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} Delay bounding algorithms have been inspired by TCP Vegas
} TCP Vegas gets swamped by loss based algorithms (TCP Reno and its 

successors), and hence for a long time this class of algorithms was not very 
popular.

} Some popular algorithms combined delay based and loss based paradigms, 
such as Compound TCP and Yeah TCP.

} TCP FAST was another well known algorithm that was proposed in 2004 
which tried to solve some of the issues with TCP Vegas.

} Over the past ten years, however, delay-bounding algorithms have 
experienced a resurgence with several proposals that overcome these issues, 
including Sprout, Remy (Lecture 10), BBR (Lecture 7), PCC (Lecture 10), Copa 
(this lecture), and Verus.



} Combine Loss type algorithms such as CUBIC (Lecture 6) with Explicit Congestion 
Notification (ECN) and trigger ECNs if the bottleneck queue size exceeds a threshold. 
DCTCP (Lecture 8) also belongs to this class of algorithms.

} AQM Algorithms that try to control bottleneck queue size: RED, Proportional Control, 
Proportional + Integral Control (all in Lecture 3), CoDel (Lecture 4).
◦ All these algorithms try to bound delay by trying to keep the bottleneck queue size 

within bounds using router based AQM mechanisms.

} Yeah TCP (Lecture 6)
◦ Yeah TCP was an improvement on Vegas: Use of fast window increase rule if the 

queue was below threshold, and once the the threshold was exceeded, it treated the 
event like a packet loss and reduced its window (and thus rate). It also has a system 
for competing with loss based algorithms.

} BBR (Lecture 7)
◦ BBR can also be considered to be an improvement on Vegas. It tries to match 

transmission rate with the bottleneck bandwidth, and ignores packet losses as a 
measure of congestion.



“Pantheon: the training ground for Internet congestion-control research”
                                       Yan et.al. (2018)

• We would like to optimize for throughput and
delay together.

• With this criteria, the best algorithms
are the ones whose performance lies in the
upper right corners in these graphs.

• New congestion control schemes proposed in
the last ten years are characterized by the
fact that they take this joint constraint into 
account.

• There is also less emphasis on being compatible
with Reno or CUBIC

Experimental results from running various
algorithms on live testbeds using the Pantheon

framework.



Delay based algorithms are very good at bounding end-to-end latency, but run 
into several issues in real world deployments:
} How to co-exist with loss based algorithms:
◦ When loss based algorithms overload the buffer, delay based algorithms 

back off
◦ Conversely is a node is experiencing congestion losses, loss based 

algorithms will back off while delay based algorithms keep transmitting 
thus making the losses worse.

} Measuring the queueing delay requires a very accurate estimate of the 
minimum round trip latency T. 
◦ If this estimate is not accurate, it can result in an under-estimation of the 

delay, thus resulting in intra-protocol unfairness.
◦ However getting an accurate estimate of T is not straightforward, it 

requires periodic draining of the all queues along the path.



} Early delay based algorithms such as Vegas ramped up their congestion 
window too slowly to be able to function in high speed networks.
◦ The congestion window needs to be ramped by more than 1 packet per 

RTT in high bandwidth environments
} Small in-accuracies in the measurement of the queueing delay can translate 

into huge differences in the source rate.
◦ For example if the source rate R is chosen so as to maintain a queueing 

size of D then
𝑅(𝑇! − 𝑇) ≈ 𝐷  i.e. 𝑅 ≈ "

#!$#
Note that (Ts-T) is a very small number, of the order of milliseconds, and 
even a small in-accuracy in its measurement can lead to huge differences 
in the source rate R. This number becomes smaller in higher speed 
networks.



} TCP Vegas estimates the level of congestion in the network by calculating the difference 
in the expected and actual data rates, which it then uses to adjust the TCP window size. 
Assuming a window size of W and a minimum round trip latency of T seconds, the 
source computes an expected throughput RE once per round trip delay, by

𝑅" =
𝑊
𝑇

} The source also estimates the current throughput R by using the actual round trip time 
Ts (estimated using a LPF) according to

𝑅 =
𝑊
𝑇#

} The source then computes the quantity Diff given by
𝐷𝑖𝑓𝑓 = 𝑇 𝑅" − 𝑅 = 𝑅 𝑇# − 𝑇

} By Little’s law, R(Ts-T) equals the number of packets belonging to the connection that 
are queued in the network and hence serves as a measure of congestion.

