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ABSTRACT

Queunes with resequeﬁcing arise as models in various applications, including distributed
databases and computer communication networks. Most models are extremely difficult to
analyze using traditional techniques. In this paper we obtain several structural properties
of resequencing systems. In particular we investigate the variation of the end—to—end delay
with the number of servers in certain resequencing systems, as well as provide a comparison

between single-hop with multi-hop resequencing.
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1. Introduction

Queunes with resequencing are used to model synchronization algorithms that arise in
packet communication networks. For example consider the transmission group in IBM’s
SNA architecture, in which the source and destination nodes are linked together with mul-
tiple transmission links. Multiplicity of links helps in achieving higher throughput as well
as increased reliability in the event of link failure. Messages are packetized and transmit-
ted over the multiple links, so that they arrive at the destination in a different order than
the one in which they were transmitted. This requires resequencing of the packets before
they can be processed. The rescquencing mechanism is also important in packet com-
munication networks that provide datagram services between the source and destination
nodes. In such systems messages are broken up into packets at the source and transmit-
ted independently of one another over the network. They may follow different paths, and
when they arrive at the destination, they may have to resequenced. Resequencing is also
important in some concurrency control schemes in distributed databases [17], [29] and in
some inter-connection network message switching schemes [21].

One of the first queueing models to incorporate resequencing was due to I{amoun et.
al. [15], in which they analysed a resequencing system in which the disordering is due to an
infinite server queue with exponential services, which is subject to Poisson arrivals. Harrus
and Plateau [11] removed the restriction of exponential services, and analysed the system
in which the infinite server queue has general service times. Baccelli, Gelenbe and Platean
[1] analysed a more complicated model in which the customers are sent into a single server
queue after leaving the resequencing buffer. A number of results have also appeared in the
literature regarding resequencing models in which the disordering is due to finite server
queues. Iliadis and Lien [18], [19], [20] and Varma [24] analysed the case in which the
disordering is due to a M/M/2 queue, Yum and Ngai [29] analysed the case when the
disordering is due to a M/M/K/B queue, while Giin and Jean-Marie [10] analysed the
case when the disordering is due to K single server queues operating in parallel,

In this paper our objective is prove some structural properties for resequencing mod-
els. Central to all the analysis that is presented here, are the recursions that govern the

sequence of delays in these systems (See Section 2). We use these recursions in making
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sample path comparisons (Section 3), as well as in obtaining the heavy traffic limits [27].
These techniques that we use here are quite powerful due to the fact that a large class of
resequencing models can be analysed in an unified manner with their help, and they lead

to simple approximations for otherwise intractable systems.

2. Basic Representations of Resequencing Systems

In this section we introduce a generic resequencing model, from which specific rese-
quencing structures can be recovered as special cases. There is a stream of customers
which enter a disordering system, and leave in an order different from the one in which
they entered it (Fig 1). After leaving the disordering system, they wait in a resequencing
buffer until all customers who entered the disordering system prior to them, have left it.

We now define some RV's that are useful in discussing properties of this system. Let
the sequences of RV’s {a, }¢ and {D, }§° be defined on some probability space {2, IF, P}.
Here. a, and D,, represent the time of arrival of the n'" customer into the system and its
disordering delay respectively. We adopt the convention that the 0 customer comes at
time + = 0, so that ay = 0. In terms of these RV's define the following quantities for all
=015

h

dn: Departure instant of the n*" customer from the system.

h

w: End-to-end delay of the n'® customer (i.e., ¥, = dn — an).
W,: Waiting time of the n'™ customer in the resequencing box (ie.,

Win =Y, — Dy).

