
JOIM
www.joim.com

Journal Of Investment Management, Vol. 18, No. 2, (2020), pp. 37–56

© JOIM 2020

DYNAMIC GOALS-BASED WEALTH MANAGEMENT
USING REINFORCEMENT LEARNING

Sanjiv R. Dasa and Subir Varmaa

We present a reinforcement learning (RL) algorithm to solve for a dynamically optimal
goal-based portfolio. The solution converges to that obtained from dynamic programming.
Our approach is model-free and generates a solution that is based on forward simulation,
whereas dynamic programming depends on backward recursion. This paper presents a
brief overview of the various types of RL. Our example application illustrates how RL may
be applied to problems with path-dependency and very large state spaces, which are often
encountered in finance.

1 Introduction

Reinforcement learning (RL) has seen a resur-
gence of interest as the methodology has been
combined with deep learning neural networks.
Advances in hardware and software have enabled
RL in achieving newsworthy successes, such as
learning to surpass human-level performance in
video games (Mnih et al., 2013) and beating
the world Go champion (Silver et al., 2017).
RL algorithms are particularly good at learning
from experience and at optimizing the “explore–
exploit” tradeoff inherent in dynamic optimiza-
tion problems. This is why they can be fine-tuned
to play dynamic games with superhuman levels
of performance. The capacity of RL algorithms to
learn from repeated trial episodes of games can be

aSanta Clara University

accelerated to a degree mankind cannot replicate.
It is just not possible for anyone to play a million
games over a weekend, whereas a machine can.

The dynamic optimization of portfolio wealth
over long horizons is similar to optimal game
play. Portfolio managers choose actions—that is,
asset allocations, and hope to respond to market
movements in an optimal manner with a view to
maximizing long-run expected rewards. In this
paper, we show how RL may be employed to
solve a particular class of portfolio “game” known
as goals-based wealth management (GBWM).
GBWM has recently gained widespread accep-
tance by practitioners and the use of RL will
inform the growth in this paradigm.

Since the seminal work of Markowitz (1952),
there has been a vast literature on portfolio

Second Quarter 2020 37

Not for Distribution

38 Sanjiv R. Das and Subir Varma

optimization, broadly defined as allocating
money to a collection of assets (portfolio) with
an optimal tradeoff between risk and return. In
practice, return is defined as the weighted aver-
age mean return of the portfolio and risk is
usually the standard deviation of this weighted
return. Markowitz’s early work detailed a static
(one-period) optimization problem that forms the
kernel for many dynamic optimization problems,
where a statically optimal portfolio is chosen each
period in a multiperiod model in order to maxi-
mize a reward function at horizon T . The reward
function may be (1) based on a utility function,
or (2) on whether the final value of the portfo-
lio exceeds a desired threshold. The latter type
of reward function underlies the broad class of
goals-based wealth management (GBWM) mod-
els, see Chhabra (2005), Brunel (2015), and Das
et al. (2018).

In GBWM, we seek to maximize the probability
that an investor’s portfolio value W will achieve
a desired level of wealth H—that is, W(T) ≥ H

at the horizon T for the goal. Starting from time
t = 0, with wealth W(0), every year, we will
choose a portfolio that has a specific mean return
(μ) and risk (denoted by the standard deviation
of return σ) from a set of acceptable portfolios, so
as to maximize the chance of reaching or exceed-
ing threshold H . We may think of this as playing
a video game where we see the portfolio move
in random fashion, but we can modulate the ran-
domness by choosing a (μ, σ) pair at every move
in time. This game may be solved in two ways:
(i) At time T , we consider all possible values of
wealth W(T) and assign high values to the out-
comes where we exceed threshold H and low
values to outcomes below H . We then work back-
wards from all these possible values of wealth
to possible preceding values and work out which
move (μ, σ) offers the highest possible expected
outcome. This approach is widely used and is
classic dynamic programming, see Das et al.

(2019). It is known in the reinforcement learning
(RL) literature as solving the “planning prob-
lem.” We provide formal details on this briefly
in Section 5.

Dynamic programming (DP) via backward recur-
sion is oftentimes hard to implement because
backward recursion is computationally costly,
usually because (1) the number of states in the
game is too large, or (2) the transition proba-
bilities from one state to another are unknown
and need to be estimated. Instead, we may resort
to forward propagation game simulations, and
improve our game actions by playing repeated
games and learning from this play as to which
actions are optimal for each state of the game we
may be in. This approach, known as RL, has also
been widely studied, see for example, Sutton and
Barto (1998).1 The video game analogy for RL
has become popular since Mnih et al. (2013) used
the approach to beat human-level performance at
playing the Atari video game and many more. In
this paper, we survey the various kinds of RL and
show how we may solve a multiperiod retirement
portfolio problem—that is, optimize GBWM.

This paper proceeds as follows. In Section 2 we
review static mean–variance optimization and set
up the dynamic multiperiod goal-based optimiza-
tion problem as an example of game playing
that may be solved using RL. In Section 3,
we review how the set of efficient portfolios
that comprise the action space in the model
is computed, using the mean–variance solution
of Markowitz (1952). Section 4 formulates the
dynamic problem in terms of Markov Decision
Processes (MDPs). Section 5 describes the var-
ious types of DP and RL algorithms that we
may consider. Our taxonomy discusses (i) model-
based versus model-free RL approaches, (ii)
value iteration versus policy iteration as a solu-
tion approach, (iii) on-policy versus off-policy
approaches, and (iv) discrete-state space solutions

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 39

versus continuous-state space solutions that use
deep learning neural nets. Section 6 presents the
specific Q-Learning algorithm we use to solve
the dynamic portfolio problem. This approach
will be model-free, policy iterative, off-policy,
and embedded in a discrete state space. Sec-
tion 7 reports results of illustrative numerical
experiments, and Section 8 offers concluding
discussion.

2 Portfolio optimization: Statics and
dynamics

In this section, we briefly recap static mean–
variance optimization, define GBWM, recast
dynamic portfolio optimization as a game, and
introduce RL as a feasible solution approach.

2.1 Mean–variance optimization

The objective of Modern Portfolio Theory is to
develop a diversified portfolio that minimizes
risk—that is, the variance of portfolio return,
for a specified level of expected (mean) return.
This problem, known as mean–variance port-
folio optimization, takes as input a vector of
mean returns M = [M1, . . . , Mn]T and covari-
ance matrix

∑
of returns of n assets. Once the

investor specifies a required expected return μ for
the portfolio, a set of asset weights w = {wj} =
[w1, . . . , wj, . . . , wn]T, 1 ≤ j ≤ n, is chosen to
minimize portfolio return variance σ2. The port-
folio expected return and standard deviation are
functions of the inputs—that is,

μ =
n∑

j=1

wjMj = wT ·M; σ =
√

wT ·
∑
·w

The asset weights are proportions of the amount
invested in each asset, and these must add up
to 1—that is,

∑n
j=1 wj = wTO = 1, where

O = [1, 1, . . . , 1]T ∈ Rn. Also, the portfolio
must deliver the expected return μ. For every μ,

there is a corresponding optimal σ, obtained by
solving this portfolio problem for optimal weights
vector w. This collection of (μ, σ) pairs is called
the “Efficient Frontier” of portfolios.

