
Introduction to OpenFlow

[Type text]

Data sheet 	

An Introduction to OpenFlow

Subir Varma

1.0	Introduction	
A few years ago, Academics and Students at Stanford University, were frustrated by the
fact that they were not able to test out their proposed network control algorithms in the
environment of an actual production network. This was because almost all networking
products were built using proprietary hardware and software, and did not feature any
open interfaces that could be used to change the programming on the box. Motivated by
this, they came up with a new way by which external software could be used to control
the behavior of networking nodes. The protocol that is used on this new control interface
that they designed was named OpenFlow.

Starting from these origins, in the last couple of years OpenFlow leapt out of Academia
and has been embraced by a section of the networking industry that was looking for new
solutions in areas where traditional networking architectures were running into their
limits, such as Data Center Networks. The broader networking industry, including the
Service Provider and Enterprise segments, is also beginning to take these ideas
seriously, and in the coming years we are likely to see new products and technologies in
these areas that make use of OpenFlow.

The objective of this White Paper is to give a brief introduction to OpenFlow and to the
related areas of Software Defined Networking and Network Virtualization. These latter
two technologies are often paired up with OpenFlow in the popular press, but there is a
certain amount of confusion about their exact definition, that we will try to clear up. The
White Paper is organized as follows: In Section 2 we motivate OpenFlow by describing
issues and problems that cannot be solved within the framework of legacy networking.
Section 3 is devoted to a description of the OpenFlow protocol. In Section 4 we describe
Network Virtualization and how OpenFlow can be used for doing this function. In Section
5 we talk about how OpenFlow is influencing Service Provider networks, while in Section
6 is on the subject of Data Center networks, and finally in Section 6 we present our
conclusions.

Introduction to OpenFlow

[Type text]

2.0	Why	Do	We	Need	OpenFlow?	

Figure 1

OpenFlow is often referred to as a way to Modernize the Network Control Plane, which
begs the question as to why the control plane needs modernization and what is wrong
with the way it works today.

Figure 1 shows an example of todays networking paradigm, consisting of nodes built
using custom hardware designs and running a proprietary operating system. Each of
these nodes features a Data Plane that does the actual forwarding of the data packets,
and a Control Plane that influences the path that the packet takes, as well as other
actions can be performed on the packet, such as tunneling, firewalling, traffic
management etc. As shown in the figure, control plane algorithms make use of an
abstract view of the network that is created by algorithms in the node, referred to as the
Distributed System. The job of the Distributed System is maintain an current view of the
network topology, by initially discovering the topology and later reacting to events such
as link or node failures (or additions), that change the topology. The major portion of the
work required to design a Control Algorithm, actually goes into the design of the
Distributed System. Taking the example of the OSPF routing protocol: A description of
the Distributed System takes 101 pages, while a description of Djikstra’s algorithm takes
up only 4 pages.

Today, with every Control Algorithm comes with its own Distributed System, which leads
to the following: Designing a new control algorithm is a major undertaking, which
requires a lot of co-ordination between the hardware and software in the node. Also, all

Introduction to OpenFlow

[Type text]

the nodes need to be able to inter-operate with each other when using the algorithm, as
a result it has to be approved by the Standard’s Bodies. All this makes it very difficult to
introduce new control algorithms into the network, which has slowed down the pace of
innovation in the networking industry. This problem, in combination with the closed
nature of the hardware and software in the networking nodes, has led to the situation
that new features are introduced at the pace of hardware development, which is typically
several years.

A problem created due to this state of affairs is that the Network Operator has very little
control on the way in which his network works, and is not able to add any proprietary
value added features to differentiate his network from that of the competition. He is
forced to buy the same or very similar product from all vendors, whose price keeps going
up due to the fact that the complexity of these products keeps increasing. The increase
in complexity can be attributed to the fact that the vendor makes a generic product that
incorporates all the standards that have been introduced in the last thirty years; the
number of rfcs from the IETF has crossed the 6500 mark.