Unt1: Interarrival interval between the (n + 1)™" and the n'* customer (ie.,

Uptl = Unyg1 — (ln)-

Various kinds of disordering systems can be realized by assuming different statistical
structures on the sequence {D,}°. For example, if the delay sequence {D,}§" is an
1id sequence which is independent of the interarrival sequence {uy}, then the disordering
system corresponds to an GI/GI /oo quene. Similarly we can realize the disordering system
as a GI/GI/K queue or a system of K parallel GI/GI/1 queues by imposing a particular
structure on {D, }§°.

We now proceed to prove Theorem 2.1, which provides a recursive relationship between
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the sequences {¥,,}§°, {D,}5° and {un}§° defined earlier.
Theorem 2.1 Consider o resequencing system of the type shown in Fig 2.2.1. If there is

no initial load on the system, the end-to-end delays {Y,}5° are given by the relations,

Yy = Dy, (2.1a)
and
Yoi1 =max{D, 1,Y; — Ut1} n=0,1,...(2.1d)

Proof. Since there is no initial load in the system by assumption, the first customer in
the system will not undergo any resequencing delay and (2.1a) is therefore immediate.

In order to prove equation { 2.1b). consider the (n 4+ 1)™ customer. His resequencing
delay will be zero if the nt* customer has left the system at the time when he leaves the

o

disordering subsystem i.e.,

y.n+1 = D,.+] if Uyd1 + Du+l > an + Y, n.=0; 1. ( <

(8]
(8%
S

If the n** customer has not left the system at the time the (n 4 1)"*! customer leaves the
disordering subsystem, then the (n+ 1) customer will experience a resequencing delay

of duration a, + Y, — (@n41 + Dpgy), hence
l'-n+l = Dn+1 + [an H ¥ = (("n.-i-.l + Drt+l)] if Ansq + Dn-H <apn+Yy (2.3)

By combining (2.2) and (2.3), it is plain that

Yos1 =max{Dns1, Y, — (an41 — a,))} n=01...
SINCE Up41 = App1 — Gyp, and this proves (2.1b). E

The recursion (2.1) was first derived by Baccelli, Gelenbe and Plateau [1] albeit in
a different context since they were trying to estimate the end-to-end delay in an infinite
server resequencing system followed by a single server queue. Equation (2.1) is very basic
since it provides us with a relationship between the disordering delays and the end-to-end

system delays.



3. A General Bounding Methodology

In this section we present the following simple result that will enable us to make

stochastic comparisons between the end-to-end delay of different resequencing systems.

Theorem 3.1 Given two resequencing systems governed by inter—arrival and disordering
sequences {ul}o° and {D%}5° respectively, for i = 1,2, defined on the same probability

space (U, IF, IP). Assume that,

ul =u? n=1,2...(3.1)

D <D n= 0;1:%(3:2)
Then, it follows that

Yl <¥Y32 n=0,1...(3.3)

Proof. The proof proceeds by induction. For the case n = 0, we have
1 1 2 _ g2
so that (3.3) is satisfied. As the induction step, assume that

Yi<y? (3.4)

9

for some m > 1. We will show that ¥, ., < Y2, ,. Note that due to (3.1) and (3.4),

Yo =wapr < Yo —wnw (3.5)
Combining (3.5) with (3.2), we conclude that
YJ,_H = max{Dh 1, ¥h — wimte) < max(Dan. Y2 o ped) & l",,?,_*,l
thus completing the induction step. [

Note that (3.3) implies that the end-to-end delay in system 1 i1s smaller then the
end-to—-end delay in system 2, in the sense of strong stochastic ordering {see Appendix A).
This is denoted by
) U n=0,1...(3.6)

"
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Proposition 3.1 is extremely useful, since it tells us that we can establish a strong stochastic
ordering relation between the end-to-end delay of two resequencing systems, provide we
can establish (3.2) that on some common sample space, the disordering delay of system 1
is smaller than the disordering delay of system 2. This idea is systemafically applied in

Sections 3.1, 3.2 and 3.3 to obtain some interesting structural properties.