An investor’s wealth is statically managed by
choosing the best portfolio from this “efficient
set” at any point in time to dynamically meet
her goals. This is the traditional approach to the
portfolio optimization problem and it proceeds by
choosing the portfolio that minimizes the overall
portfolio risk σ, while achieving a given return
μ. See Das et al. (2018) for the static optimiza-
tion problem and Merton (1969, 1971), for the
dynamic programming solution to the multiperiod
problem in continuous time.

2.2 Goals-based wealth management

Recent practice is leaning towards an alternative
formulation of the portfolio optimization prob-
lem that uses the framework of GBWM. In this
formulation risk is understood as the probability
of the investors not attaining their goals at the
end of a time period, as opposed to the standard
deviation of the portfolios. However, there is a
mathematical mapping from the original mean–
variance problem to the GBWM one, as explained
in Das et al. (2010). Whereas this problem is a
static one, the dynamic version of this GBWM
problem is solved in Das et al. (2019), where DPis
used to solve the long-horizon portfolio problem.

DP has been used to solve multiperiod problems
in finance for several decades. The essence of the
problem may be depicted as follows. At any point
in time t, an investor’s retirement account has a
given level of wealth W(t). The investor is inter-
ested in picking portfolios every year to reach a
target level of wealth H at time T —that is, she
wants that W(T) ≥ H . Of course, this is not guar-
anteed, which means that the goal will only be met
with a certain level of probability. The GBWM
optimization problem is to reach the goal with as

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

40 Sanjiv R. Das and Subir Varma

high a level of probability as possible—that is,
with objective function:

max
w(t), t<T

Pr[W(T) > H]
This entails choosing a portfolio at each t, with
a corresponding level of mean return and risk,
w(t) = (μ, σ)t , where these portfolios are cho-
sen from a select set of “efficient” portfolios,
mentioned in Subsection 2.1 and described in the
following Section 3. (Be careful not to mix up
w ∈ Rn, which is a vector of asset weights, and
W(t), which is a scalar level of wealth at period t.)
Thus, we solve for an optimal “action” w[W(t), t],
a function of the “state” [W(t), t]. Here the state
has two dimensions and the action chooses one of
a collection of possible (μ, σ) pairs, which deter-
mines the range of outcomes of the wealth at the
next period, W(t + 1).

2.3 Dynamic portfolio optimization as a game

If you think of portfolio optimization as a game
with a specific goal (with a corresponding payoff
known as the “reward function”), then DP deliv-
ers a strategy telling the investor what risk–return
pair portfolio to pick in every eventuality that may
be encountered along the path of the portfolio,
such that it maximizes the probability of reaching
and exceeding the pre-specified threshold value
H . The solution approach uses a method known
as “backward recursion” on a grid, which is intu-
itive. Create a grid of wealth values W for all time
periods—that is, [W(t), t] (think of a matrix with
time t on the columns and a range of wealth values
W on the rows). The reward in column T is either
1 (if W(T) ≥ H) or 0 otherwise, signifying the
binary outcome of either meeting the goal or not.
From every wealth grid point at time T−1, we can
compute the probability of reaching all grid points
at time T . We then pick the portfolio—that is, a
(μ, σ) pair, that maximizes the expected reward
values at time T for a single node at time T−1, and
we do this for all nodes at time T −1. Computing

the expected reward assumes that the transition
probabilities from state i at time T −1 to state j at
time T —that is, Pr[Wj(T), T |Wj(T−1), T−1],
are known (we will describe these probabilities
in the next section). We have then found the
optimal action—that is, A = (μ, σ) choice, for
all nodes at T − 1, and we can also calculate
the expected final reward at each of the T − 1
nodes. This expected final reward, determined at
all states [W(T−1), T−1], is known as the “value
function” at each state. Then, proceed to do the
same for all nodes at T − 2, using the rewards
at all nodes at time T − 1. This gives the opti-
mal action and expected terminal reward (value
function) for each node at time T − 2. Keep on
recursing backwards until time t = 0. What we
then have is the full solution to the GBWM prob-
lem at every node on the grid—that is, in one
single backward pass. This is an extremely effi-
cient problem-solving approach and gives the full
solution to the problem in one pass. This problem
setup is called the “planning problem” and the DP
solution approach is easily implemented because
the transition probabilities from one state to the
next are known.

So far, DP via backward recursion has served its
purpose well because the size of the problems
has been small in terms of the number of state
variables and action variables, and the transition
probabilities are known. The computational com-
plexity of the problem depends on the number
of states—that is, the number of grid points we
choose, which is tractable when the state com-
prises just wealth W and time t. Complexity also
depends on the number of possible actions to
choose from as each of these has to be explored.
In the GBWM case, this depends on the num-
ber of choice portfolios we consider. Backward
recursion considers all possible scenarios (states)
that might be encountered in the portfolio opti-
mization game and computes the best action for
each state. It exhaustively enumerates all game

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 41

positions and works well when the number of
cases to be explored is limited. Compare this
approach to building a program to play chess,
where the goal is to solve for the best action
for all possible board configurations, an almost
impossible task even to describe the state space
succinctly.

2.4 Reinforcement learning solutions

When the state and action space becomes large,
and it becomes difficult to undertake exhaustive
enumeration of the solution, then learning from
experience through game playing is often a more
efficient solution approach. In situations where
the model of the environment is unknown—
that is, transition probabilities in the large state
space are not available a priori, then explo-
ration through game playing is required to obtain
an estimate of transition probabilities. Note that
backward recursion is really an attempt to specify
a solution to all possible game scenarios one may
experience, which is a limit case of learning from
limited experience through game playing.

In the portfolio optimization game, a player expe-
riences a level of wealth W at each point in time
and takes an action A = (μ, σ). A series of such
state–action (S,A) pairs in sequence, through to
horizon T , is a single game and results in a reward
of 1 or 0. Clearly, we want to increase the likeli-
hood of playing (S,A)pairs that lead to rewards of
1 and downplay those that lead to 0 rewards. That
is, we “reinforce” good actions. RL is the process
of training our model through repeated play of
portfolio optimization game sequences. We note
that in both DP and RL, actions are a function
of the current state and not preceding states. This
property of the sequence of actions characterizes
it as a Markov decision process (MDP), which we
will describe later in this paper.

Through the RL process the agent builds up a
set of actions A(W(t), t) to be taken in each state

[W(t), t]. The set of actions is also known as the
“policy,” which is a function of the state space.
As the agent plays more episodes, the policy is
updated to maximize expected reward. With the
right game playing setup, the policy will converge
to the optimal in a stable manner.

Unlike DP, which is solved by backward recur-
sion, RL is a forward iteration approach—that
is, we play the game forward and assess the ulti-
mate reward. RLdoes not visit each possible state,
only a certain number, determined by how many
games, known as “episodes” in the RL pantheon,
we choose to play and the behavior of the random
process governing the evolution of the system.
The hope is that RLis efficient enough to approach
the DP solution with far less computational and
algorithmic complexity. In this paper, we solve
the GBWM dynamic portfolio problem using a
variant of RL, known as “Q-Learning” (QL). We
cross check that the solution obtained by DP is
also attained by QL, affirming that RL works as
intended for dynamic portfolio optimization.