Another problem created due to this deficiency in network control arises for the cases in
which the network control rules have to be manually configured into each node. This is
actually the case for most network control rules, other than regular routing. Not only is
this labor intensive and error prone, but also has to redone every time that there are
changes in the network due to users or end nodes joining or leaving the network. A
special case of this arises in modern Data Center networks, each of which may feature
tens of thousands of Virtual Machines (VMs), distributed over multiple servers. Each of
these VMs are subject to movement from one server to another in order to balance out
server loads using technologies such as vMotion. However this also means that the
network configuration is constantly changing, and control rules in the networking nodes
such as VLAN rules or security policies have to be modified accordingly. There is no way
to do this within the constraints of the current network control paradigm.

Current networks feature technologies such as VLANs and MPLS that enable the
operator to split up the links at Layer 2 (using VLANs) or Layer 3 (using MPLS).
However there is no way in which the network operator can create multiple virtual
networks, in which not just the links, but also the node resources such as buffering,
routing tables, ports etc are sliced into multiple virtual networks. Each of these virtual
networks should be able to run their own control algorithms, for example Virtual Network
1 could be a bridged network, while Virtual Network 2 could a routed network.

Introduction to OpenFlow

[Type text]

3.0	OpenFlow	Description	

Figure 2

Figure 2 shows the basic architecture for an OpenFlow controlled network, which is
made up of two principal components, namely OpenFlow Switches and the OpenFlow
Controller. Note that the control plane, shown at the top of the figure, is centralized and
exists separately from the data plane located in the network switches. The control node
communicates with the switches using an out-of-band communication network (shown
with the dotted line), using the OpenFlow protocol. We now describe the workings of the
OpenFlow switch, followed by the Controller.

Introduction to OpenFlow

[Type text]

3.1	The	OpenFlow	Switch	

commercial “name-brand” equipment vendors to provide an
open, programmable, virtualized platform on their switches
and routers so that researchers can deploy new protocols,
while network administrators can take comfort that the
equipment is well supported. This outcome is very unlikely
in the short-term. Commercial switches and routers do not
typically provide an open software platform, let alone pro-
vide a means to virtualize either their hardware or software.
The practice of commercial networking is that the standard-
ized external interfaces are narrow (i.e., just packet forward-
ing), and all of the switch’s internal flexibility is hidden. The
internals differ from vendor to vendor, with no standard
platform for researchers to experiment with new ideas. Fur-
ther, network equipment vendors are understandably ner-
vous about opening up interfaces inside their boxes: they
have spent years deploying and tuning fragile distributed
protocols and algorithms, and they fear that new experi-
ments will bring networks crashing down. And, of course,
open platforms lower the barrier-to-entry for new competi-
tors.

A few open software platforms already exist, but do not
have the performance or port-density we need. The simplest
example is a PC with several network interfaces and an op-
erating system. All well-known operating systems support
routing of packets between interfaces, and open-source im-
plementations of routing protocols exist (e.g., as part of the
Linux distribution, or from XORP [2]); and in most cases it
is possible to modify the operating system to process packets
in almost any manner (e.g., using Click [3]). The problem,
of course, is performance: A PC can neither support the
number of ports needed for a college wiring closet (a fanout
of 100+ ports is needed per box), nor the packet-processing
performance (wiring closet switches process over 100Gbits/s
of data, whereas a typical PC struggles to exceed 1Gbit/s;
and the gap between the two is widening).

Existing platforms with specialized hardware for line-rate
processing are not quite suitable for college wiring clos-
ets either. For example, an ATCA-based virtualized pro-
grammable router called the Supercharged PlanetLab Plat-
form [4] is under development at Washington University,
and can use network processors to process packets from
many interfaces simultaneously at line-rate. This approach
is promising in the long-term, but for the time being is tar-
geted at large switching centers and is too expensive for
widespread deployment in college wiring closets. At the
other extreme is NetFPGA [5] targeted for use in teaching
and research labs. NetFPGA is a low-cost PCI card with
a user-programmable FPGA for processing packets, and 4-
ports of Gigabit Ethernet. NetFPGA is limited to just four
network interfaces—insufficient for use in a wiring closet.