3.1 Structural properties for finite server queues with resequencing

In this section we investigate the variation of the end-to-end delay with the number
of servers, for the case when the disordering is due to GI/GI/K queues. We also exhibit a
result regarding the variation of the end—to—end delay with the service intensity. Consider
two resequencing systems, such that the disordering in the first one is due to a GI/GI/K;
quene, while the disordering in the second one is due to a GI/GI/K; queue (Fig 2). Define,
al: Time of arrival of the n*" customer into the i system, for i = 1,2.

h St

customer to enter service in the i
h

v!: Service time of the n' system, for z = 1, 2.

th

di: Time instant of the n'* departure from the i** system, for ¢+ = 1,2.

i: Time instant of the n'" departure from the servers of the i th queue, for i = 1,2.

-
-

th sth

Di: Disordering delay of the n'* customer in the i** queue, for 2 = 1,2.

Note that in case of GI/GI/K quecues, the n'* customer to enter service is also the
n'™ customer to enter the queue, since we assume that the queue operates under the
FCFS discipline. Also note that the n'* departure from either one of the queunes is not

necessarily the same as the n'®

arrival into that queue. Hence a), and z,, may describe
different customers.

We now state the main result.

Theorem 3.1 Consider two resequencing systems, such that the disordering in the first
system is due to o GI/GI[K, queue, while the disordering in the second system s due to

o GI/GI|K, queue. If any of the following conditions hold, where

(i) If
al =a? = 1:2:.:(3:7a)
vl =2 n=0,1...(3.70)



Ky =K1+ 1. (3.7¢)

or,
(ii) If
& = n=1,2:::(3.:8a)
1\1 = Ifg (3 Sb)
vl < vl n=20,1...(3.8¢)
then
S sl D n=0,1...(3.9)
Proof.

(i): Let K = K; and N' = K and N? = K + 1 in what follows. In the following proof,
quantities that are common to both systems are written without a super-script. As per

Proposition 3.1, in order to prove (3.9) it sufficient to prove that
1 2
< B =05 D

This was shown for multiple server queues by Wolff [30], from which our proof is adapted.
We first prove that departure epochs from the buffer and the servers occur sooner in the

GI/GI/(K + 1) system than in the GI/GI/K system. For both systems,

s} =min{d +v;)

(3.10)
= mi .
092\,‘.{“1 +vj}
and, in general
zj— = j”' order statistic from {di +o:0<k<j+ N} (3.11)

Since the service initiation of the n'" customer coincides with the departure epoch of

h

the (n — N9 customer from the system (provided the n'™ customer arrives before the

n — N1t customer has departed the system), the following equation holds
P
dt = max{an, 2\ _ni} n=0,1...(3.12)
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where 2} = 0if j < 0. We now show that
&2 ds =0 T..(313)

From (3.12) it follows that d} = d?, for 0 < n < legly, since the first i customers in

n'

either system, do not suffer any queueing delays. However note that
d} = max{ax,zy} Zax = (li-

The proof proceeds by induction with an induction step which assumes that for some
n>K,
1 2 2 i
dizd; 0<j;<n (3.14)

From (3.11), it follows that
vjgr 2v; 0<j<n—K-1 (3.15)

and (3.12) now yields

d}l = nlax{“na -:111—1{}
> max{@n, 25 _(k+1)} (3.16)

- -
—dn

which completes the induction step and the proof of (3.13). We now obtain an ordering

for the total time spent in the queue in the following way. It is clear that ,
Dfx:(liz—(‘vl+vn n=0,1...(3.17)

for every ¢t = 1, 2.

From (3.13) and (3.17), it is now clear that
DL » D% n=0,1...(3.18)
From (3.18), using well known techniques, we can prove that

y!>y? n=0,1...(3.19)



and (3.9) follows directly from (3.19).