3 Candidate portfolios

Our problem is restated as follows: Assume that
the portfolios have to be chosen at fixed inter-
vals (h = 1 year) and discrete periods t =
0, 1, 2, . . . , T and the amount of wealth at time t is
given by W(t), 0 ≤ t ≤ T . The threshold return is
denoted as H , and the dynamic GBWM game is to
choose the action A[W(t), t] = (μ, σ)W(t),t driven
by portfolio weights for wealth Wj at time period
t, wj(t), at each time period wj(t), 1 ≤ j ≤ n,
0 ≤ t ≤ T−1, such that the probability at the final
time T of the total wealth exceeding H , given by
P(W(T) > H), is maximized.

Each period, we restrict our portfolios to a dis-
crete set of portfolios—that is, (μ, σ) pairs, that
lie along what is known as the “efficient frontier,”
described in the previous section as the solution
to a problem where we find a locus of points in

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

42 Sanjiv R. Das and Subir Varma

Figure 1 The efficient frontier of (σ, μ) pairs, which
are possible portfolio choices available to the investor
each year.

(σ, μ) space (see Figure 1) such that for each μ

we have the portfolio w that minimizes variance
σ2 = wT ∑

w. The mathematics in Das et al.
(2018) shows that the equation for the efficient
frontier is as follows:

σ =
√

aμ2 + bμ+ c

This curve traces out a hyperbola, as shown
in Figure 1. The values a, b, c are given by
a = hT

∑
h, b = 2gT

∑
h, c = gT

∑
g,

where the vectors g and h are defined by g =
l
∑−1

O−k
∑−1

M

lm−k2 , h = m
∑−1

M−k
∑−1

O

lm−k2 , and the

scalars k, l, m are defined by k = MT
∑−1

O,
l = MT

∑−1
M, m = OT

∑−1
O. In these equa-

tions M = [M1, . . . , Mn]T is the vector of the n

expected returns of the portfolio assets, O is the
vector of n ones, and

∑
is the covariance matrix

of the n assets.

In the rest of this paper we restrict the portfo-
lio choice at all instants of time 0 ≤ t ≤ T to
one of a set of K evenly spaced portfolios that
lie along the Efficient Frontier curve, given by
(μ1, σ1), . . . , (μK, σK). We note that the solu-
tion here is a one-period solution that delivers
the best locus of portfolios that are inputs into
the action space of the RL algorithm. The opti-
mal one-period choice is applied each period in

dynamic manner leading to an optimal dynamic
programming solution. Note that choosing the
portfolio with the best return may not be the opti-
mal policy, since higher returns also come with
higher variance, which may cause degradation of
the objective function.

4 Formulation as a Markov decision
processes (MDP)

We now move from the static problem to consid-
ering the dynamic portfolio game. At any given
state—that is, level of wealth W(t), we choose an
action w(t) ≡ A(t) ≡ [μ(t), σ(t)]. The next step
in the game is to generate the next period state
W(t + h), which is stochastic. The time between
transitions is h. For illustrative purposes, we
choose a stochastic process that transitions W(t)

to W(t + h), and we choose geometric Brownian
motion (GBM), as in Das et al. (2019):

W(t + h)

= W(t)exp

{[
μ(t)− 1

2
σ2(t)

]
h+ σ(t)

√
h · Z

}
(1)

where Z ∼ N(0, 1). Therefore, randomness is
injected using the standard normal random vari-
able Z. GBM is one of the most popular choices
used in financial modeling and therefore, we
employ it here. However, the choice of Z as
Gaussian is not strict and we may use any other
distribution without loss of generality.

We are now ready to formulate the portfolio opti-
mization problem as an MDP. The MDP state is
defined as (W(t), t), where W(t) is the value of
the portfolio at time t. For example the portfolio
value is W(0) at the start of the MDP, and the MDP
terminates at t = T when the portfolio value is
W(T). RL is then used to find the optimal policy
for the MDP through playing repeated episodes.
A policy is a mapping from the state {W(t), t} to

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 43

Figure 2 Evolution of the total portfolio value with time. Choose the portfolios at t = T −1 so as to maximize
the probability of W(T) being greater than the goal threshold.

action A = {μ, σ}. Each episode will proceed as
follows:

1. Starting with an initial wealth of W(0) at time
t = 0, we implement one of the k = 1 . . . K

portfolios, denoted by [μ(0), σ(0)]k. Which
portfolio (action) is chosen will depend on the
current policy in place. (At the outset, we may
initialize the policy to be a guess, possibly
random, or some predetermined k.)

2. Using the Geometric Brownian Motion model,
the wealth W(t + h) at time t + h is a random
variable, given by the transition Equation (1).
Using this formula, we can sample from the
random variable Z to generate the next wealth
value W(t + h) at time t + h, conditional on
choosing an action [μ(t), σ(t)]. We then once
again use our policy to choose the next port-
folio [μ(t + h), σ(t + h)]. The sequence of
these portfolios is an MDP. In our example,
we have chosen the transition equation explic-
itly to generate the next state, but we are going
to solve the problem as if we do not know
Equation (1).

3. Set t → t + h. If t = T then stop, otherwise
go back to step 2.

The system described above evolves in discrete
time and action space, but in continuous wealth
space (see Figure 2). For implementing the Q-
learning solution later we will restrict the wealth
space to be discrete as well. This approach may be
generalized to continuous spaces by using func-
tion approximations based on neural networks.

4.1 State space

Our approach is to define a large range of

[Wmin, Wmax] = [W(0)exp(−3σmax
√

T),

W(0)exp(+3σmax
√

T)]
at the end of the time horizon T , which will
be an array of final values of W(T), suitably
discretized on a grid. Here σmax is taken to be
the highest possible standard deviation of return
across all candidate portfolios from Section 3.
The number of grid points on the wealth grid
is taken to be (10T + 1), so if T = 10, then
we have 101 grid points. The grid points are
equally spaced in log-space—that is, equally over
the range [ln(Wmin), ln(Wmax)]. From the ini-
tial wealth W(0), we assume that it is possible
to transition to any wealth value on the grid at the

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

44 Sanjiv R. Das and Subir Varma

end of the period (t = h), though the probability
of reaching extreme values is exceedingly small.
From each wealth value at t = h we assume tran-
sition is possible to all the wealth grid values at
t = 2h, and so on.

Hence, the grid is “fully connected.” Transition
probabilities from a node i at t to node j at t + h

are described in the next subsection.

4.2 Transition probability

Using Equation (1) that describes the evolution of
W(t), we can write down the following equation
for the transition probability from state Wi(t) at
time t to state Wj(t+h) at time t+h (a transition
from node i to node j):

Pr[Wj(t + h) |Wi(t)]

= φ

⎡
⎣ ln

(
Wj(t+h)

Wi(t)

)
− (μ− 0.5σ2)h

σ
√

h

⎤
⎦

where φ(·) is the normal probability density
function (pdf) because the Z in Equation (1) is
Gaussian. In order to fully define the MDP, we
also need to specify the reward function. In this
model, the reward R is only specified for the final
states W0(T), . . . , W10T (T), and is as follows:
R = 1 if Wj(T) ≥ H , and 0 otherwise. This is
akin to a video game reward—that is, you get 1 if
you win the game and 0 if you lose.

