Delay Bounding Congestion
Control Algorithms

Lecture 9
Subir Varma

Delay Bounding Algorithms

» Delay bounding algorithms have been inspired by TCP Vegas

» TCP Vegas gets swamped by loss based algorithms (TCP Reno and its
successors), and hence for a long time this class of algorithms was not very
popular.

» Some popular algorithms combined delay based and loss based paradigms,
such as Compound TCP and Yeah TCP.

» TCP FAST was another well known algorithm that was proposed in 2004
which tried to solve some of the issues with TCP Vegas.

» Over the past ten years, however, delay-bounding algorithms have
experienced a resurgence with several proposals that overcome these issues,
including Sprout, Remy (Lecture 10), BBR (Lecture 7), PCC (Lecture 10), Copa
(this lecture), and Verus.

Delay Bounding Algorithms Discussed in
Earlier Lectures

» Combine Loss type algorithms such as CUBIC (Lecture 6) with Explicit Congestion
Notification (ECN) and trigger ECNs if the bottleneck queue size exceeds a threshold.
DCTCP (Lecture 8) also belongs to this class of algorithms.

» AQM Algorithms that try to control bottleneck queue size: RED, Proportional Control,
Proportional + Integral Control (all in Lecture 3), CoDel (Lecture 4).

- All these algorithms try to bound delay by trying to keep the bottleneck queue size
within bounds using router based AQM mechanisms.

» Yeah TCP (Lecture 6)

- Yeah TCP was an improvement on Vegas: Use of fast window increase rule if the
queue was below threshold, and once the the threshold was exceeded, it treated the
event like a packet loss and reduced its window (and thus rate). It also has a system
for competing with loss based algorithms.

» BBR (Lecture 7)

> BBR can also be considered to be an improvement on Vegas. It tries to match

transmission rate with the bottleneck bandwidth, and ignores packet losses as a
measure of congestion.

So What is Left?

Cellular Networks

e 07 T T T | T T T
g
06 . —
) Cubic ® BBR
§’ evivace %os¢ ®\erus ®LEDBAT
= 05 |- eVivace LTE Vegas
= pPCC ® e Remy ® Copa
b4 04 = e Vivace latency —
N
g ol Spro:t
.
§ 02 —
g, 01 —
< U | | | | | | |
2048 1024 512 256 128 64 32 16
Avg. Queuing Delay (ms)
Wired Networks
= T T T T
eBBR gom
£ 08 . Vivace loss Y oCopa -
30 Cubicy "e i e PCC
'.5 latency
o 96 ® LEDBAT n
O
N
® 04 |- —
E ® Sprout
2_ 02 -
g
0 | | | |
16 8 4 2 1

Avg. Queuing Delay (ms)

We would like to optimize for throughput and
delay together.

With this criteria, the best algorithms

are the ones whose performance lies in the
upper right corners in these graphs.

New congestion control schemes proposed in
the last ten years are characterized by the
fact that they take this joint constraint into
account.

There is also less emphasis on being compatible
with Reno or CUBIC

Experimental results from running various
algorithms on live testbeds using the Pantheon
framework.

“Pantheon: the training ground for Internet congestion-control research”

Yan et.al. (2018)

Issues with Delay Based
Algorithms

Delay based algorithms are very good at bounding end-to-end latency, but run
into several issues in real world deployments:

» How to co-exist with loss based algorithms:

- When loss based algorithms overload the buffer, delay based algorithms
back off

> Conversely is a node is experiencing congestion losses, loss based
algorithms will back off while delay based algorithms keep transmitting
thus making the losses worse.

» Measuring the queueing delay requires a very accurate estimate of the
minimum round trip latency T.

- If this estimate is not accurate, it can result in an under-estimation of the
delay, thus resulting in intra-protocol unfairness.

- However getting an accurate estimate of T is not straightforward, it
requires periodic draining of the all queues along the path.

Issues with Delay Based
Algorithms (cont)

» Early delay based algorithms such as Vegas ramped up their congestion
window too slowly to be able to function in high speed networks.

> The congestion window needs to be ramped by more than 1 packet per
RTT in high bandwidth environments

» Small in-accuracies in the measurement of the queueing delay can translate
into huge differences in the source rate.

> For example if the source rate R is chosen so as to maintain a queueing
size of D then

R(Te—T)=D i.e.R=

TS_T

Note that (T,-T) is a very small number, of the order of milliseconds, and
even a small in-accuracy in its measurement can lead to huge differences
in the source rate R. This number becomes smaller in higher speed
networks.