(ii): Using (3.8), it can be shown as in [13] that
D, < D; n=0,1...(3.20)

from which it follows that

i B i n=0,1...(3.21)

and (3.9) is now a direct consequence of (3.21).
|
Part (1) of Theorem 3.1 reveals an interesting structural feature of multiple server
resequencing systems. It states that the system delay decreases if we add an additional
server to the multiserver system. However note that the resequencing delay clearly does
not decrease because more customers may go out of sequence as result of the presence
of the additional server. Hence the crux of the result is that the decrease in queueing
delay due the presence of the additional server, outweighs the increase in synchronization
delay due to the resequencing constraint. Hence it permissible to increase the amount of
parallelism in the system as much as possible without worrying about resequencing delays.
An interesting open problem is to characterize the behavior of the resequencing delay as
the number of servers is increased. Clearly, since it increases as more servers are added
and yet does not go to infinity in an infinite server system, its distribution must converge
to stable distribution at infinity. This situation is in direct contrast to the behavior of a
fork-join quene, whose system time increases logarithmically with the number of servers

in the queue [3].

3.2 Finite Server Queues in Tandem with Resequencing

The short survey of the literature given in the introduction, revealed a paucity of
results concerning multistage resequencing systems, which is not surprising considering
their extremely complex nature. However, as shown in this section and the next one,
interesting properties of these systems can be deduced by using stochastic comparison

techniques.



Consider a system consisting of a GI/GI/K queue in tandem with a
GI/GI/L queue (without resequencing and with K,L > 2). If there is an increase in
the number of servers or the service rate at the GI/GI/K queue, then classical results due
to Jacobs and Schach [13], tell us that the system time of a customer decreases sample-
pathwise in that queue. However this decrease does not carryover to the end-to-end delay
of a customer due to both the queues, in other words a decrease in system time at the first
guene does not imply a decrease in end-to—end delay [22]. However, in this section we show
that if the customers are resequenced after each queue, then a decrease in system time at
the first quene does imply a decrease in the end-to-end delay (Fig 3). This property is fur-
ther extended to an arbitrary number of GI/GI/IK queues in tandem, with resequencing
after each stage. However it does not seem to apply to end-to-end resequencing systems.

The model is now introduced with the appropriate notations. The first disordering
system is allowed to be arbitrary, while the second disordering system is assumed to be a
GI/GI/K queue. Resequencing is carried out after each disordering stage. In the next
theorem we show that a decrease in the system time at the first disordering system, implies
a samplepathwise decrease in the end—to-end delay. In what follows we use the super-seript

i = 1,2to refer to the two systems. For alln =0,1..., and ¢ = 1,2 pose,

th It

Y#: End-to-end delay of the n'" customer in the i** system.
ul: Inter-arrival time between the (n 4+ 1)™* and the n'* customer into the ith system.
Xi: Delay of the n'® customer in the first disordering system in the i system.

Zi: Delay of the n'™ customer in the i** system due to the first disordering system and

the following resequencing box.

al: Arrival instant of the n'* customer in the ith system.

th

ri: Arrival instant into the GI/G/K queue, of the n'* customer to enter the i system.

th

Ji: Departure instant from the GI/G/K queue buffer of the n'* customer to enter the

i'h system.

di: departure instant from the system of the nt" customer to enter the i** system.

1 th

b customer to enter the i system.

7 : service time in the GI/G /I queue, of the n

1

We now state the main result in this section.

Theorem 3.2 Consider the two double stage disordering systems, in which the first system
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is allowed to be arbitrary, while the second system corresponds to a GI/G/K queue. If on

some sample space (Q, IF, P), the following relations hold

1 B |
u‘n-{-l . un+l

s xt n='0;1:(3:22)
v} =v2
then the inequalities
V2 S Vi n=0,1...(3.23)
hold true.
Proof. It is plain from (3.22) that
Tl > 12 n=0,1..:(3:24)
since by definition
73 =ab + X% n=0,1...(3.25)

foralli =1,2.