Thus, the commercial solutions are too closed and inflex-
ible, and the research solutions either have insufficient per-
formance or fanout, or are too expensive. It seems unlikely
that the research solutions, with their complete generality,
can overcome their performance or cost limitations. A more
promising approach is to compromise on generality and to
seek a degree of switch flexibility that is:

• Amenable to high-performance and low-cost imple-
mentations.

• Capable of supporting a broad range of research.

• Assured to isolate experimental traffic from production
traffic.

Controller

OpenFlow
Switch

Flow
Table

Flow
Table

Secure
Channel

Secure
Channel PC

OpenFlow
Protocol

SSL

hw

sw

Scope of OpenFlow Switch Specification

Figure 1: Idealized OpenFlow Switch. The Flow
Table is controlled by a remote controller via the
Secure Channel.

• Consistent with vendors’ need for closed platforms.

This paper describes the OpenFlow Switch—a specifica-
tion that is an initial attempt to meet these four goals.

2. THE OPENFLOW SWITCH
The basic idea is simple: we exploit the fact that most

modern Ethernet switches and routers contain flow-tables
(typically built from TCAMs) that run at line-rate to im-
plement firewalls, NAT, QoS, and to collect statistics. While
each vendor’s flow-table is different, we’ve identified an in-
teresting common set of functions that run in many switches
and routers. OpenFlow exploits this common set of func-
tions.

OpenFlow provides an open protocol to program the flow-
table in different switches and routers. A network admin-
istrator can partition traffic into production and research
flows. Researchers can control their own flows - by choosing
the routes their packets follow and the processing they re-
ceive. In this way, researchers can try new routing protocols,
security models, addressing schemes, and even alternatives
to IP. On the same network, the production traffic is isolated
and processed in the same way as today.

The datapath of an OpenFlow Switch consists of a Flow
Table, and an action associated with each flow entry. The
set of actions supported by an OpenFlow Switch is exten-
sible, but below we describe a minimum requirement for
all switches. For high-performance and low-cost the data-
path must have a carefully prescribed degree of flexibility.
This means forgoing the ability to specify arbitrary handling
of each packet and seeking a more limited, but still useful,
range of actions. Therefore, later in the paper, define a basic
required set of actions for all OpenFlow switches.

An OpenFlow Switch consists of at least three parts: (1)
A Flow Table, with an action associated with each flow en-
try, to tell the switch how to process the flow, (2) A Secure
Channel that connects the switch to a remote control pro-
cess (called the controller), allowing commands and packets

Figure 3a

to be sent between a controller and the switch using (3) The
OpenFlow Protocol, which provides an open and standard
way for a controller to communicate with a switch. By speci-
fying a standard interface (the OpenFlow Protocol) through
which entries in the Flow Table can be defined externally,
the OpenFlow Switch avoids the need for researchers to pro-
gram the switch.

It is useful to categorize switches into dedicated OpenFlow
switches that do not support normal Layer 2 and Layer 3
processing, and OpenFlow-enabled general purpose com-
mercial Ethernet switches and routers, to which the Open-
Flow Protocol and interfaces have been added as a new fea-
ture.

Dedicated OpenFlow switches. A dedicated OpenFlow
Switch is a dumb datapath element that forwards packets
between ports, as defined by a remote control process. Fig-
ure 1 shows an example of an OpenFlow Switch.

In this context, flows are broadly defined, and are limited
only by the capabilities of the particular implementation of
the Flow Table. For example, a flow could be a TCP con-
nection, or all packets from a particular MAC address or
IP address, or all packets with the same VLAN tag, or all
packets from the same switch port. For experiments involv-
ing non-IPv4 packets, a flow could be defined as all packets
matching a specific (but non-standard) header.

Each flow-entry has a simple action associated with it;
the three basic ones (that all dedicated OpenFlow switches
must support) are:

1. Forward this flow’s packets to a given port (or ports).
This allows packets to be routed through the network.
In most switches this is expected to take place at line-
rate.

2. Encapsulate and forward this flow’s packets to a con-
troller. Packet is delivered to Secure Channel, where
it is encapsulated and sent to a controller. Typically
used for the first packet in a new flow, so a controller
can decide if the flow should be added to the Flow
Table. Or in some experiments, it could be used to
forward all packets to a controller for processing.