TCP Vegas: A Delay based Algorithm

» TCP Vegas estimates the level of congestion in the network by calculating the difference
in the expected and actual data rates, which it then uses to adjust the TCP window size.
Assuming a window size of W and a minimum round trip latency of T seconds, the
source computes an expected throughput Rz once per round trip delay, by

W
RE = ?
» The source also estimates the current throughput R by using the actual round trip time
T, (estimated using a LPF) according to
14
heT
» The source then computes the quantity Diff given by
Diff =T(Rz —R) = R(T; = T)

» By Little’s law, R(T,-T) equals the number of packets belonging to the connection that

are queued in the network and hence serves as a measure of congestion.

Brakmo LS, Peterson LL. End-to-end congestion avoidance on a global Internet. IEEE JSAC
1995;13:1465-80.

TCP Vegas: A Delay based Algorithm

Define two thresholds « and (3 such that o < 3. The window increase decrease rules are given by:

* When a = Diff = (3, then leave W unchanged.

* When Diff > (3, decrease W by 1 for the next RTT. This condition implies that congestion is
beginning to build up the network; hence, the sending rate should be reduced.

* When Diff <, increase W by 1 for the next RTT. This condition implies the actual throughput
is less than the expected throughput; hence, there is some danger that the connection may not

use the full network bandwidth.

Issues with TCP Vegas

» What if T is not the minimum round trip latency due to cross traffic other
flows? In this case Vegas under-estimates the congestion queue length
estimate Diff. In general estimating T requires that all flows synchronize
themselves periodically so that there is no traffic on the links during the
measurement process.

» Using a LPF to measure the actual latency is also problematic: It takes time
time for the filter to settle thus it cannot keep track of fast queue variations.
Also it is the persistent delay that is important, not delays due to transient
bursts.

» The presence of other loss based flows causes Vegas to back-off, thus
causing inter-protocol unfairness.

» Vegas increment and decrements its window in steps of 1 packet, which is a
problem in high speed links.
» There is potential for un-fairness between multiple Vegas flows sharing a

link (since a Vegas flow does not back-off significantly once it reaches steady
state).

TCP FAST

FAST TCP:
From Theory to Experiments *
C. Jin. D. Wei. S. H. Low
G. Buhrmaster. J. Bunn. D. H. Choe. R. L. A. Cottrell. J. C. Doyle
W. Feng. O. Martin. H. Newman. F. Paganini. S. Ravot. S. Singh f

http://netlab.caltech.edu/FAST/

November 1. 2004

Abstract.

We deseribe a

jant of TCP, callad FAST, that can sustain high throughput and utilization at
multi Ghps over large distanoe. We present the motivation, review the background theory, summarize
key features of FAST TCP, and report our first experimental results

Keywords: FAST TCP. large bandwidth-delay product

1 Introduction

The congestion control algorithm in the current TCP has performed remarkably well and is generally
believed to have prevented severe congestion as the Internet scaled np by six orders of magnitude in
size. speed. load. and connectivity in the last fifteen years. Tt is also well-known. however. that as
bandwidth-delay product contines to grow. the eurrent TCP implementation will eventually become a
performance bottleneck.

In this paper we deseribe a different congestion control algorithm for TCP. called FAST [1]. FAST
TCP has three key differences. First. it is an equation-based algorithm and hence eliminates packet-level
oscillations. Second. it nses queneing delay as the primary measure of congestion. which can be more
reliably measured 1y
stable How ¢

end hosts than loss probability in fast long-distance networks. Third. it has a
and achieves weighted proportional fairness in equilibrium that does not penalize

long Hlows. as the enrrent congestion control algorithm does. Alternative approaches are described in
[2.3. 4 6]. The details of the architecture. algorithms. extensive experimental evaluations of FAST
TCP. and comparison with other TCP variants can be found in [1. 7).

In this paper. we will highlight the motivation. background theory. implementation and onr first
major experimental resnlts. The scientific commmity is singular in its urgent need for efficient high
speed data transfer. We explain in Section 2 why this commumity has been driving the development
and deplayment of ultrascale networking., The design of FAST TCP builds on an emerging theory that
allows us to understand the equilibrinm and stability properties of large networks under end-to-end

control. Tt provides a framework to understand issnes. clarify ideas and suggest directions. leading to a

more robust and better performing design. We snmmarize this theory in Section 3 and explain FAST

“IEEE Network, to appear.