We now focus our attention on the GI/GI/K queue. The first thing to note is that
Jhis I3 n=0,1...(3.26)

A little thought will convince the reader that (3.26) follows directly from (3.22) and (3.24)
since the order in which customers are sent into service in the GI/GI/K queune is the
same as the order in which they entered it. However this statement does not hold for K
GI/GI/1 queues in parallel.

Our next step is to show that

d., >d n=0,1...(3.27)

2
i
To that end, using the basic recursion of Theorem 2.1, it is not very difficult to see that,
df,_H = max{d’, J} + v} n=0,1...(3.28)

for i = 1,2. We now prove (3.27) by induction. It is plain from (3.22) that
dh = X3 +v3 > X +vg =dj (3.29)
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and (3.27) is thus satisfied for n = 0. Assume that (3.27) is true for somen =m > 0. i.e.,

dy, 2 dy, (3.30)
it immediately follows
d:u-}-l Z d;zu-i—] (331)
and this completes the induction.
Since
Yi=d\ —-ad, n=0,1...(3.32)
for i = 1,2, it directly follows that (3.23) holds. E

The next corollary follows directly from the above result and Theorem 3.1.

Corollary 3.1 Consider a two stage disordering system, with hop-by-hop resequencing,
in which the first stage s a GI/GI/K, queue and the second stage is GI/GI[Ky queue.
If any of the following changes (i)-(1if) are made to the system, where

(i) The number of servers in either or both disordering systems is increased to K; +
ki kyj = 0, while keeping the service distribution of the additional servers the same as those
of the original servers,

(ii) The service processes in either or both the disordering systems is changed to
{v2;36°,0 = 1,2, such that

v k. I=1;2, n=101...[3.33)

then
Yo 2u Xy n=0,1...(3.44)

Proof. (i) Consider the case when the GI/GI/K, queue is altered. For i = 1,2, let

h customer to enter it, before and

X! denote the system delay in this queue of the n'
after alteration. Tt is clear from Theorems 3.1 that in each of the cases (i)-(iii) above, the
following equation

D i 35, O n=0,1...(3.45)
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15 satisfied. Hence the conditions of Theorem 3.2 are satisfied in this case, so that (3.44)
follows directly from (3.23).

Now consider the case when the GI/GI/K: queue is altered. In this case

ul =u? and X} = X? viie=0; X

T

For case (i) (3.44) follows from the fact that J} > J2 for all n = 0,1. .. while for case (ii),

(3.44) follows from the fact that v} > v2 for all n = 0,1.... The details are left to the

mterested reader.
|

The next result extends Corollary 3.1, to any number N, of multi-server queues in
tandem.
Corollary 3.2 Consider a N stage disordering system, with hop-by-hop resequencing, wn
which the i*" stage corresponds to ¢ GI/GI/K; queue 1 <i < N. If any of the following
changes are made, where

(i) The number of servers in the i'" gqueue is increased to K;+k; with k; > 0,<i < N,
while keeping the service disiribution of the additional servers the same as those of the
original servers,

(ii) The service process in the i** queue, 1 <i < N, is changed to {o2;}5°. such that

ni

0%, > onis n=0,1...(3.36)
then
Yl S X = ,1:+. (8370

Proof. A short sketch of the proof is provided, the details of which are left to the reader.

Suppose that the i'" queue is altered. Then the delay of a customer in the first (2 — 1)

b queune will

quenes is unchanged, however the departure epoch of a customer from the i
be earlier in the altered system. This in turn implies that the departure epoch of that
customer will be earlier in each of the downstream queues, and ultimately the system,
for the altered case. This can be proved in exactly the same way as Theorem 3.3.1, and

implies (3.50).
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3.3 The Optimality of End-to-End Resequencing

Given a multi-stage disordering system, a problem of considerable interest is the effect
of various resequencing strategies on system delay. Yum and Ngai [31], presented simu-
lation results on the comparison of resequencing delays for the two kinds of resequencing
strategies in a two hop disordering system (Fig 4). The disordering in both stages was
carried out by M/M/K queucs. In the first case, resequencing was done after a customer
had traversed both queues, while in the second case, resequencing was implemented af-
ter each queune. We shall hereafter refer to the first strategy as end-to-end resequencing,
and to the second strategy as hop-by-hop resequencing. The simulation results showed
that the average hop-by—hop resequencing delay was greater than the average end-to—end
resequencing delay for two stage disordering systems.