In the case where the investor is allowed to make
infusions I(t) into the portfolio over time, transi-
tion probabilities are adjusted to account for these
additional cash flows coming into the portfolio.
The revised transition probabilities are as follows:

Pr[Wj(t + h) |Wi(t), I(t)]

= φ

⎡
⎣ ln

(
Wj(t+h)

Wi(t)+I(t)

)
− (μ− 0.5σ2)h

σ
√

h

⎤
⎦

Because the transition probabilities are known,
but we solve the problem through forward simu-
lation, we are not explicitly using the transition
probabilities in determining the optimal actions.
We only use the transition probabilities to gen-
erate the next state with the correct probabilities.
The analogy here to video gaming (for this portfo-
lio game) is that the game designer has to use some
transition probabilities with which states are gen-
erated in the game, but these are not given to the
game player. So, as problem designer, we define
the system and its transition probabilities using
Equation (1) but we do not use these explicitly
to discover the solution, i.e., the optimal policy.
Therefore, the RL solution approach we employ
in this paper is an example of model-free RL. The
distinction between model-based and model-free
RL is discussed next and we describe a broad
taxonomy of RL approaches.

5 RL taxonomy: Methods for solving
the MDP

A “policy” π(s) is defined as a mapping from
the state s to one of the portfolios in the set A

of actions {(μ1, σ1), . . . , (μK, σK)}. The optimal
policy π∗(s) is the one that maximizes the total
expected reward, which in this case is the prob-
ability of the final value Wi(T) exceeding the
threshold H . Solving the MDP is the process of
identifying this optimal policy.

MDP solution methods can be classified into the
following categories:

1. Model-based algorithms: These algorithms
assume that the state transition probabilities
are known. For a given policy π, they are based
on the concept of a State Value Function Vπ(s),
s ∈ [W(t), t], and the State–Action Value
Function Qπ(s, a), a ∈ A. The Value Func-
tion Vπ(s) is the expectation of total reward
starting from state s under policy π, while
the State–Action Value Function Qπ(s, a) is

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 45

the expectation of total reward starting from
state s and using a as the first action, and pol-
icy π thereafter. Similarly, V∗(s) and Q∗(s, a)

are the corresponding value functions that are
attained when using the optimal policy π∗. The
value function under the optimal policy satis-
fies the Bellman Optimality Equation (BOE),
see Bellman (1952, 2003) and Bellman and
Dreyfus (2015), which is a formal statement of
the backward recursion procedure described in
Section 2.3:

V∗(st) = max
at

E[V∗(st+1) | st]

= max
at

E

{
max
at+1

E[V∗(st+2) | st+1] | st
}

= max
at+h,...,aT−h∈π(s)

E[V∗(sT) | st]
(2)

where the last equation follows from the law
of iterated expectations and the Markov prop-
erty. This is a simple version of the Bellman
equation because the reward is only received
at maturity and there are no intermediate
rewards. The same equation without the “max-
imization” is simply the Bellman Expectation
Equation (BEE) and gives the value of any
policy, which may not be optimal. A simi-
lar equation holds for the State–Action Value
function, also known as the Q function (for
“quality”):

Q∗(st, at) = max
at,at+h,...,aT−h∈π(s)

E[Q∗(sT) | st]
(3)

Once we know either V∗(s) or Q∗(s, a), we can
readily compute the optimal policy. To arrive
at these optimal functions, one of the following
algorithms is used:

• Value Function Iteration.
• Policy Function Iteration.

Both of these are iterative algorithms that work
by updating value and/or policy functions
through episodes of game playing. Value iter-
ation iterates on the BOE, whereas policy
iteration iterates on the BEE.

RL may be implemented on a discrete or con-
tinuous state and action space. If both state
and action spaces are discrete and finite (and
of small size), then it is feasible to maintain
grids (tensors of any dimension) for state and
action, and solve for V∗(s) and Q∗(s, a) at each
point on the grid. This is known as “tabular”
RL. In our GBWM problem, the state space
has two dimensions W(t) and t, and the action
space has one (K portfolios), so the tabular
grid will be of dimension three—that is, V∗(s)
and Q∗(s, a) will be values on a 3D tensor.
To get some quick intuition about the
approach, we define the following components
of the algorithm.

• State s(t): The current value of variables on
which the decision (action) is based. In our
example, this is the level of wealth W(t) and
time t, and is represented by a node on the
grid.
• Action a(s(t)): Define the action a as an ele-

ment in the index set {1, 2, . . . , K}, and the
policy π(s) as a mapping from the state s

to one of the elements in the action set. In
our case, this is the portfolio chosen until
the next state is realized, at which time
another action will be taken. The series of
actions is often denoted as a “plan” and
hence, learning is analogous to solving a
“planning” problem, the result of which is
a policy—that is, resulting in a series of
actions (a0, . . . , aT−h).
• Reward r(s(t), a(t)): At each state, the agent

may or may not receive a reward for the
action taken. In our example, rewards are
only received at the final horizon T of the
problem.

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

46 Sanjiv R. Das and Subir Varma

• Transition probability p[s(t+h) | {s(t),
a(t)}]: This defines the likelihood of moving
to a probabilistic state the following period,
conditional on the current state and action.

The value function V(s(t)) is defined over the
same grid. The solution procedure for this
problem consists of starting from time T and
populating the value function in the last section
of the grid—that is, V(s(T)). For our problem,
the value is binary—that is, if W(T) ≥ H ,
then V(s(T)) = 1, else it is equal to 0. Once
we have populated the value function at time
T , we can proceed to populate the value func-
tion at time (T − h), using backward iteration
based on the Bellman equation.

V(s(T − h))

= max
a(s(T−h)

E[V(s(T))|s(T − h)]

= max
a(s(T−h))

[
m∑

i=0

{p(s(T) | s(T − h) = i,

a(T − h))} · V(s(T))

]
(4)

where an expectation has been taken over
values V(T) in all m states in the next
period using the transition probability function
p(s(T) | s(T − h), a(T − h)). This equation
embodies the “backward recursion” solution
procedure, because the same equation may be
applied for all periods from t = T−h to t = 0.
This procedure is value iteration and we first
solved the GBWM problem this way using DP
to determine the optimal value function.

In policy iteration, we choose a random pol-
icy, and then find the value function of that
policy (policy evaluation step). Find a new
and better policy based on the previous value
function, and so on, until no further improve-
ment is possible. During each iteration of the

algorithm, the BEE can be used to compute
the value function for the current policy. Here
the policy is explicitly chosen, starting from an
initial functional guess. Standard DP is almost
always amenable to policy iteration, and we
have solved the portfolio problem using RL
that way.