3. Drop this flow’s packets. Can be used for security, to
curb denial of service attacks, or to reduce spurious
broadcast discovery traffic from end-hosts.

An entry in the Flow-Table has three fields: (1) A packet
header that defines the flow, (2) The action, which defines
how the packets should be processed, and (3) Statistics,
which keep track of the number of packets and bytes for
each flow, and the time since the last packet matched the
flow (to help with the removal of inactive flows).

In the first generation “Type 0” switches, the flow header
is a 10-tuple shown in Table 1. A TCP flow could be spec-
ified by all ten fields, whereas an IP flow might not include
the transport ports in its definition. Each header field can
be a wildcard to allow for aggregation of flows, such as flows
in which only the VLAN ID is defined would apply to all
traffic on a particular VLAN.

The detailed requirements of an OpenFlow Switch are de-
fined by the OpenFlow Switch Specification [6].

OpenFlow-enabled switches. Some commercial
switches, routers and access points will be enhanced with

In VLAN Ethernet IP TCP

Port ID SA DA Type SA DA Proto Src Dst

Table 1: The header fields matched in a “Type 0”
OpenFlow switch.

the OpenFlow feature by adding the Flow Table, Secure
Channel and OpenFlow Protocol (we list some examples in
Section 5). Typically, the Flow Table will re-use existing
hardware, such as a TCAM; the Secure Channel and Proto-
col will be ported to run on the switch’s operating system.
Figure 2 shows a network of OpenFlow-enabled commercial
switches and access points. In this example, all the Flow
Tables are managed by the same controller; the OpenFlow
Protocol allows a switch to be controlled by two or more
controllers for increased performance or robustness.

Our goal is to enable experiments to take place in an ex-
isting production network alongside regular traffic and ap-
plications. Therefore, to win the confidence of network ad-
ministrators, OpenFlow-enabled switches must isolate ex-
perimental traffic (processed by the Flow Table) from pro-
duction traffic that is to be processed by the normal Layer 2
and Layer 3 pipeline of the switch. There are two ways to
achieve this separation. One is to add a fourth action:

4. Forward this flow’s packets through the switch’s nor-
mal processing pipeline.

The other is to define separate sets of VLANs for experi-
mental and production traffic. Both approaches allow nor-
mal production traffic that isn’t part of an experiment to be
processed in the usual way by the switch. All OpenFlow-
enabled switches are required to support one approach or
the other; some will support both.

Additional features. If a switch supports the header for-
mats and the four basic actions mentioned above (and de-
tailed in the OpenFlow Switch Specification), then we call it
a “Type 0” switch. We expect that many switches will sup-
port additional actions, for example to rewrite portions of
the packet header (e.g., for NAT, or to obfuscate addresses
on intermediate links), and to map packets to a priority
class. Likewise, some Flow Tables will be able to match on
arbitrary fields in the packet header, enabling experiments
with new non-IP protocols. As a particular set of features
emerges, we will define a “Type 1” switch.

Controllers. A controller adds and removes flow-entries
from the Flow Table on behalf of experiments. For example,
a static controller might be a simple application running
on a PC to statically establish flows to interconnect a set
of test computers for the duration of an experiment. In
this case the flows resemble VLANs in current networks—
providing a simple mechanism to isolate experimental traffic
from the production network. Viewed this way, OpenFlow
is a generalization of VLANs.

One can also imagine more sophisticated controllers that
dynamically add/remove flows as an experiment progresses.
In one usage model, a researcher might control the complete
network of OpenFlow Switches and be free to decide how all
flows are processed. A more sophisticated controller might
support multiple researchers, each with different accounts
and permissions, enabling them to run multiple indepen-
dent experiments on different sets of flows. Flows identified

Figure 3b

A modern Ethernet switch or router contains Flow Tables that run at line rate to
implement firewalls, NAT, QoS etc and to collect statistics (Figure 3a). A Flow Table
consists of a list of Packet Flows, accompanied by an action that the switch has to
perform on that flow. This basic construct is also used in an OpenFlow switch.