In the present section we shall compare different kinds of resequencing strategies in
tandem systems, when the disordering is due to infinite server queunes. Our results are
stronger than the simulation results in [31] in two respects. The ordering we get is strict
sample path ordering for each customer, and secondly it holds for any number of disordering
stages. However we have been able to prove the result only for infinite server quenes.

The discussion starts with the two hop resequencing systems depicted in Figs 4.1 {a)
and 4.2 (b) above. For all n = 0,1..., pose

. Delay of the n** customer in the end-to-end resequencing system.

b customer in the hop-by-hop resequencing system.

i4—’:11

Ya: Delay of the n'

X,: Delay of the n'® customer in the first disordering system of the hop-by-hop rese-
quencing tandem system.

X, Delay of the n*" customer in the first disordering system of the end—to-end resequenc-
ing tandem system.

tpyy: Inter-arrival time the (n + 1)™* and the n' customers in the hop-by-hop tandem

resequencing system.
fp41: Inter-arrival time between the (n + 1)™! and the n!* customer in the end-to-end

resequencing tandem system.
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v,: Delay of the n'® customer in the second disordering system of the hop—by—hop rese-
quencing tandem system.

#,: Delay of the n* customer in the second disordering system of the end-to-end rese-
quencing system.

D,: Delay of the n'* customer in the hop-by-hop resequencing scheme, due to the two
disordering systems and the first resequencing box.

Zn: Delay of the n** customer in the hop-by-hop resequencing system, due to the first
disordering stage and the first resequencing box.
Since our aim is to understand how the system times vary with the resequencing

strategy, we assume that the two disordering systems and the inter-arrival time statistics

are identical in both cases. More precisely, if all these sequences are defined over some

common sample space (Q, IF, P), then the following equations

Unt+1 = Un41 n=0,1...(3.38a)
Xo=X, n=0,1...(3.38h)
Upnt1 = Tp+1 n = 0, 1 (. (338(‘)

are assumed to hold. Note that in writing (3.38¢), we have made a subtle assumption which
restricts the class of disordering systems considered here. Condition v, = T,, does not
hold true in general as we now show. Consider the situation where the second disordering
system is a GI/GI/K queue, in which case the n'™ customer to enter the system may
undergo different queuneing delays at this queue, depending on whether the resequencing
is done hop-by-hop or end-to-end. This is because of the first resequencing box which
drastically changes the nature of the arrival process into the GI/GI/K queue. Hence
(3.38c) is applicable only to those systems in which the second disordering delay is not
affected by the arrival process into it. One class of disordering systems to which this is
applicable, is the class of systems having an infinite number of servers provided the delays
in this system are generated independently of the arrival process {tun+1}g° as well as the
delays {X,}5° in the first disordering system. In all the results presented in this section,

we shall restrict ourselves to this case.

Theorem 3.3 Consider a two stage disordering system with resequencing, in which the



second stage has an infinite number of servers, then the system delay for the end—to-end
resequencing system is stochastically upper bounded by the system delay of the hop-by-hop
resequencing system, i.e.,

Yin Sgt Y n=10,1...(3.39)

Proof. From the statement of the theorem we can assume that (3.38) holds on some
probability space (2, IF, P).