Brakmo LS, Peterson LL. End-to-end congestion avoidance on a global Internet. IEEE JSAC
1995;13:1465-80.





} What if T is not the minimum round trip latency due to cross traffic other 
flows? In this case Vegas under-estimates the congestion queue length 
estimate Diff. In general estimating T requires that all flows synchronize 
themselves periodically so that there is no traffic on the links during the 
measurement process.

} Using a LPF to measure the actual latency is also problematic: It takes time 
time for the filter to settle thus it cannot keep track of fast queue variations. 
Also it is the persistent delay that is important, not delays due to transient 
bursts.

} The presence of other loss based flows causes Vegas to back-off, thus 
causing inter-protocol unfairness.

} Vegas increment and decrements its window in steps of 1 packet, which is a 
problem in high speed links.

} There is potential for un-fairness between multiple Vegas flows sharing a 
link (since a Vegas flow does not back-off significantly once it reaches steady 
state).





} The design of FAST TCP was inspired by that of TCP Vegas. It uses end-to-
end delay as a measure of congestion rather than dropped packets and can 
be considered to be a high speed version of Vegas.

} FAST TCP has 4 components:
◦ Estimation
◦ Window Control
◦ Data Control
◦ Burstiness Control

“FAST TCP: From Theory to Experiments”, Jin et.al. (2004)



This component computes two pieces of information for each data packet sent:
} Multi-bit Queueing delay: This is estimated by measuring the minimum RTT 

for a connection (called baseRTT) and also computing an exponentially 
smoothed average RTT (called Ti(t)). Note that
Ti(t) = baseRTT + qi(t), where qi(t) is the queueing delay.

} One-bit loss or no loss indication



Under normal network conditions, FAST periodically updates the congestion window based 
on the average RTT according to

Where 𝛾 ∈ 0,1 , and 𝛼 is a positive protocol parameter that determines the total number of 
packets queued in routers in equilibrium along the flow’s path. A typical window update period
is 20 ms.
Packets are transmitted in a self clocked manner, i.e., a new packet is sent out after an ACK
for a previously transmitted packet arrives, which implies that the throughput ri(t) is given by

𝑟$(𝑡) =
𝑤$(𝑡)
𝑇$(𝑡)

Ignoring the 2w term, the window update rule can be written as

𝑤$ 𝑡 + 1 =𝑤$ 𝑡 + 𝛾(𝛼$(𝑡) − 𝑟$ 𝑡 𝑞$ 𝑡 ), where

 𝑞$ 𝑡 = 𝑇$ 𝑡 − 𝑏𝑎𝑠𝑒𝑅𝑇𝑇 is the queueing delay.

Compare this with the TCP Vegas window update rule

𝑤$ 𝑡 + 1 =𝑤$ 𝑡 + %
&!(()

  sgn(𝛼$(𝑡) − 𝑟$ 𝑡 𝑞$ 𝑡 )

𝑤! 𝑡 + 1 = 𝑚𝑖𝑛{2𝑤, 1 − 𝛾 𝑤! 𝑡 + 𝛾(
𝑏𝑎𝑠𝑒𝑅𝑇𝑇
𝑇! 𝑡

𝑤! 𝑡 + 𝛼!)}



} While Vegas can change its window by at most 1per RTT, window adjustment 
in FAST depends on the magnitude (as well as sign) of the term in brackets

} Hence FAST can adjust its window by a large amount, up or down, when the 
number of buffered packets is far away from its target, and a small amount 
when it is close.

} FAST does not react to packet losses.



The equilibrium throughputs for FAST are the unique optimal vector r* that maximizes

                                                              ∑$ 𝛼$ log 𝑟$  

Subject to the link constraint that the aggregate flow rate at any link does not exceed link 
capacity. Thus FAST achieves Proportional Fairness.

Note that 𝛼$ is equal to the number of flow i packets buffered in the routers in its path
in steady state.
If there are N flows, the total number of packets buffered in all the routers is

@
$*%

+

𝛼$

The unique equilibrium point for FAST is
                                                     𝑟$∗=

-!
.!
∗   and 𝑞$∗= 𝑇$∗ −𝑏𝑎𝑠𝑒𝑅𝑇𝑇

Hence if the 𝛼$ 	s are equal then theoretically each flow should obtain an equal share of the
bottleneck.



“FAST TCP: Fairness and Queueing Issues,” (2005), Tan et.al.



- Note that the value of baseRTT is set by minimum RTT observed so far. Clearly this may
not be an accurate estimate of the minimum RTT.