'G. Bulumaster and L. Cottrell ae with SLAC (Stanfard Linear Acoderator Center), Stanford, CA. W. Feng is with
LANL (Los Alamos Natwonal Lab). O. Martin s with CERN (Ewopean Organzation for Nudear Reseach), Geneva. F.
Paganini 8 with EE Department, UCLA. All other authors are with Caltech, Pasadena, CA.

FAST TCP

» The design of FAST TCP was inspired by that of TCP Vegas. It uses end-to-

end delay as a measure of congestion rather than dropped packets and can
be considered to be a high speed version of Vegas.

» FAST TCP has 4 components:
o Estimation

- Window Control
- Data Control
o Burstiness Control

“FAST TCP: From Theory to Experiments”, Jin et.al. (2004)

TCP FAST: Estimation

This component computes two pieces of information for each data packet sent:

» Multi-bit Queueing delay: This is estimated by measuring the minimum RTT
for a connection (called baseRTT) and also computing an exponentially
smoothed average RTT (called T;(t)). Note that
T,(t) = baseRTT + g;(t), where q;(t) is the queueing delay.

» One-bit loss or no loss indication

TCP FAST: Window Control

Under normal network conditions, FAST periodically updates the congestion window based
on the average RTT according to

baseRTT

w;(t + 1) = min{2w, (1 — y)w;(t) + V(W

w;(t) + a;)}

Where y € (0,1], and « is a positive protocol parameter that determines the total number of
packets queued in routers in equilibrium along the flow’s path. A typical window update period
is 20 ms.

Packets are transmitted in a self clocked manner, i.e., a new packet is sent out after an ACK
for a previously transmitted packet arrives, which implies that the throughput r,(t) is given by

r(t) = w;(t)

Ti(t)
Ignoring the 2w term, the window update rule can be written as

wi(t + D=w;(6) +y(a;(t) — :(t)q: (), where
q;(t) = T;(t) — baseRTT is the queueing delay.

Compare this with the TCP Vegas window update rule

wi(t + D=wi(0) + o sgn(a (D) = 1i(0q,(0)

TCP FAST: Window Control

» While Vegas can change its window by at most 1per RTT, window adjustment
in FAST depends on the magnitude (as well as sign) of the term in brackets

» Hence FAST can adjust its window by a large amount, up or down, when the

number of buffered packets is far away from its target, and a small amount
when it is close.

» FAST does not react to packet losses.

w;(t + D=w;(t) + v (a;(t) — 1:(t)q;(t))

Optimization Function for TCP FAST

The equilibrium throughputs for FAST are the unique optimal vector r* that maximizes
2 a;logm;

Subject to the link constraint that the aggregate flow rate at any link does not exceed link
capacity. Thus FAST achieves Proportional Fairness.

Note that «; is equal to the number of flow i packets buffered in the routers in its path
in steady state.

If there are N flows, the total number of packets buffered in all the routers is
N

e

i=1

The unique equilibrium point for FAST is
= % and q;=T; —baseRTT

i

Hence if the a; s are equal then theoretically each flow should obtain an equal share of the
bottleneck.

Experimental Results: Intra-Protocol
Fairness

(s1) (o1)
'". I-R— 100 Mbps, 50 ms 4’R] "
(83 /~ N\ (03)
(s4) (D4}

Fig. 1. ‘The dambbell iopology used in/the simulatioss. For each flow, we set the parameter a; = 200 packets

S4-D4
'_f, S3.03
u L
I
'é $2-D2
ey
S1-D1
0 20 40 G0 80 100
Time (Sec)

Fig. 2. The active periods of the four flows.

“FAST TCP: Fairness and Queueing Issues,” (2005), Tan et.al.

Experimental Results

14880 T T T T

,‘ Flow $1-D1
/ 1

leaea

-l

!
1
i
10900 1 b _

Flow §2-02
Flow S3-D3

gaea

Flow S4-D47

a

=)
t§\\

saea H

Rate (pkt/s]

AQ00

B
FETE S

a

5. - S .
Time (seconds)

- Note that the value of baseRTT is set by minimum RTT observed so far. Clearly this may
not be an accurate estimate of the minimum RTT.

- A late joining FAST TCP flow overestimates its RTT because ALL its packets experience
significant queuing delay thus its baseRTT is too high.