When all the components of the problem
s, a, r, p (state, action, reward, and transi-
tion probability) are known, the algorithm is
denoted “model-based.” Often, one or both of
the r, p functionals are not known in advance,
and have to be learned while solving the prob-
lem, usually through repetitive play. This is
denoted as “model-free” learning.

2. Model-free algorithms: If the state transition
probabilities are not known in advance, then
the MDP is solved by collecting sample-paths
of the state transitions, which are gener-
ated by the “environment” (latent transition
probabilities), and the corresponding rewards,
and then estimating the optimal State–Action
Value Function Q∗(s, a) using statistical aver-
aging. Note that the state value function V∗(s)
is no longer useful in the model-free case,
since even if it were known, the calculation
of the optimal policy still requires knowledge
of the state dynamics. On the other hand,
once Q∗(s, a) is known, the optimal policy
can be obtained by doing a simple maximiza-
tion π∗(s) = arg maxaQ∗(s, a). The two main
classes of Model Free algorithms are:

• Monte Carlo (MC) Learning: These algo-
rithms work for cases when the MDPsample
paths terminate, and proceed by estimat-
ing Qπ(s, a) by averaging the total future
rewards seen whenever the system is in state
s and the agent takes action a. This results in
an unbiased estimate of Qπ(s, a), however
it is subject to a large variance, as a result of
which a large number of sample paths are
needed to get a good estimate.

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 47

• Temporal Difference (TD) Learning: These
algorithms work even for nonterminating
MDPs, and are lower variance and thus
more sample efficient than Monte Carlo
methods. They use a one-step version of the
BEE given by the following iteration:

Q(s, a)← Q(s, a)+ α[R+ γQ(s′, a′)

−Q(s, a)]. (5)

The reward R, state s, and action a are
seen at time t, and the state and action next
period are denoted s′ and a′, respectively.
The parameter α proxies for the “learning
rate” and is usually chosen to be a small
value. The “discount rate” is γ ≤ 1 and it
suffices to tradeoff later rewards against ear-
lier ones in an episode. It also helps to set a
horizon on the importance of rewards when
episodes do not terminate in a short horizon.

We seek to obtain estimates of the optimal
State-Action Value Function Q∗(s, a) using
the generated sample paths. When in state s,
the action a is generated according to what
is known as an “epsilon-greedy” policy π.
Under this ε-greedy approach, the current
action a is chosen based on the current
policy with probability (1−ε) but with prob-
ability ε, a random action is chosen. Using
the current policy is known as “exploita-
tion” and using the random policy generates
“exploration” behavior. Exploration is a
key ingredient in RL, because it enables
better coverage of the state space. This
idea optimally implements the exploitation–
exploration tradeoff. Staying on the beaten
track (exploitation) may not lead to the best
solution and some wandering (exploration)
often leads to discovering better outcomes.
Note that for our specific portfolio prob-
lem, R = 0 except at time T , when it takes
a value in {0, 1}. The equation above can

therefore, also be written as

Q(s, a)← Q(s, a)(1− α)

+ α(γ ·Q(s′, a′)) (6)

where we note that this update equation sets
the new value of Q(s, a) to a weighted aver-
age of the current value function and the
value function in the next period, and when
α is small, the learning is of course slow, but
convergence is more stable.

This formula in Equation (5) uses the fol-
lowing sample path transitions: Start from
state s and take action a (using the ε-greedy
policy) to generate reward R, followed by
a probabilistic transition to state s′ from
where the action a′ is taken, again under
the ε-greedy policy. This is followed by a
version of the policy iteration algorithm,
to progressively refine the policy, until it
converges to the optimal policy π∗. TD
Learning comes in two flavors:

(a) SARSA-Learning: This is an “on-
policy” version of TD Learning, in
which the policy π being followed to
generate the sample paths is the same
as the current iteration of the optimal
policy. Note that the current policy may
not be optimal unless it has converged.
In Equation (6), both a and a′ are cho-
sen using the current policy. Therefore,
it is called “on- policy” learning.

(b) Q-Learning: This is an “off-policy” ver-
sion of TD Learning, in which the
policy being used to generate the sam-
ple paths (called the “behavior policy”)
may not be the same as the current iter-
ation of the optimal policy (called the
“target policy”). This is a very bene-
ficial property to have for two reasons:
(1) The behavior policy can be designed
to explore more states and actions, thus

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

48 Sanjiv R. Das and Subir Varma

improving the Q-estimates. Using the
optimal target policy instead to gener-
ate sample paths leads to the problem
that not all states and actions will be
fully explored. (2) Due to the off-policy
nature of Q-learning, state transitions
can be stored and used multiple times
in order to improve the Q estimates.
In contrast on-policy methods need to
generate new sample paths every time
the policy changes. The iteration in
Q-Learning is given by:

Q(s, a)← Q(s, a)+ α[R+max
a′

× γQ(s′, a′)−Q(s, a)]
In this equation action a is chosen
according to the behavior policy while
a′ is chosen according to the target pol-
icy. See that in Q-Learning the policy a′
is chosen optimally from highest value
function in state s′, unlike in the case
of SARSA, where it is chosen based
on the current policy function. In this
paper, we implement Q-Learning on
a 3D tensor—that is, we implement
tabular RL.

3. Algorithms that use function approxima-
tors: The reinforcement learning algorithms
described so far are tabular in nature, since
they work only for discrete values of states
and actions. If this assumption is not satis-
fied, or if the number of states (or actions)
is extremely large, then these methods do not
work any longer. In their place we have a range
of methods that use a function approximator,
such as a neural network, rather than a table,
to represent the value function. This results in
the following two classes of algorithms:

• Deep Q-Learning: In this case a neural
network is used to approximate the state–
action value function Qπ(s, a). The neural

network is trained in a supervised fashion,
by using training sample paths from the
MDP to generate the ground-truth values
for Q. Some recent successes of RL, such
as the Atari game playing system devel-
oped by DeepMind, were based on the deep
Q-Learning algorithm. These are known
as DQNs or deep Q nets, see Mnih et al.
(2013).
• Policy gradients: This is an alternative

approach to RL, in which the policy is
optimized directly (as opposed to indirectly
obtaining the policy by first estimating value
functions). In order to do so, policies
are represented using neural networks, and
the policy optimization proceeds by using
well-known techniques such as stochastic
gradient ascent. Policy gradient methods
work even for cases when the action space
is continuous and can also accommodate
randomized polices. Applications of RL to
areas such as robotics and finance often use
policy gradients.

Next, we describe the specifics of our algo-
rithm for the GBWM problem.

6 Our algorithm

We first solve the problem using classical DP
based on Equation (2). This gives us solutions
against which we may check our RL algorithm.
We do not provide further details regarding the
standard Bellman approach for DP as it is well
known.

The algorithm we use solve the MDP is the type
of RL algorithm called tabular Q- Learning and is
stated below:

• Define a quality function Q that maps to each of
the states and actions in the MDP and initialize
it to 0—that is, Q(W(t), t, ak) = 0, 0 ≤ t ≤
T, 1 ≤ k ≤ K. Note that action ak corresponds
to using the efficient frontier pair (μk, σk).