A Flow Table is typically implemented using TCAMs in order to get the line rate
performance. If we are able to directly control the entries in the Flow Table, then we can
bypass the control logic in the switch, and be able to influence packet flows, which is
precisely the function performed by the OpenFlow protocol.

An OpenFlow switch consists of at least three parts: (1) A Flow Table, (2) A Secure
Channel that connects the switch to a controller, allowing command and packets to be
sent between the controller and the switch using (3) The OpenFlow protocol, which
provides an open and standard way for a controller to communicate with a switch. By
specifying a standard interface through which entries in the Flow Table can be defined
externally, the OpenFlow switch avoids the need for network operators to program the
switch.

The set of actions supported by the Flow Table in the switch is extensible, but consists
of the following minimum set:

• Forward this flow’s packets to a given port (or ports). This allows packets to be
routed through the network.

• Encapsulate and forward this flow’s packets to the controller. The packet is
delivered to the Secure Channel module in the switch, where it is encapsulated

Introduction to OpenFlow

[Type text]

and sent to the controller. This is typically used for the first packet in the flow, so
that the controller can decide if the flow should be added to the Flow Table.

• Drop this flow’s packets. This can be used for security or to curb DoS attacks.

An entry in the Flow Table has three fields: (1) A Packet Header that defines the flow,
(2) The action, which defines how the packets should be processed, and (3) Statistics,
which keep track of the number of packets and bytes for each flow, and the time since
the last packet matched the flow (to help with the removal of inactive flows).

In the first generation of OpenFlow switches (referred to as “Type 0” switches), the flow
header is a 10-tuple as shown in Figure 3b. A TCP flow could be specified using all 10
fields, while an IP flow might not include the TCP ports in its definition. Each header field
can be a wildcard to allow for aggregation of lows. For example if only the VLAN ID is
specified, then it would apply to all traffic on a particular VLAN.

OpenFlow	Enabled	Legacy	Switches	

Instead of building an OpenFlow switch on a new hardware platform, existing
commercial switches and routers can be enhanced with the OpenFlow feature by adding
the Flow Table, Secure Channel and OpenFlow protocol. The Flow Table can re-use
existing hardware, such as a TCAM, while the Secure Channel and OpenFlow Protocol
can be ported to run on the Switch’s operating system. A number of networking vendors,
including HP, Juniper and NEC have taken precisely this approach to make their existing
products into OpenFlow switches. However this approach does come with some
performance impacts, which we will review in Section 3.3.

3.2	The	OpenFlow	Controller	

The OpenFlow controller can be implemented in software on a standard server platform.
The high level structure of a controller is shown in the top portion of Fig 3a. It is
implemented using a layered architecture, with the bottom layer called the Network
Operating System or NoS, and the upper later consisting of one or more Applications
used to control the OpenFlow switches. Analytics etc. In this architecture neither the
NoS nor the interface between the NoS and the Applications has been standardized yet,
only the interface between the NoS and the switches has been specified with OpenFlow.

The NOS layer is responsible for managing the communications between the controller
and the switches. In addition it also responsible for creating and maintaining a current
topology map of the network. This topology map is exposed to the applications running
in the controller on its northbound interface.

Note that the structure of the NoS results in the creation of a common Distributed
System which can be shared by all the applications running in the controller. As a result
of this design, every control application shares a common Distributed System, unlike in
current networks where Applications need to implement their own Distributed System
(Fig 1). Moreover, the problem of designing a distributed control algorithm is reduced to
a pure software problem, since the control algorithm can operate on the network
abstraction created by the NOS rather than the real network. This aspect of the
Controller design gives this approach a lot of its power, since now it is a much easier
task to design a new control application for the network, for the following reasons: (1)
The designer does not have worry about taking his algorithm to a Standards Body, since
all aspects of inter-operability between nodes are taken care of by OpenFlow, (2) The

Introduction to OpenFlow

[Type text]

problem of designing new Applications is now reduced to a problem in Software
Engineering, rather than a more difficult problem in Distributed Algorithms. This ability to
control the network by purely software means is referred to as Software Defined
Networking.