- Therefore it underestimates its queuing delay relative to early joining FAST TCP flows.
This makes the late joining flows more aggressive thus obtaining higher throughput.

TCP COPA (201 8)

Copa: Practical Delay-Based Congestion Control for the Internet

Venkat Arun and Hart Balakrishnan
M.IT. Computer Science and Artificial Intelligence Laboratory
Email: {venkatar,hari} @mit.edu

Abstract

This paper introduces Copa, an end-to-end conges-
tion control algorithm that uses three ideas. First, it
shows that a target rate equal to 1/(8d,), where d, is
the d) ing delay. opti a natural func-
tion of throughput and delay under a Markovian packet
arrival model. Second, it adjusts its congestion window
in the direction of this target rate, converging quickly to
the correct fair rates even in the face of significant flow
churn. These two ideas enable a group of Copa flows

time or low interactive delay). Larger BDPs exacerbate
the “bufferbloat” problem. A more global Internet
leads to flows with very different propagation delays
sharing a bottleneck (exacerbating the RTT-unfaimess
exhibited by many current protocols).

At the same time, application providers and users
have become far more sensitive to performance, with
notions of “quality of experience” for real-time and
streaming media, and various metrics to measure Web
petfonnanoe bemg developed Many companies have
of money to improve

to maintain high utilization with low delay.
However, when the bottleneck is shared with loss-based
congestion-controlled flows that fill up buffers, Copa, like
other delay-sensitive schemes, achieves low throughput.
To combat this problem, Copa uses a third idea: detect
the presence of buffer-fillers by observing the delav evolu-
tion, and d with additive-i Iti

decrease on the § parameter. Experimental results
show that Copa outperforms Cubic (similar throughput,
much lower delay, fairer with diverse RTTs), BBR and

network and application performance. Thus, the perfor-
mance of congestion control algorithms, which are at the
core of the transport protocols used to deliver data on
the Internet, is important to understand and improve.

Congestion control research has evolved in multiple
threads. One thread, starting from Reno, and extending
to Cubic and Compound relies on packet loss (or ECN)
as the fund. 1 congestion signal. B these
schemes fill up network buffers, they achieve high
th at the exp of ing delay, which

PCC (significantly fairer, lower delay), and ists well
with Cubic unlike BBR and PCC. Copa is also robust
to non-congestive loss and large bottleneck buffers, and
outperforms other schemes on long-RT'T paths.

1 Introduction
A good end-to-end congmuorn control protocol for t.he

ma.kes it difﬁcult for i or Web-like applications
to achieve good performance when long-nnning flows
also share the bottleneck. To address this problem,
schemes like Vegas [4] and FAST [34] use delay, rather
than loss, as the ion signal. Unfor ly, these
schemes are prone to overestimate delay due to ACK
ion and network jitter, and under-utilize the

Internet must achieve high th h low
delay, and allocate rates to flows in a fair way. Despite
three decades of work, these goals have been hard to
achieve. One reason is that network technologies and
licats have been inually changj: Since
the deployment of Cubic [13] and Compound [32, 31]
a decade ago to improve on Reno’s [16] performance
on high bandwidth-delay product (BDP) paths, link
rates have increased significantly, wireless (with its
time-varying link rates) has become common, and the
Internet has become more global with terrestrial paths
exhibiting higher round-trip times (RTTs) than before.
Faster link rates mean that many flows start and stop
quicker, increasing the level of flow churn, but the
of video st ing and large bulk transfers
(eg file sharing and bm:kups) means that these long
flows must co-exist with short ones whose objectives are

link as a result. Moreover, when run with concurrent
loss-based algorithms, these methods achieve poor
throughput because loss-based methods must fill buffers
to elicit a congestion signal.

A third thread of research, starting about ten years
ago, has focused on important special cases of network
environments or workloads, rather than strive for gen-
erality. The past few years have seen new congestion
control methods for datacenters [1, 2, 3, 29). cellular net-
works [36, 38], Web applications [9], video ing [10,
20, vehicular Wi-Fi [8, 21], and more. The performance
of special-purpose congestion control methods is often
significantly better than prior general-purpose schemes.

A fourth, and most recent, thread of end-to-end
congestion control research has argued that the
space of congestion control signals and actions is too

licated for human . and that algorithms

different (high throughput versus low flow y!

USENIX Association 15th USENIX

329

. -

on Y Design and

COPA: Objective

COPA was designed with the objective of solving three of the four

issues that were pointed out for delay based algorithms:

» Ramping up window for high speed networks: COPA includes a mechanism
for using higher window increments for high speed networks.

