 4.35 (3.9)
Alu
If we Substitute 3 = ;— and 02 = ga = # into (3.5), we obtain
l/\i;n(p — MT(X) = A+ 0.5B +0.25C (3.10)
"

Hence, by (3.9) and (3.10) it follows that
A+0.5B + 0.25C = 4.35, (3.11)

We now validate (3.9) by comparing its predictions with simulation data. Com-
bining (3.6), (3.7) and (3.8) we obtain the following approximation for the average

response time for the case of Poisson arrivals and exponential services.

. A .
T(A) = [5.06 - 0.71———] : (3.12)
o= A

This approximation is compared with simulations in Section 3.1 and as the reader
may note, the agreement is quite good.

The case 3 = 1. Consider a fork—join queue with Poisson arrivals and determin-
istic services (so that 8 = 1). Carrying out the procedure exactly as for # = i.

it can be shown that

]:\i%n(/i = A)T()) = 0.563 (3.13)
"
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(3):

If we substitute 3 = 1,0 = 0 and of = ,‘% into (3.5), we obtain

: = A+ B
lim(p — A)T(X) = —+—+C (3.14)
AT 2
Combining (3.13) and (3.14), we conclude that
A+B+C=126 (3.13)

Equation (3.13) can be validated by comparing the interpolation approximation,

. ! 1
T(A) = [4 - 3.41’7] PP (3.14)
for the case of Poisson arrivals and deterministic services with simulation. This
approximation also compare extremely well with simulation results as shown in
Section 3.1.

The case 5 = 0. Note that # = 0 corresponds to deterministic arrivals, so that
(3.3) is no longer valid. However if we retain the assumption of Poisson arrivals,
but choose a service time with large variance, then g = 0. To that end, assume
that the arrivals are Poisson and that the service times possess the following

hyper-exponential density function
fs(z) = prpae ™™ + prpae ™2, = = 0. (3.17)

Assume that the condition

1
BB o (3.18)
pHr pp 2
is satisfied. Then note that
, 1 1
ES=1and ES?= — 4 — (3.19)
1 M2
so that the square of the coefficient of variation, c% is given by
)
c%:i I W I (3.20)
’ H1o f2 i1 2



We shall choose p; = 0.005,p; = 0.995, 43 = 0.01 and w2 = 1.99, so that ¢? =
100.51 and # = 0.0098. Once again, carrying out the calculations as in (1), we

obtain

lim( — \T()) = 347.05. (3.21)
G

If we substitute 8 = 0,02 = 1 and u = 1 into (3.5), we obtain

A 2 2
lim(p — A)T(A\) = Algg +67) (3.22
Alu 2
Combining (3.21) and (3.22), we conclude that
A=684 (3.23)

Equation (3.21) can be validated by comparing the interpolation approximation,

1

i 2
ey (3.24)

. A
T(A) = [6.14 + 340.91 —]
T
for the case of Poisson arrivals and hyper-exponential services with simulation.
This approximation also compare extremely well with simulation results as shown
in Section 3.1.

Combining (3.11), (3.15) and (3.23), we come to the conclusion that
A=684, B=-438 and C=-12

so that (3.5) takes the form

2 2
"—“ztﬂ,ﬂ, 0<g<1 (3.25)

lim(p — A\)T(A) = [6.84 — 4.383 — 1.2§°]
AMp

for the acyclic fork—join network under consideration.

In the remainder of this paper we validate (3.25) by using to obtain approximations

for the following two cases:

18



(i): Consider the fork—join network subject to Poisson arrivals and Erlang-2 service

(ii)

distributions. For this case we have § = 2,0% = 5-,17; and 0f = ;117 Substituting

these values mto (3.25), we obtain

lim(p — A)T(\) = 2.54 (3.26)
Aln :