First consider the end—to—end resequencing system. Application of Theorem 2.1 gives

-
/

Yn.;.] = max{X,,_,.l + Undg1, ) Y ‘tln.H} = 0, 1... (340)
for the end to-end rescquencing system, and
Yot+1 = max{Dp+1,Yn — Un+1} nie=0,]...(3:41)

for the hop-by-hop resequencing system.

We now derive a recursive expression for the sequence { D, }§°. Application of Theorem
2.1 to the first disordering stage followed by resequencing in the hop—by—hop resequencing
system yiclds

Zn+1 — max{XmH, Z" — U"+1} ne= 01 (342)

W’itll Z() = Xo. Sin(_‘(:‘.

D, =Z, + va n:=0;1..(343)

it follows from (3.42) that
D1 = a1 + max{X,s1, Dp — vn — Upt1} n=0,1...(3.44)

with Do = vy + .Yo.

Next we use induction to prove that

Yo <Y, n=0,1...(3.45)

in which case (3.39) immediately follows.
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For n = 0, under the zero initial loading assumption in both systems, it is plain that
Yo — Dn = Uy +4Y0 =?0,

whence (3.45) is satisfied for the 0 customer. The induction step assumes that (3.45)

holds for the mt® customer so that
0 (3.46)
or equivalently,
i/_;m - :{m—l-l S y.rn = 14'"1-}-1 (347)
Since the inequality
:—X:"pfl _<_ IH'(IX{,Ym+]. D,n IR t"ﬂl - U-y".{.]} (3-48)
always holds, it follows that
.S—m-}-] =+ :Y;m-i-] < Srr|+1 + max{}{m-}-lst — Um — um+l} (349)
by (3.44), this is equivalent to
Tt + X1 < Daiga (3.50)

By combining (3.47) and (3.50), it follows that
ma"'\.'{?m —= Um41, Um+1 + 7(-r‘n-'i-] < max{}’?n = Um+1, Dm+1} (3:)1)

and we now easily obtain from (3.40)-(3.41) that

Y 41 S Youg

i.e., (3.45) holds for n = m + 1. Since (3.45) holds for n = 0, it follows by induction that

it is true forall n =0,1....

il
Note that the assumptions of Theorem 3.3 can be weakened to
Un41 < Unt1
X2 Xy n=0,1...(3.52)

Un 2 Un
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without changing the conclusion of the theorem. The reader might expect that in order to
extend the theorem to the case when the second disordering system has a finite number of
servers, it is sufficient to verify that

Un = Ty n=>0.1...(3.33)

However there is some reason to believe that (3.53) might not hold for this case, as intu-
itively argued below.
Let us consider a system in which the disordering is carried out by a GI/GI/2 queue

in both stages. Consider the n'®

customer €, which is in the process of receiving service
from one of the servers in the first GI/GI/2 queue in the hop-by-hop resequencing system.
If his service time is inordinately long, then customers who had arrived after him into the
first queue, will complete their service before him and wait in the resequencing box for C,
to complete service. Assume that customers Ch 41 to Cp4r have gone out of sequence with
respect to C,, and are waiting in the resequencing box for Cy,. After C,, completes service,
he will immediately join the second queue (before Cy4y to Chyr), since he does not suffer
any resequencing delay in the first resequencing box. On the other hand, for the case of
end-to-end resequencing, Cpay to Crpx would immediately join the buffer of the second
quene after getting served in the first queue. Consequently, after €, finishes service in
the first queue he would find a bigger queue length in the second quene, than for the case
of hop-by-hop resequencing. Thus we would expect the delay of C, in the end-to-end
resequencing system to be greater than his delay in the hop-by-hop resequencing system.
The delays of Cpiq to Cryt though would be smaller in the end-to-end resequencing
system. Hence it is not unlikely that the average delay for end-to-end resequencing 1s
smaller than the average delay for hop-by-hop resequencing, even though sample path
ordering is not possible, in fact false and comparison results can only be expected in a

weaker sense.