Examples of Applications include Routing, Network Configuration and Security, Firewall
Rules, Load Balancing, Traffic Management etc

3.3	Performance	Issues	

An extensive study of OpenFlow performance on legacy switches was done at HP Labs
[3]. Their main findings can be summarized as follows:

• More than the central controller, the switches themselves are a bottleneck in flow
set up.

• The effective bandwidth available on the control-plane between the switch and
the controller was much less than expected, which adds unacceptable latency to
flow setup, and cannot provide flow statistics timely enough for traffic
management tasks as load balancing.

• Maintaining complete visibility in a large OpenFlow network requires hundreds of
thousands of flow table entries at each switch. However commodity switches are
not built with such large flow tables, making them inadequate for many high
performance OpenFlow networks.

These limitations are due to the fact that switches have finite bandwidths between their
data and control planes, and finite compute capacity. This study leads to the conclusion
that switches that are optimized for OpenFlow will require a new hardware design with
larger TCAMs and an increase in bandwidth between the data and control parts of the
switch.

There have been several projects that have been undertaken to scale up the OpenFlow
controller, including Onix [5] and Maestro [6].

Introduction to OpenFlow

[Type text]

4.0	Network	Virtualization	using	OpenFlow	

Figure 4

Recall that in the OpenFlow model described in Section 3.0, the Applications running on
the OpenFlow Controller operate on an abstraction of the network topology that is
created by the NOS layer. This network topology was based on the actual physical
nodes in the network. But what if instead of exposing the physical topology to the
Applications, they instead see a logical topology instead. Instead of interfacing directly to
the networking hardware as is done today, the Applications read and write to the virtual
forwarding elements making up the logical topology. This approach allows network state
(forwarding and configuration) to be largely de-coupled from the underlying hardware.

The most compelling use case for this architecture arise when we consider a many-to-
many mapping between the logical and physical forwarding elements. For example,
multiple logical forwarding elements may share the same physical switch (shown in Fig
4), or a single logical forwarding element may span multiple physical switches. This latter
approach is being applied to data centers networks, where an entire data center can be
managed as a single switch instance. The first model shown in Fig 4, is also very
attractive to Network Operators, since it allows them to slice up their network into
multiple segregated parts, each of which may have their own topology, and could be
running their own control algorithms. An Operator can slice up a network in this manner
between multiple protocols (IPv4, IPv6 for example), multiple MVNO customers or even
between multiple applications (VoIP, IPTV).

Note that current networks also support virtualization in the form of VLANs, tunnels of
various types (GRE, IPSec), VRF contexts etc. However these do not provide an
adequate abstraction to build a physical topology independent control software.
Managing tunnels, VLAN configurations and VRF contexts requires significant manual
network management, and component failures result in disruption of the virtual
configurations. The OpenFlow based virtualization approach makes use of the
sophisticated hardware support for these existing virtualization techniques, but adds

Introduction to OpenFlow

[Type text]

more comprehensive virtualization solution in which hardware can be treated generically
as a resource pool of forwarding capacity and hardware changes do not disrupt the
logical view of the system.

In order to carry out the virtualization, a new layer is introduced at the controller, known
as the Network Hypervisor (Fig. 4). It communicates with the physical network nodes
using OpenFlow which gives it a view of the physical network topology, while from above
it is given one or more logical views of the network. The main job of the Hypervisor is to
implement the desired logical functionalities through configuration of the physical
network. Thus the hypervisor is the point where the logical network(s) is mapped to the
physical network.

The hypervisor achieves this mapping by creating logical forwarding elements, where
each forwarding element has a set of logical ports, a set of lookup tables and other basic
forwarding primitives such as counters, en/de-capsulation etc. When a packet comes
into a physical switch, it gets mapped to its logical context (or network slice), which
determines the forwarding rule which leads to the logical port for forwarding the packet.
The logical port then gets mapped back to the physical next-hop address. Note that the
logical port may correspond to a physical port on another physical switch (for the case
when multiple physical switches form a logical switch). Packets can be mapped to logical
contexts using a variety of mechanisms, such as identifying tags like the VLAN or MPLS
headers, or the ingress port etc.