- A late joining FAST TCP flow overestimates its RTT because ALL its packets experience 
significant queuing delay thus its baseRTT is too high.

- Therefore it underestimates its queuing delay relative to early joining FAST TCP flows. 
This makes the late joining flows more aggressive thus obtaining higher throughput.





COPA was designed with the objective of solving three of the four 
issues that were pointed out for delay based algorithms:
} Ramping up window for high speed networks: COPA includes a mechanism 

for using higher window increments for  high speed networks.
} Competing with loss based systems: COPA is able to detect if there are 

competing flows at a node that are loss based, and it changes its window 
control algorithm appropriately.

} Accurately measuring the minimum round trip delay T: The algorithm 
guarantees that the queue drains completely periodically, which helps to 
measure T.



} Start with an objective function to optimize. The objective function 
combines a flow's average throughput r, and packet delay (minus 
propagation delay) q

𝑈 = log 𝑟 − 𝛿 log 𝑞
The goal is for each sender to maximize its U.

} Here 𝛿  determines how much to weigh delay compared to throughput; a 
larger 𝛿 signifies that lower packet delays are preferable.

} Under certain simplified (but reasonable) modeling assumptions of 
packet arrivals, the steady-state sending rate (in packets per second) 
that maximizes U is

𝑟 =
1
𝛿𝑞∗

Where q* is the mean per packet queueing delay.

} When every sender transmits at this rate, a unique, socially-acceptable 
Nash equilibrium is attained.



𝑈 = log 𝑟 − 𝛿 log 𝑞

} Where did this Objective Function come from? Recall that the 
Objective Function that TCP Vegas optimizes is 

} We arrived at this function by starting from the window control rules 
and then deriving a function that these rules optimize.

} COPA reverses this: We start with an Objective Function and then try 
to come up with the window dynamics that optimize this function.

} This is done in two steps:
◦ Step 1: Use the Objective Function to obtain a formula for the 

equilibrium throughput.
◦ Step 2: Derive the window control rules that are compatible with 

this throughput formula.



} This rate is used as the target rate for a Copa sender. The sender estimates 
the queuing delay using its RTT observations, and moves quickly toward 
hovering near this target rate.

} This mechanism induces a property that the queue is regularly almost 
flushed every 5RTT, which helps all endpoints get a correct estimate of the 
minimum RTT.

} Note that since COPA does not react to packet losses, it may unfairly hog the 
bandwidth when competing with buffer filling type flows (which happens with 
BBR).
In order to prevent this, Copa mimics an AIMD window-update rule when it 
observes that the bottleneck queues rarely empty (similar to Yeah TCP).



} Copa uses a congestion window, cwnd, which upper-bounds the number of 
in-flight packets.

} On every ACK received, the sender estimates the current rate 
r = cwnd/RTTstanding, where RTTstanding is the smallest RTT observed over a 
recent time-window, 𝜏 (this corresponds to a standing-queue at the node)

𝜏 =
𝑇
2

Where T is current value of the smoothed RTT estimate.

} The reason for using the smallest RTT in the recent 𝜏 =srtt/2 duration, 
rather than the latest RTT sample, is for robustness in the face of ACK 
compression and network jitter, which increase the RTT and can confuse the 
sender into believing that a longer RTT is due to queueing on the forward 
data path.

Packet Tx

ACK Rx

T/2
RTTstanding is

smallest RTT over
this period



} The source calculates the target rate using 𝑟 = &
'(∗

, where

                                       q* = RTTstanding – baseRTT                          ---(1)       
                           
where baseRTT is the smallest RTT observed over a long period of time. 
COPA uses the smaller of 10 seconds and the time since the flow started for 
this period.

} If the current rate exceeds the target rate, the sender reduces cwnd; 
otherwise, it increases cwnd.

} To avoid packet bursts, the sender paces packets at a rate of 
2*cwnd/RTTstanding packets per second.

!
"	 is in units of MTU sized packets



1. Update the queuing delay q* and srtt using the standard TCP exponentially 
weighted moving average estimator.

2. Set target rate   𝑟! =
"
#$∗

 

3. If the current rate 

r = cwnd/RTTstanding ≤ 𝑟!  , then 

cwnd = cwnd + 𝜈/(𝛿.𝑐𝑤𝑛𝑑), 

where v is a velocity parameter" (defined in the next step). 

Otherwise, 

cwnd = cwnd - 𝜈/(𝛿.𝑐𝑤𝑛𝑑) 

Over 1 RTT, the change in cwnd is thus  ≈ ⁄% # packets.