» Competing with loss based systems: COPA is able to detect if there are

competing flows at a node that are loss based, and it changes its window
control algorithm appropriately.

» Accurately measuring the minimum round trip delay T: The algorithm

guarantees that the queue drains completely periodically, which helps to
measure T.

COPA: Approach

» Start with an objective function to optimize. The objective function
combines a flow's average throughput r, and packet delay (minus
propagation delay) g

U=logr—34loggq
The goal is for each sender to maximize its U.

» Here § determines how much to weigh delay compared to throughput; a
larger 6 signifies that lower packet delays are preferable.

» Under certain simplified (but reasonable) modeling assumptions of
packet arrivals, the steady-state sending rate (in packets per second)

that maximizes U is
1

6q*
Where g* is the mean per packet queueing delay.

T =

» When every sender transmits at this rate, a unique, socially-acceptable
Nash equilibrium is attained.

COPA: Approach (cont)

U=logr —dlogq

» Where did this Objective Function come from? Recall that the
Objective Function that TCP Veaas ontimizes is

U,‘(I’,‘) = w,-logr,-
» We arrived at this function by starting from the window control rules
and then deriving a function that these rules optimize.

» COPA reverses this: We start with an Objective Function and then try
to come up with the window dynamics that optimize this function.

» This is done in two steps:

- Step 1: Use the Objective Function to obtain a formula for the
equilibrium throughput.

> Step 2: Derive the window control rules that are compatible with
this throughput formula.

COPA Step 1: Target Rate

» This rate is used as the target rate for a Copa sender. The sender estimates
the queuing delay using its RTT observations, and moves quickly toward
hovering near this target rate.

» This mechanism induces a property that the queue is regularly almost

flushed every 5RTT, which helps all endpoints get a correct estimate of the
minimum RTT.

» Note that since COPA does not react to packet losses, it may unfairly hog the
bandwidth when competing with buffer filling type flows (which happens with
BBR).

In order to prevent this, Copa mimics an AIMD window-update rule when it
observes that the bottleneck queues rarely empty (similar to Yeah TCP).

COPA Step 2: cwnd Updating Rule

» Copa uses a congestion window, cwnd, which upper-bounds the number of
in-flight packets.

» On every ACK received, the sender estimates the current rate

r = cwnd/RT Ttanding, Where RTTganding iS the smallest RTT observed over a
recent time-window, t (this corresponds to a standing-queue at the node)

T
t=3

Where T is current value of the smoothed RTT estimate.

» The reason for using the smallest RTT in the recent 7 =srtt/2 duration,
rather than the latest RTT sample, is for robustness in the face of ACK
compression and network jitter, which increase the RTT and can confuse the

sender into believing that a longer RTT is due to queueing on the forward
data path.

R-rrstanding is
smallest RTT over

this period T/2

Packet Tx \
ACK Rx /

COPA Step 2: cwnd Updating
Rule

. 1
» The source calculates the target rate using r = o where

q* = RTTstanding — baseRTT -—=(1)

where baseRTT is the smallest RTT observed over a long period of time.

COPA uses the smaller of 10 seconds and the time since the flow started for
this period.

» If the current rate exceeds the target rate, the sender reduces cwnd;
otherwise, it increases cwnd.

» To avoid packet bursts, the sender paces packets at a rate of
2*cwnd/RTTtanding Packets per second.

% is in units of MTU sized packets

Window Update On Every ACK Arrival

1. Update the queuing delay g* and srtt using the standard TCP exponentially
weighted moving average estimator.

2. Set target rate 1, = 517

3. If the current rate
r = ewnd/RT Tgianding < 7, then
cwnd = cwnd + v/(6.cwnd),
where v is a velocity parameter" (defined in the next step).
Otherwise,
cwnd = cwnd - v/(6.cwnd)

Over 1 RTT, the change in cwnd is thus = V/s packets.

Window Update (cont)

1. The velocity parameter, v, speeds-up convergence. It is initialized to 1.
Once per window, the sender compares the current cwnd to the cwnd value
at the time that the latest acknowledged packet was sent (i.e., cwnd at the
start of the current window).

o If the current cwnd is larger, then set direction to “up”; if it is smaller, then set
direction to “down".

o If direction is the same as in the previous window, then double v. If not, then reset
v to 1. However, start doubling v only after the direction has remained the same
for three RTTs.