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 49

• Set W(0) to a constant corresponding to the
initial wealth at time t = 0.
• Initialize time to t = 0 and repeat the follow-

ing steps in a loop for M episodes (or training
epochs):

1. Choose action a as the one that maximizes
Q(W(t), t; ak), 1 ≤ k ≤ K, as modified by the
ε-greedy algorithm. The ε-greedy approach is
one that arbitrarily chooses a random strategy
with probability ε to implement the “explore
versus exploit” tradeoff. We describe the exact
specification of the ε-greedy choice in the next
section.

2. Transition to the next state (W(t + 1), t + 1),
where W(t+1) is sampled using the MDP state
transition probability values. While we know
the exact transition function, we operate as if
this is generated by the environment and is not
known to the agent.

3. Choose the next action a′ in state (W(t + 1),

t + 1), as the one that maximizes Q(W(t +
1), t + 1, ak), 1 ≤ k ≤ K

4. Update the Q value of the original state
(W(t), t) and action a, using

Q(W(t), t, a)

← Q(W(t), t, a)+ α[0+ γQ(W(t + 1),

t + 1, a′)−Q(W(t), t, a)].
Note that rewards are 0 for intermediate states
t < T .

5. t→ t + 1.

6. If t = T , then this is the end of the
episode. Update the Q values for the final state
(W(T), T):

Q(W(T), T, a)

← Q(W(T), T, a)+ α[1−Q(W(T), T, a)]
if W(T) ≥ H

Q(W(T), T, a)

← Q(W(T), T, a)+ α[0−Q(W(T), T, a)]
if W(T) < H

Increase the number of episodes by 1, set t = 0
and re-initialize the state to (W(0), 0) to start
a new episode.

7. If t < T then go back to step 1 to continue the
current episode.

Both the DP (Planning) algorithm and the Q-
Learning algorithm were implemented in the
Python programming language. The first com-
ponent of the algorithm was to decide the grid
for portfolio wealth outcomes. Below we display
only some snippets of code in order to make the
programming of the algorithm clearer.2 Think of
these snippets as pseudo-code.

1. Create the wealth grid. The code below creates
an equally spaced grid in log wealth, which is
then translated back into wealth by exponenti-
ation (line 8). W0 is initial wealth. The number
of periods is T (line 4). The infusions at each
time t are I(t) (lines 5, 6). The grid size was
set to 101 nodes (line 7).

1 lnW = log(W0)

2 lnw_min = lnW

3 lnw_max = lnW

4 for t in range(1,T+1):

5 lnw_min = log(exp(lnw_min)+I[t]) + (mu_min - 0.5* sig*sig)*h

- 3*sig*sqrt(h)

6 lnw_max = log(exp(lnw_max)+I[t]) + (mu_max - 0.5* sig*sig)*h

+ 3*sig*sqrt(h)

7 lnw_array = linspace(lnw_min ,lnw_max ,101)

8 w_array = exp(lnw_array)

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

50 Sanjiv R. Das and Subir Varma

2. Construct a blank 3D tensor that combines the 2D state space and the 1D action space. This will
hold the tabular Q(S,A) function values. The first dimension of the tensor is wealth, the second one
is time (from 0 to T), and the third is the action space, where NP = K is the number of portfolios
available to choose from.

1 Q = zeros((len(w_array), TT+1, NP))

3. Initialize 3D reward tensor in {W, t, a}. We see that rewards are only attained at maturity in this
problem if the final wealth value is greater than goal level H . We see that the Q and R tensors are
of the same dimension.

1 R = zeros((len(w_array), TT+1, NP))

2 for j in range(maxlenW):

3 if W[TT][j]>H:

4 R[j,TT ,:] = 1.0

4. State transition under the policy. Suppose we are at node Wi(t) at time t and transition to a node at
time t+ 1, denoted Wj(t+ 1). Which node we transition to depends on the environment (transition
probabilities), but these in turn depend on the action taken—that is, ak = (μk, σk). We create a
separate function to generate state transitions—that is, to mimic the behavior of the portfolio’s
wealth from the underlying environment. Given current scalar w0,t0, and action a0, sample a
transition to wealth vector w1 at time t1 (line 1). Infusions are denoted by variable I (lines 1, 4).
Actiona0 involves the choice of a pair mu, sigma (lines 2, 3). These are drawn from a set of possible
pairs of mean return from list EF_mu and standard deviation of return from list EF_sig. We have
to normalize probabilities from line 4 in line 5. The probabilistic transition under the policy is then
selected in line 6. We return the grid index of wealth in line 7.

1 def sampleWidx(w0 ,w1 ,I,a0): #to give the next state

2 mu = EF_mu[a0]

3 sig = EF_sig[a0]

4 p1 = norm.pdf((log(w1/(w0+I))-(mu -0.5* sig **2)*h)/(sig*sqrt(h

)))

5 p1 = p1/sum(p1) #normalize probabilities

6 idx = where(rand() > p1.cumsum ())[0]

7 return len(idx) #gives index of the wealth node w1 at t1

We may also easily replace the normal distribution with a t-distribution (or any other). For example,
line 4 above would be replace with

1 p1 = t.pdf((log(w1/(w0+I))-(mu -0.5* sig **2)*h)/(sig*sqrt(h)) ,5)

where we see that the function norm.pdf is replaced with t.pdf—that is, a t-distribution with
5 degrees of freedom.

5. Temporal difference update at a single node. When we arrive at a node in the state space (indexed by
idx0, t0 in line 1 below), we then have to pick an action a0, which we do using the epsilon-greedy
approach (lines 2–9). Under that action we will then call the preceding function to ascertain the
next state idx1,t1. We then update the State–Action Value Function Q[idx0,t0,a0] in lines

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 51

10–16 if we are at t < T ; or lines 17–19 if we are at t = T . Note that, in line 16, we choose the
optimal policy at t1, as you can see the element Q[idx1,t1,:].max() in the code. In TD
Learning, we update at every step in an episode, so it is easy to build all the update logic into a
single generic function for one node, which we call doOneNode(idx0,t0) here.

1 def doOneNode(idx0 ,t0): #idx0: index on the wealth axis , t0:

index on the time axis

2 #Pick optimal action a0 using epsilon greedy approach

3 if rand() < epsilon:

4 a0 = randint(0,NP) #index of action; or plug in best

action from last step

5 else:

6 q = Q[idx0 ,t0 ,:]

7 a0 = where(q==q.max())[0] #Choose optimal Behavior

policy

8 if len(a0) >1:

9 a0 = random.choice(a0) #randint (0,NP) #pick

randomly from multiple maximizing actions

10 #Generate next state S’ at t+1, given S at t and action a0,

and update State -Action Value Function Q(S,A)

11 t1 = t0 + 1

12 if t0 <TT: #at t<T

13 w0 = W[t0][idx0] #scalar

14 w1 = W[t1] #vector

15 idx1 = sampleWidx(w0,w1 ,infusions[t0],a0) #Model -free

transition

16 Q[idx0 ,t0,a0] = Q[idx0 ,t0,a0] + alpha *(R[idx0 ,t0,a0] +

gamma*Q[idx1 ,t1 ,:]. max() - Q[idx0 ,t0,a0])

17 else: #at T

18 Q[idx0 ,t0,a0] = (1-alpha)*Q[idx0 ,t0,a0] + alpha*R[idx0 ,

t0,a0]

19 idx1 = idx0

20 return [idx1 ,t1] #gives back next state (index of W and t)

6. String together a sequence of calls to the previous function to generate updates through one episode,
moving forward in time. At the beginning we set idx equal to the wealth index for initial wealth W0.
The kernel of the code for one episode is just this. At every point in the episode, whichever state is
visited experiences an update, and the entire Q table evolves into a new policy.