1. The velocity parameter, v, speeds-up convergence. It is initialized to 1. 
Once per window, the sender compares the current cwnd to the cwnd value 
at the time that the latest acknowledged packet was sent (i.e., cwnd at the 
start of the current window). 

o If the current cwnd is larger, then set direction to “up"; if it is smaller, then set 
direction to “down". 

o If direction is the same as in the previous window, then double v. If not, then reset 
v to 1. However, start doubling v only after the direction has remained the same 
for three RTTs.

2. When a flow starts, Copa performs slow-start where cwnd doubles once 
per RTT until r exceeds rt . While the velocity parameter also allows an 
exponential increase, the constants are smaller.



} Note that: Sending Rate < Target Rate implies that
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇!*+,-.,/
<

1
𝛿(𝑅𝑇𝑇!*+,-.,/ − 𝑅𝑇𝑇0.,)

Which is the same as
12,-

3##!/012314
𝑅𝑇𝑇!*+,-.,/ − 𝑅𝑇𝑇0., < &

'

i.e, the queue size at the bottleneck is less than &
'
.

} Sending Rate > Target Rate coincides with the event that the bottleneck 
queue size has exceeded &

'
.

} However it takes 1.5T for this information to be incorporated into the rate 
calculation.
◦ This is because of the way RTTstanding is computed

RTTstanding is the smallest RTT observed over a recent time-window



• Period of oscillations = 5T
• The queue size varies from zero to ⁄5.7

8
• The bottleneck queue empties at the start and end of a period.
• With multiple flows with same propagation delay, their oscillations synchronize 

with C𝛿 = ∑$
%
8!

9%

• Queue emptying is a critical property since it helps to measure RTTmin accurately and
it also facilitates intra-protocol fairness.



The period of oscillation is  5RTT and amplitude is  5 packets (since 𝛿 = 0.5).



} If Copa seeks to maintain low queuing delays; without modification, it will lose to 
buffer-filling schemes.

} Modifications: There are two distinct modes of operation for Copa:
1. The default mode where 𝛿 = 0.5, and
2. A competitive mode where 𝛿 is adjusted dynamically to match the aggressiveness of 

typical buffer-filling schemes.

} Copa switches between these modes depending on whether or not it detects a 
competing long-running buffer-filling scheme. The detector exploits a key Copa 
property that the queue is empty at least once every 5 RTT when only Copa flows with 
similar RTTs share the bottleneck. Hence if the sender sees a nearly empty" queue in the 
last 5 RTTs, it remains in the default mode; otherwise, it switches to competitive mode.

} We estimate nearly empty" as any queuing delay lower than 10% of the rate oscillations 
in the last four RTTs; i.e., q < 0.1(RTTmax - RTTmin).

} In competitive mode the sender varies 1/𝛿 according to whatever buffer-filling algorithm 
one wishes to emulate (e.g., NewReno, Cubic, etc.). COPA performs AIMD on 1/𝛿 based 
on packet success or loss,

Over 1 RTT the change in cwnd is 1/𝛿 packets 



} COPA performance:
◦ COPA exhibits higher intra-protocol fairness compared to Cubic and BBR.

◦ COPA achieved as a much throughput and 2-10x lower queueing delays 
compared to Cubic and BBR.

◦ In datacenter network simulations, on a web search workload trace drawn 
from datacenter network, Copa achieved a > 5x  reduction in flow 
completion time for short flows over DCTCP. It achieved similar 
performance for long flows.

◦ In experiments on an emulated satellite path, Copa achieved nearly full 
link utilization with a median queuing delay of only 1 ms. BBR obtained 
 50% link utilization. Both Cubic and Vegas obtained < 4% utilization.

◦ COPA also exhibits better RTT fairness.









} Specialized for Data Center environments

} Uses very precise measurements for round trip latency, made 
possible by advances in NIC Card technology

} Uses a Rate Based congestion control algorithm

} Uses a combination of Delay AND Delay Gradients to keep queue 
size within a tight range.

} Requires no switch support, purely end-to-end based



} Delay had not been used as a congestion signal in the datacenter because datacenter 
RTTs are difficult to measure at microsecond granularity. This level of precision is easily 
overwhelmed by host delays such as interrupt processing for acknowledgments.

} However recent NIC advances do allow datacenter RTTs to be measured with sufficient 
precision. They provide hardware support for high-quality timestamping of packet 
events plus hardware-generated ACKs that remove unpredictable host response delays.
 