Corollary 3.3 extends the result of Theorem 3.3 to any number, say NN, of infinite
server queunes in tandem. For all n =0,1,..., pose
oN: Delay of the n'" customer due to the N disordering stage in the hop-to-hop

resequencing system.
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7 : Delay of the n'* customer due to the N** disordering stage in the end-by-end
resequencing system.
Y,N: delay of the n'" customer in the hop-by—hop resequencing system consisting of

N disordering stages.

T"\T

th

: delay of the n™ customer in the end-to-end resequencing system consisting of

m

N disordering stages.

Corollary 3.3 Given N (> 2) GI/GI[oc queues in tandem, the hop-by-hop resequencing
delay for a customer is stochastically no smaller than the end-to-end resequencing delay

for that customer. t.e.,

=N

e n=0,1...(3.54)

Proof. Since we are only interested in comparing system times due to the difference in

resequencing strategies, we will assume that

o =0l n,N=0,1...(3.55a)
Un+1 = Unt1 n=0,1...(3.55b)

The proof proceeds by a double induction on the number of customers as well as the
number of stages. By Theorem 3.3, it is clear that that (3.54) is true for N = 2. We will
show that (3.54) holds for an arbitrary value of N = M.

Applyving Theorem 2.1, we obtain the relations

YM, =max{¥ M7 +oM Y —uasa) n=0,1...(3.56)
and
: M i
o . el B
Yo = max{z ks Ly — U-n+1} r=01.:.(3:87)
i=1
We have to show that
M -0 :
¥y <1y n=0,1...(3.58)
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Assume that (3.58) is true for n = m

M

6 TS (3.59)
which implies that
?i.l —Upt1 S Y,,'y = Um41 (360)

Next by an induction on the number of disordering stages, we demonstrate that

M-—1

Z 'ﬁ:-n.-i-) = }m-{-l (361)

=1

From (3.48), it is clear that (3.61) holds for M = 2. As the induction step assume that
(3.61) holds for M = L, i.e.,

L—1
-L 1 ¢
Z vm+1 <Y m+1 (3-62)
It 1s clear that
Y 1:l;+l = ln"‘x{} m+l SE vm—H | YL ""H"l} (363)
Henee it is immediate to see that
L—-1
Yir 2 Yl F g 2 Z Ting1 + Sm+1
=1
L
=X T (3.64)
t=1

Hence (3.62) holds for M = L + 1 as well, completing the induction step. Hence from
(3.60)—3.61), it follows that

Vit Yok (3.65)

thus completing the induction step and the proof.

APPENDIX A
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Some useful properties of the strong stochastic ordering are stated in this appendix

without proof. For proofs the reader may consult [24], [25].
Definition. A RV X 1s stochastically smaller than a RV Y, writlen as X <, Y. of

P[X > a] < P[Y > q] for all a (A1)

(1) If f is a non-decreasing function, then X <., Y, if and only if,

Elf(X)] < E[f(Y)] (A2)

(2) (Lehmann [16]) F' and G are distributions such that F' <., G, if and only if there exist
RV’s X and Y defined on the same probability space (€2, IF', P) for which

X(w) €< Y(w) for allw € Q (A3)

and

P({w : X(w) < z}) = F(x)
P({w:Y(w) <y}) =G(y)

(A4)

(3) Let {X,}} and {Y,}} be independent sequences of iid random variables. If X; <,

Y;.1 <: < n, then for any non-decreasing function f,
f(_Yl,,_,,_'")Sf(Yl,.,.,Yu) (-’15)

(4) The weak convergence property.
Assume that the sequences {F,} and {G,} converge weakly to F and G and that
F, <4 Gn,then
PG (416)

(5) A non-negative RV is defined to be new better than used (NBU) if

PIX-a<z|X>d <P[X >z (AT)
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1]

2]

3]

[10]

for all @ > 0. If F is a NBU distribution having mean g, then

F <y exp(p) (A8)
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