1 for t in range(TT+1):

2 [idx ,t] = doOneNode(idx ,t)

7. We choose the number of episodes (epochs) as 105,000. Other parameters chosen are α = 0.1,
γ = 1, and ε = 0.3. We initialize the Q tensor to zeros and then begin processing episode after
episode. In order to examine if the algorithm is converging to a stable policy, we compute the sum
of squared differences between Q tensors from consecutive episodes. At close to 50,000 epochs
this metric becomes very small and stabilizes. Still, we run 55,000 more epochs to be assured of
convergence.

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

52 Sanjiv R. Das and Subir Varma

In the next section, we present illustrative results
from a numerical implementation of the Q-
Learning algorithm.

7 Experimental results

We present some experimental results from run-
ning the Q-Learning algorithm in Table 1. The
table shows the inputs to the problem, which are
the mean vector of returns and the covariance
matrix of returns. These are then used to compute
the K = 15 portfolio that is available in the action
space. The model outputs are the algorithm used,
the number of training epochs, and the final value
function outcome. We also offer extensions and
observations. We recap some algorithm details
and note the following:

1. Discussion of the epsilon-greedy algorithm:
Q-Learning uses the epsilon-greedy algorithm
in order to choose the action (or portfolio in
this case), from the state (W(t), t) at each step
in the episode. This algorithm is as follows:

• Sample x from the Bernoulli Distribution
B(ε, 1− e).
• If x < ε: Choose action ak, 1 ≤ k ≤ K

with probability 1
K

, else: Choose action a =
arg max1≤k≤K Q(W(t), t, ak)

Most of the time this algorithm chooses the
action that maximizes the Q value for small
ε. However every once in a while it chooses
an action uniformly from the set of available
actions. This allows the Q-Learning algorithm
to explore states and actions that it otherwise
would not if it were to strictly follow the opti-
mal policy. The value of ε has a significant
effect on the working of the algorithm, and
has to be at least 0.30 in order to get good
results. This shows that without a sufficient
amount of exploration, the algorithm may get
stuck in states and actions that cause it to
under estimate the Q values. Also note that

the epsilon-greedy policy is being used here
in an off-policy fashion, so that larger values
of epsilon do not affect the accuracy of the Q

values being estimated.
2. The results of Q-Learning algorithm are veri-

fied by comparing the value function at t = 0,
given by V(W(0), 0), with that computed using
regular DP. Note that we can obtain V readily
from Q by using the formula:

V(W(0), 0) = max
1≤k≤K

Q(W(0), 0, ak)

By definition V(W(0), 0) is the maximum
expected reward when starting with an
initial wealth of W(0) at t = 0. In
this case the expected reward corresponds
to the probability of the final expected
wealth value exceeding H . Applying regu-
lar Dynamic Programming to this problem
yields V(W(0), 0) = 0.72, and we can see
that Q-Learning also gives this answer after
training for 100 K episodes, provided the value
of the epsilon-greedy parameter is at least
0.30. Larger values of epsilon lead to greater
exploration of the state space, which ulti-
mately improves the accuracy of the Q values.
However this comes at the cost of slower con-
vergence, since the algorithm wanders over a
larger number of states and actions. This can
be seen in Table 1 for ε = 0.4. In this case the
algorithm converges to a good estimate of the
optimal Q, but takes a larger number of itera-
tions to do so. When the RL algorithm is run
to a very high number of epochs, say 500 K,
then it converges to the DP result, as seen in
the last line of Table 1.

3. Choice of parameters (α, γ): The parameter
γ is used in the Q-Learning algorithm as a
discount factor for future rewards. Since the
reward used in the GBWM problem formula-
tion does not require any discounting, we set
γ = 1. The parameter α is used to control the
window ofQvalues that are averaged together.

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 53

Table 1 Results from the Q-Learning Algorithm. The parameters for these runs
are as follows. The initial portfolio wealth is W(0) = 100; target portfolio
goal = 200; horizon is T = 10 years. A total of 15 portfolios are used and
these are generated from a mean vector of returns M and a covariance matrix
of returns

∑
shown below, along with the mean and standard deviation of the

portfolios’ returns derived from M and
∑

. The RL algorithm used the following
parameters: α = 0.10; y = 1. We assume zero infusions. The run time for
50 K epochs is ∼1.5 minutes and for 100 K epochs is ∼3 minutes. Dynamic
programming, of course, takes 0.5 seconds. And the solution is provided in the
top row of the bottom panel below.

MODEL INPUTS

M =
⎡
⎣0.05

0.10
0.25

⎤
⎦;

∑ =
⎡
⎣0.0025 0 0

0 0.04 0.02
0 0.02 0.25

⎤
⎦

Portfolios

0 1 2 3 4 5 6 7

μ 0.0526 0.0552 0.0577 0.0603 0.0629 0.0655 0.0680 0.0706
σ 0.0485 0.0486 0.0493 0.0508 0.0529 0.0556 0.0587 0.0623

Portfolios

8 9 10 11 12 13 14

μ 0.0732 0.0757 0.0783 0.0809 0.0835 0.0860 0.0886
σ 0.0662 0.0705 0.0749 0.0796 0.0844 0.0894 0.0945

MODEL OUTPUTS

ε No. of epochs V [W(0), t = 0]
DP solution 1 0.72
0.10 50K 0.65
0.10 100K 0.65
0.20 50K 0.69
0.20 100K 0.71
0.25 100K 0.71
0.30 50K 0.72
0.30 100K 0.72
0.40 50K 0.73
0.40 100K 0.77
0.40 200K 0.75
0.40 500K 0.71

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

54 Sanjiv R. Das and Subir Varma

Figure 3 Convergence of the algorithm over successive epochs. The solution is reached in approximately
20,000 epochs.

Experimentally we observed that α = 0.1
works quite well, which corresponds to a
moving average over the last 10 Q values.

4. In order to measure the convergence of the
algorithm, we plot the moving average squared
difference between the Q-tensor from succes-
sive epochs. Figure 3 shows that the algorithm
stabilizes in about 20,000 epochs.

5. Solving GBWM with other algorithms: There
are a number of other algorithms that can be
used to solve the GBWM problem. Since the
state transition dynamics are specified to fol-
low the geometric Brownian motion model,
we can apply classical DP algorithms to this
problem, as shown in Das et al. (2019).
RL algorithms are needed for the following
cases in which Dynamic Programming is not
applicable:

• The state transition dynamics are not
known: In this case DP can no longer be
used, however Q-Learning is still applica-
ble provided there is a collection of sample
paths that can be used for training.