} Using RTTs provides richer and faster information about the state of network switches 
than explicit network switch signals such as ECN marks. The ECN signal does not 
correlate well with RTT and hence with the amount of queuing.



TIMELY has 3 components
1. RTT measurement to monitor the network for congestion
2. A computation engine that converts RTT signals into target sending rates
3. A control engine that inserts delays between segments to achieve the target rate.



} A segment consisting of multiple packets is sent as a single burst and then ACKed as a 
unit by the receiver. A completion event is generated upon receiving an ACK for a 
segment of data and includes the ACK receive time.

} The time from when the first packet is sent (tsend) until the ACK is receive (tcompletion) is 
defined as the completion time.

Propagation
Delay

Serialization
Delay



} The rate computation engine runs the congestion control algorithm upon 
each completion event, and outputs an updated target rate for the flow.

} TIMELY does not try to control the queueing delay directly since it has been 
shown that it is not possible to control the queue size when it is shorter in 
time than the control loop delay.

} TIMELY’s congestion controller achieves low latencies by reacting to the delay 
gradient or derivative of the queuing with respect to time, instead of trying 
to maintain a standing queue.
◦ This is possible because we can accurately measure differences in RTTs 

that indicate changes in queuing delay.
◦ A positive delay gradient due to increasing RTTs indicates a rising queue, 

while a negative gradient indicates a receding queue. 
◦ By using the gradient, we can react to queue growth without waiting for a 

standing queue to form – a strategy that helps us achieve low latencies.



} Delay gradient is a proxy for the rate mismatch at the bottleneck queue. RCP, 
XCP etc have shown that explicit feedback on the rate mismatch has better 
stability and convergence properties than explicit feedback based only on 
queue sizes.

} We denote the queuing delay through the bottleneck queue by q(t). If y(t) > 
C, the rate at which the queue builds up is (y(t) - C). Since queued data 
drains at a rate C, the queuing delay gradient is given by 

} Hence, the delay gradient measured through RTT signals acts as an indicator 
for the rate mismatch at the bottleneck.



Use latency based rate increase 
in this region

Use latency based rate decrease
in this region

• The Tlow and Thigh thresholds effectively bring the delay within a 
target range and play a role similar to the target queue occupancy 
in many AQM schemes. 

• Using the delay gradient improves stability and helps keep the latency 
within the target range [Tlow, Thigh].

Use gradient based rate increase and
decrease in this region



Filtered estimate of
Delay Gradient

If the gradient is negative or equals zero, 
the network can keep up with the aggregate 

incoming rate, and therefore
there is room for a higher rate.

When the gradient is positive, the
total sending rate is greater than 

network capacity. Hence,
TIMELY performs a multiplicative 

rate decrement, scaled
by the gradient factor:



• TIMELY keeps the average end-to-end RTT 10X lower than 
DCTCP (60  s vs. 600  s). 

• More significantly, the tail latency drops by almost 13X 
(116  s vs. 1490  s).





} The paper focuses on how multiple flows running a given delay-bounding CCA share 
bandwidth.

} The problem the authors identified is the following: Because most CCAs attempt to work 
across many orders of magnitude of rates, they must map a large rate range into a small 
delay range. Thus, even small changes in estimated queueing delay would induce 
enormous changes in the inferred rate.

} Can perfect measurements solve the problem: 
◦ No, since there is no way to precisely measure congestive queueing delays. The reason is that non-

congestive (i.e., non-bottleneck-queueing) contributions to network delay are rarely constant in 
practice, and hard to separate from congestion.

◦ Due to effects such as ACK aggregation, delayed ACKs, end-host operating system or thread 
scheduling, token bucket filters, hardware offload timing variations, etc., packets experience jitter 
on network paths unrelated to bottleneck queueing.

} Hence they focus on understanding the effects of non-congestive jitter on delay-
bounding CCAs, expecting some degree of unfairness and hoping to quantify it as a 
function of the delay jitter.



} Efficient delay-bounding CCAs that converge in steady state to a bounded delay range 
are not merely unfair, but cannot avoid starvation.

} When two flows using the same CCA share a bottleneck link, if the non-congestive delay 
variations exceed double the difference between the maximum and minimum queueing 
delay at equilibrium, then there are patterns of non-congestive delay where one flow will 
get arbitrarily low throughput compared to the other.