Introduction to OpenFlow

[Type text]

5.0	OpenFlow	in	Service	Provider	Networks	
Service Providers today face a number of challenges for which they are urgently looking
for solutions, including:

• Rapidly increasing of deploying new infrastructure to keep up with traffic growth,
which is not matched by a corresponding increase in service revenues. If this
trend continues, then in a few years, the Service Provider business model will
become un-profitable, with costs exceeding revenues. OpenFlow promises to
reduce infrastructure costs by replacing expensive, feature-rich proprietary
networking nodes by commodity switches controlled centrally through OpenFlow.

• Inflexibility in Network Control: The Service Provider is not able to add value to
his network which limits his differentiation when compared to the competition,
since everyone is essentially deploying an identical network architecture. The
reason for this is that under the current rules, a new network control protocol
requires that it be blessed by a Standards Body in order to ensure inter-
operability. This is typically a multi-year process, at the end of which network
vendors deploy the new protocol, but also make it available to all Operators, thus
limiting differentiation. With OpenFlow on the other hand, Service Providers can
deploy their own value added proprietary network control protocols, without
having to worry about standardization. Moreover, since the process of designing
new protocols is reduced to a software engineering problem, it is subject to much
faster development cycles as compared to the current paradigm in which new
protocols are constrained by the hardware development cycle, which is typically
a multi-year effort.

• Support for Multi-Tenancy: Service Providers are constrained by existing network
technology in area of slicing their network into multiple virtual pieces. This
capability is important to them for a number of reasons: (1) It will enable Service
Providers to better support MVNO customers on their network, leading to
increased revenues. (2) It will enable Service Providers to test out new protocols
on their production network, without affecting revenue generating traffic.
(3) Several operators are moving towards providing Cloud based services, for
which they are converting their Central Offices into Data Centers. Multi-tenancy
through network virtualization is one of the essential technologies required in
Data Centers (more on this topic in Section 6).

An area, which is of more immediate interest to Tellabs, is the implication of OpenFlow
for Optical Transport Networks; this is described in more detail in Section 5.1.

Introduction to OpenFlow

[Type text]

5.1	OpenFlow	and	Optical	Transport	Networks	

Figure 5a

Figure 5b

We provide a brief summary of a joint research project between Ciena Corp. and
Stanford University on the use of OpenFlow for controlling Optical Transport Networks
[7].

The Optical Transport Network today is made up of statically configured switches in
which bringing up a new circuit is a manual operation that can take days. The IP and
Optical networks are separately managed and operated independently, which results in
duplication of functions and resources in multiple layers in addition to capex and opex
burdens. If it were possible to make the Optical Network more dynamic, then it can lead
to several benefits that are hard to provide in packet-only networks, including:

• Dynamic Packet Link Creation/Deletion: This allows the operator to change the
underlying circuit link topology in response to changing traffic demands.

• Application Aware Routing: Instead of forcing all applications to traverse the
same circuit link between routers, it allows operators to dynamically create
circuits tailored to the application. For example, VoIP traffic can be sent over low
latency circuit path, while video traffic can be sent over a low-jitter circuit path.

• Variable Bandwidth Packet Links: By monitoring the bandwidth usage of the
circuits that make up a packet link, the operator can dynamically vary the
bandwidth allocated to those circuits. This would reduce congestion on the
packet link.

• Intelligent Failure Recovery: The failure recovery mechanism can be tailored to
the type of traffic. For example video traffic could circuit protected with pre-

Introduction to OpenFlow

[Type text]

provisioned bandwidth, voice could be dynamically re-routed in the circuit
topology and http traffic could be re-routed in the packet topology.

As we pointed out in Section 3.1, OpenFlow abstracts a data-plane switch as a Flow
Table, and defines a flow to be any combination of L2-L4 packet headers for packet
flows. In a similar fashion, an Optical Switch can be abstracted as a Cross Connect
Table, with the circuit identification fields as shown in Fig 5b. Using these abstractions, it
becomes possible for OpenFlow to control the switching between the packet and circuit
domains, thus leading to a Unified Control Plane for them. Additional details on the
extensions to the OpenFlow protocol to enable this are provided in [8].