• The state space is not discretized: DP is dif-
ficult to implement numerically if we do not
discretize the state space, and unfortunately
the tabular Q-Learning algorithm does not

work either. However, continuous states can
be handled by deep Q-Learning using func-
tion approximators, or by the policy gradi-
ents algorithm. Likewise, continuous-time,
continuous-space versions of the Bellman
(1952) approach may be used for dynamic
programming as in Merton (1971).

• The results with the t-distribution are not
much different than the normal. This sug-
gests that the dynamic portfolio solution is
robust to different distributional choices.

8 Concluding comments

DP may be used to solve multiperiod portfo-
lio problems to reach desired goals with the
highest possible probability. This is known as
GBWM. This paper introduced RL as an alter-
nate approach to solving the GBWM problem. In
addition to providing a brief taxonomy of RLsolu-
tion approaches, we also implemented one such
approach, Q-Learning, and showed that we get the
same results as DP. Our goal is to provide a quick
introduction to how dynamic portfolios may be
modeled using RL. The RL approach is highly
extensible to larger state and action spaces. For
example, if the action space (portfolios that may
be chosen) varies based on whether the economy

Journal Of Investment Management Second Quarter 2020

Not for Distribution

Dynamic Goals-Based Wealth Management Using Reinforcement Learning 55

is in normal times or in a recession, then it adds the
state of the economy as an additional dimension
to the problem. This can be easily handled with
RL. RL especially shines in comparison to DP
when the problem becomes path-dependent, such
as in the case of multiperiod portfolio optimiza-
tion with taxes, when keeping track of the cost
basis across portfolio holdings is required and this
tax basis depends on the path of the portfolio, so
that classic DP via backward recursion becomes
computationally expensive from an explosion in
the state space.

The recent advances in hardware and software for
RLsuggest great potential for finance applications
that depend on dynamic optimization in stochastic
environments whose transition probabilities are
hard to estimate, such as high-frequency trad-
ing (HFT). HFT has been one of the areas of
early investigation of RL in finance. There is a
long history of papers implementing RL models
for trading, such as Moody and Saffell (2001),
Dempster and Leemans (2006), Li et al. (2007),
Lu (2017), Du et al. (2018), and Zarkias et al.
(2019). Additional areas in which RL may be
used are option pricing (Halperin, 2017), optimal
hedging of derivatives (Halperin, 2018), market-
making agents (Halperin and Feldshteyn (2018),
Zarkias et al. (2019), cryptocurrencies, optimal
trade execution, etc.

Notes
1 The latest (2018) version of this book is available here:

http://incompleteideas.net/book/the-book-2nd.html.
2 If you wish to implement the code, you will need to wrap

these code ideas into a full Python program.

References

Bellman, R. (1952). “On the Theory of Dynamic Program-
ming,” Proceedings of the National Academy of Sciences
38(8), 716–719.

Bellman, R. E. (2003). Dynamic Programming (New York,
NY, USA: Dover Publications, Inc.)

Bellman, R. E. and Dreyfus, S. E. (2015). Applied Dynamic
Programming (Princeton University Press).

Brunel, J. (2015). Goals-Based Wealth Management: An
Integrated and Practical Approach to Changing the Struc-
ture of Wealth Advisory Practices (New York: Wiley).

Chhabra, A. B. (2005). “Beyond Markowitz: A Com-
prehensive Wealth Allocation Framework for Individual
Investors,” The Journal of Wealth Management 7(4),
8–34.

Das, S. R., Markowitz, H., Scheid, H. J., and Statman, M.
(2010). “Portfolio Optimization with Mental Accounts,”
Journal of Financial and Quantitative Analysis 45(2),
311–334.

Das, S. R., Ostrov, D., Radhakrishnan, A., and Srivastav,
D. (2018). “Goals-Based Wealth Management: A New
Approach,” Journal of Investment Management 16(3),
1–27.

Das, S. R., Ostrov, D., Radhakrishnan, A. and Srivas-
tav, D. (2019). “A Dynamic Approach to Goals-Based
Wealth Management,” Computational Management Sci-
ence, https://doi.org/10.1007/s10287-019-06351-7.

Dempster, M. A. H. and Leemans, V. (2006). “An Auto-
mated FX Trading System Using Adaptive Reinforce-
ment Learning,” Expert Systems with Applications 30(3),
543–552.

Du, X., Zhai, J. and Koupin, L. (2018). “Algorithm
Trading Using Q-Learning and Recurrent Reinforcement
Learning,” Working Paper, Stanford University.

Halperin, I. (2017). QLBS: Q-Learner in the Black-Scholes
(-Merton) Worlds, SSRN Scholarly Paper ID 3087076,
Social Science Research Network, Rochester, NY.

Halperin, I. (2018). The QLBS Q-Learner Goes NuQLear:
Fitted Q Iteration, Inverse RL, and Option Portfolios,
SSRN Scholarly Paper ID 3102707, Social Science
Research Network, Rochester, NY.

Halperin, I. and Feldshteyn, I. (2018). Market Self-learning
of Signals, Impact and Optimal Trading: Invisible Hand
Inference with Free Energy (Or, How We Learned to
Stop Worrying and Love Bounded Rationality). SSRN
Scholarly Paper ID 3174498, Social Science Research
Network, Rochester, NY.

Li, H., Dagli, C. H., and Enke, D. (2007). “Short-term Stock
Market Timing Prediction under Reinforcement Learning
Schemes,” In 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement
Learning, pp. 233–240.

Lu, D. W. (2017). “Agent Inspired Trading Using Recurrent
Reinforcement Learning and LSTM Neural Networks,”
arXiv:1707.07338 [q-fin].

Second Quarter 2020 Journal Of Investment Management

Not for Distribution

56 Sanjiv R. Das and Subir Varma

Markowitz, H. H. (1952). “Portfolio Selection,” Journal of
Finance 6, 77–91.

Merton, R. (1969). “Lifetime Portfolio Selection under
Uncertainty: The Continuous-Time Case,” The Review
of Economics and Statistics 51(3), 247–257.

Merton, R. C. (1971). “Optimum Consumption and Port-
folio Rules in a Continuous-Time Model,” Journal of
Economic Theory 3(4), 373–413.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013).
“Playing Atari with Deep Reinforcement Learning,”
arXiv:1312.5602 [cs].

Moody, J. and Saffell, M. (2001). “Learning to Trade via
Direct Reinforcement,” IEEE Transactions on Neural
Networks 12(4), 875–889.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai,

M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., and Hassabis,
D. (2017). “Mastering the Game of Go without Human
Knowledge,” Nature 550(7676), 354–359.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction (second edition edition ed.).
Cambridge, Mass: A Bradford Book.

Zarkias, K. S., Passalis, N., Tsantekidis, A. and Tefas,
A. (2019). “Deep Reinforcement Learning for Financial
Trading Using Price Trailing,” In ICASSP 2019—2019
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3067–3071.

Keywords: Reinforcement learning; goals;
dynamic optimization.

Journal Of Investment Management Second Quarter 2020

Not for Distribution

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