} Congestion Control Algorithms can target at most two out of the following three 
properties: 
1. High throughput,
2. Convergence to a small and bounded delay range, and
3. No starvation.

} Are we are doomed to choose between bounding delays and avoiding starvation?
◦ We might be able to achieve both desirable goals by being explicit about non-

congestive delays in CCA design, ensuring that the CCA’s delay variations in 
equilibrium are at least half as as large as the non-congestive jitter expected along a 
path.

◦ If that is not the case, then the results prove that starvation is inevitable.



- CCAs that ensure a smaller 𝛿max and hence are “more convergent” are more 
susceptible to starvation. 

- Starvation can occur if the delay ambiguity caused by non-congestive jitter delay is 
> 2𝛿max. 

- For many CCAs, 𝛿max is small because they strive to keep delay variations small 
compared to 𝑅𝑚. Hence even a little ambiguity can cause starvation.

Variation of 𝛿 (𝐶) with C 

• Shows delay profile of a session over time
• dmax and dmin are the max and min

delays after convergence
• 𝛿 = 𝑑:;< − 𝑑:$= and 𝛿:;< is upper bound

on 𝛿



• 𝛿 (𝐶) is 0 for Vegas, FAST, and BBR in cwnd limited mode 
• 4𝛼/𝐶 for Copa, where 𝛼 is the packet size 
• 𝑅𝑚/4 for BBR in pacing mode 
• 𝑅𝑚/20 for PCC Vivace

•  ALL these protocols suffer from starvation even in simple two-flow scenarios with 
small non-congestive jitter

Variation of delays with link rate for a fixed Rm



• Non-congestive delays create ambiguity about the amount of queueing delay at the bottleneck.
• For example, when a CCA measures an RTT increase of Δ𝑑=5 it only knows that the increase due 

to congestion is between Δ𝑑−𝐷 and Δ𝑑.
• This ambiguity creates confusion at the sender. If the delay observed is truly caused by congestion, 

the CCA should reduce its rate, but if it does so and the delay turns out to be non-congestive, it 
may under-utilize the network.

• When flows sharing a link estimate the queueing delay differently, they may send at unequal rates, 
which can cause starvation

Random delay between 0 and D

Example: 
• Consider a CCA such as Vegas or FAST that seeks to maintain 𝛼 packets in the queue per flow in equilibrium.𝛼 is a 

parameter of the algorithm (e.g., 𝛼 = 4 packets). 
• Over an ideal path, once the CCA hits this target, its rate stabilizes  and the queue length never changes. 
• Hence 𝛿𝑚𝑎𝑥 = 0 and the RTT is 𝑅𝑚 + 𝛼/𝐶



• Consider a CCA such as Vegas or FAST that seeks to maintain 𝛼 packets in the queue per flow in 
equilibrium where 𝛼 is a parameter of the algorithm (e.g., 𝛼 = 4 packets). 

• Over an ideal path, once the CCA hits this target, its rate stabilizes  and the queue length never 
changes.  Hence 𝛿𝑚𝑎𝑥 = 0 and the RTT is 𝑅𝑚 + 𝛼/𝐶

• To achieve this equilibrium, the CCA must measure the queueing delay with high precision. 
For example, with 𝛼 = 4 and a packet size of 1500 bytes, 𝛼/𝐶 = 0.5 ms for 𝐶 = 96 Mbit/s and 
0.05 ms for 𝐶 = 960 Mbit/s.

• Thus a difference of only 0.45 ms in the estimated queueing delay can cause the CCA to vary its 
sending rate by 10×!

• Therefore, if the delay measurement ambiguity exceeds this amount, it can easily cause severe 
unfairness. Delay jitter  of tens of milliseconds occur on Wi-Fi and cellular links.

• Any delay-convergent CCA that seeks to bound delay variation below the level of jitter 
(delay ambiguity) of the  network will suffer from the same problem.

• The fundamental issue is that very different link rates are consistent with similar delay measurements. 
When different flows experience different non-congestive delays, they can infer very different link 
rates,  causing unfairness and starvation.





1. To utilize the link efficiently, a CCA must maintain a queue that is larger 
than the non-congestive delay on the path; 

2. This alone is not enough to avoid starvation, but in addition the variation 
in the queueing delay in steady state must also be greater than one-half of 
the delay jitter; 

3. If we have a prior upper bound on sending rate, we may be able to avoid 
starvation while also reducing the queueing delay variation.

Loss based algorithms actually satisfy these requirements, but the tradeoff is
 that delay is no longer small or bounded