Combining this heavy traffic limit with the light traffic imit T(0) (which is ob-

tained by simulating the system), we obtain the approximation

F(A) = [4.76 . 2.223] = . (3.27)
plop—A

This approximation is compared with simulation in Section 3.1 and good agree-
ment is observed.
Consider the fork—join network subject to Poisson arrivals and hyper-exponential
service distribution with p; = 0.05,p2 = 0.95, ¢y = 0.1 and g2 = 1.9. For this
case we have # = 0.095,06% = 9.526 and o2 = 1. Substituting these values into
(3.25), we obtain

!\i.}n(;t = A)YT(A) = 88.75 (3.28)
7

Combining this heavy traffic limit with the light traffic limit T(0} (which is ob-

tained by simulating the system), we obtain the approximation

. A
- 2—. H— RT3 . .2
T(\) [5.s+ (90#] — (3.29)

This approximation is compared with simulation in Section 3.1 and good agree-

ment is observed.
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3.1 Simulation results

Approximation (3.12) compared with simulation results (the case of Poisson arrivals and

exponential services).

A T()\) T(\) % Error
0.1 5.56 + 0.018 5.54 0.28
0.2 6.19+0.026 | 6.141 0.73
0.3 7.02+£0.039 | 6.926 1.38
0.4 8.11 4 0.058 7.96- 1.91
0.5 9.63 + 0.090 9.41 2.31
0.6 | 11.9240.152 | 11.59 9:87
0.7 | 157340285 | 15.21 3.33
0.8 | 23.7140.215 | 2246 5.29
0.9 46.934+0.76 | 44.21 5.80

Approximation (3.16) compared with simulation results (the case of Poisson arrivals and

deterministic services).

>

A T()) (A) % Error
0.1 5.06 £ 0.010 5.04 0.28
0.2 5.44 4 0.017 5.40 0.66
0.3 5.93 4 0.024 5.87 1.01
0.4 6.57 & 0.034 6.48 1.35
0.5 7.47 4 0.054 7.34 1.74
0.6 8.84 4 0.093 8.63 2.37
0.7 11.194+0.189 10.78 3.66
0.8 15.89 4 0.123 15.09 5.03
0.9 30.13 & 0.496 28.00 7.06

Approximation (3.24) compared with simulation results (the case of Poisson arrivals and

hyper—-exponential services).

A T(A) T()\) % Error

0.1 45.82 + 0.98 44.70 2.44
0.2 99.45 -+ 2.44 92.90 6.58
0.3 170.58 =+ 4.62 154.87 9.21
0.4 266.26 + 7.48 237.51 10.79
0.5 398.20 + 11.28 353.19 11.33
0.6 593.77 + 16.04 526.71 11.29
0.7 903.09 4 22.54 815.92 9.65
0.8 | 1480.83+32.96 | 1394.34 5.84
0.9 | 3162.33+57.88 | 3120.59 1.03




Approximation (3.27) compared with simulation results (the case of Poisson arrivals and

Erlang-2 services).

A T(A\) T()\) % Error
0.1 5.06 & 0.010 5.04 0.39
0.2 5.44 4+ 0.017 5.39 0.92
0.3 5.93 + 0.024 5.85 1.34
0.4 6.57 + 0.034 6.45 1.83
0.5 7.47 4+ 0.054 7.30, 220
0.6 8.84 4 0.093 8.57 3.05
0.7 11.19 £ 0.189 10.69 4 .47
0.8 15.80 4+ 0.123 14.92 6.10
0.9 30.13 £+ 0.496 27.62 8.33

Approximation (3.29) compared with simulation results (the case of Poisson arrivals and

hyper—exponential services).

A T()\) T(A) % Error

0.1 9.90 + 0.044 9.55 3.53
0.2 | 15284 0.088 14.24 6.80
0.3 | 22.39+0.156 20.26 9.51
0.4 | 31.90+0.155 28.30 11.28
0.5 | 45.16411.28 39.55 12.42
0.6 | 64.6740.428 56.42 12.75
0.7 | 96.4240.733 84.55 12.31
0.8 | 157.76+2.85 | 140.80 10.75
0.9 | 334.76+3.16 | 309.55 7.53
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Fig. 2. An cxamplc of an acyclic fork-join network