Introduction to OpenFlow

[Type text]

6.0	OpenFlow	in	Data	Center	Networks	

Figure 6

Data Centers have undergone enormous changes in the last decade, mostly as a result
of the rapid adoption of Hypervisor technology in servers, leading to the proliferation of
Virtual Machines (VMs). A large data center for example may have as much as 400,000
VMs spread over thousands of servers. This has led to new networking challenges, that
current networks are having difficulty solving, including:

• VMs need to be connected together at Layer 2, in order to allow VM migration
between servers (this required to do server load balancing for example).
However existing Layer 2 protocols are not able to handle the scale of the
network thus created. For example Layer 2 bridging can create broadcast storms
and the lack of hop count field in the Ethernet header can result in infinite loops
in the routing.

• Each VM comes with a Virtual Interface with its own MAC and IP addresses. In a
layer 2 environment, the number of MAC addresses thus created is beyond the
capacity of the bridging tables in current Ethernet Switches.

• If the Data Center Operator wishes to segregate the VMs into multiple Virtual
Networks (see Figure 6), then using available VLAN technology, at most 4096
Virtual Networks can be created. This number is not sufficient to support the
number of users in a large Data Center.

As a result, Data Center networks have seen many recent innovations by vendors in an
attempt to solve these problems. The industry seems to be converging around an
architecture that consists of the following elements:

• A Virtual Ethernet Switch (VES) in Server Hypervisors. All the VMs in the server
connect to the VES through their virtual interfaces, rather than to the external
switch. The first VES implementations were basic bridges, but the trend has been
to make them more intelligent with higher functionality.

• All VESs are connected together using tunneling technologies such as VxLAN,
NvGRE, TRILL or SPB. These tunneling protocols do either L2 in L3

Introduction to OpenFlow

[Type text]

encapsulation (VxLAN, NvGRE) or L2 in L2 encapsulation (TRILL, SPB), and
provide a way for the L2 frames from the VMs to traverse the Data Center
network without running into the problems mentioned above, such as broadcast
storms or infinite loops. They incorporate routing protocols such as IS-IS or
OSPF to find shortest paths, rather than use Spanning Tree.

• An external controller that is connected to the VESs. Companies such as
VMWare and Cisco are using a proprietary protocol on this interface, while a
Nicera uses OpenFlow. The external controller is required to configure the Virtual
Networks, and also dynamically re-configure them when VMs move between
servers.

As Nicera has shown, OpenFlow can be used to provide an open interface to control the
Data Center network. However there are other proprietary solutions that solve this
problem, so it remains to be seen who wins out in the marketplace.

7.0	Conclusions	
This White Paper has provided a brief introduction to OpenFlow and some background
into the reasons why it is being taken seriously by the networking community. Its initial
target market has been Data Center networks, but Service Providers are showing
increasing interest in the protocol and we can expect to see more products targeting this
segment of the market soon.

References	

1. N. McKeown et. al., “OpenFlow: Enabling Innovation in Campus Networks,”
Available at www.opennetworking.org.

2. “OpenFlow Switch Specification”, Version 1.2, Available at
www.opennetworking.org, Dec. 2011.

3. J.C. Mogul e.al., “DevoFlow: Scaling Flow Management for High Performance
Networks,” SIGCOMM 2011.

4. M. Casado et. al, “Virtualizing the Network Forwarding Plane.” Available at
yuba.stanford.edu/~casado/virt-presto.pdf

5. T. Koponen et. al, “Onix: A Distributed Control Platform for Large Scale
Production Networks,” OSDO 2010.

6. Z. Cai et. al., “Maestro: A System for Scalable OpenFLow Control,” Rice Univ.
2010.

7. S. Das et.al., “Application-Aware Aggregation and Traffic Engineering in a
Converged Packet-Circuit Network,” Available at
www.stanford.edu/~yiannisy/cgi-bin/docs/pac-circ.pdf.

8. S. Das, “Extensions to the OpenFlow Protocol in Support of Circuit Switching,”
Available at
http://www.openflow.org/wk/images/8/81/OpenFlow_Circuit_Switch_Specification_v0.3.p
df.

Introduction to OpenFlow

[Type text]