2. When a flow starts, Copa performs slow-start where cwnd doubles once
per RTT until r exceeds r, . While the velocity parameter also allows an
exponential increase, the constants are smaller.

COPA in Steady State

» Note that: Sending Rate < Target Rate implies that
cwnd 1

<
RTTstanding 6 (RTTstanding _ RTTmin)
Which is the same as

cwnd

1
(RTTstanding - RTTmin) < E
1
5
» Sending Rate > Target Rate coincides with the event that the bottleneck

. 1
queue size has exceeded 5

RTTstanding
i.e, the queue size at the bottleneck is less than

» However it takes 1.5T for this information to be incorporated into the rate
calculation.

> This is because of the way RTTnding is computed

RTTstanding IS
smallest RTT over T/2
this period /
Packet Tx

RTTstanding IS the smallest RTT observed over a recent time-window

\ A
4 bt
N :
%

Steady State Oscillations

Change point A
sRTT/2 1RTT A sRTT/2 1RTT
A | Ifeedback dela)1 | Ifeedback delayll
255 | ! | ! ! '
= ! : ' Queue length
X E Period over which i i %%[:.Z?gggﬁ:ngato
= ! RTTstanding is computed U o . % B
‘é, y /™ » at change points < 1 G a4nge ROINY
o A4 L~
R . S e et
)
3 “a Queue length
3 corresponding to .
RTTstanding at Change point B
change point A B
O ;

Time 5RTT

« Period of oscillations = 5T

« The queue size varies from zero to 25/,

« The bottleneck queue empties at the start and end of a period.

« With multiple flows with same propagation delay, their oscillations synchronize

with § = (Zisii)_l

* Queue emptying is a critical property since it helps to measure RTT,,;, accurately and
it also facilitates intra-protocol fairness.

COPA Window Evolution

Cwnd (pkts)
&
[
e
RTTsanding (ms)

24 | E. FIRAY L . {: " 24

L I., VE '“z.l S H-jlz

0 02 04 06 08 1

Time (2)

The period of oscillation is 5RTT and amplitude is 5 packets (since § = 0.5).

Competing with Buffer Based Algorithms

» If Copa seeks to maintain low queuing delays; without modification, it will lose to
buffer-filling schemes.

» Modifications: There are two distinct modes of operation for Copa:
1. The default mode where § = 0.5, and

2. A competitive mode where 6 is adjusted dynamically to match the aggressiveness of
typical buffer-filling schemes.

» Copa switches between these modes depending on whether or not it detects a
competing long-running buffer-filling scheme. The detector exploits a key Copa
property that the queue is empty at least once every 5 RTT when only Copa flows with
similar RTTs share the bottleneck. Hence if the sender sees a nearly empty" queue in the
last 5 RTTs, it remains in the default mode; otherwise, it switches to competitive mode.

» We estimate nearly empty" as any queuing delay lower than 10% of the rate oscillations
in the last four RTTs; i.e., g < 0.T(RTT,ax — RTTi0)-

» In competitive mode the sender varies 1/§ according to whatever buffer-filling algorithm
one wishes to emulate (e.g., NewReno, Cubic, etc.). COPA performs AIMD on 1/§ based
on packet success or loss,

Over 1 RTT the change in cwnd is 1/6 packets

COPA Performance

COPA performance:

4

o

COPA exhibits higher intra-protocol fairness compared to Cubic and BBR.

COPA achieved as a much throughput and 2-10x lower queueing delays
compared to Cubic and BBR.

In datacenter network simulations, on a web search workload trace drawn
from datacenter network, Copa achieved a > 5x reduction in flow
completion time for short flows over DCTCP. It achieved similar
performance for long flows.

In experiments on an emulated satellite path, Copa achieved nearly full
link utilization with a median queuing delay of only 1 ms. BBR obtained
50% link utilization. Both Cubic and Vegas obtained < 4% utilization.

COPA also exhibits better RTT fairness.

COPA Performance

Cellular Networks Wired Networks

= 0.7 T T T T T T I 1 T T T T
£ 06 -) 4 8 ~®BBR pemy

-) Cubic ® BBR L . Vivace loss eCopa
3 ovivaceToss” e yergs @ LEDBAT 3 08 - Cubicy"g™ ™" & 1 ePCC :
S 05 |- gvivace LTE Vegas 2 Vers ¢ ® Vegas o \/lvace
E yPcc ® e Remy e Copa E os ey
b 0.4 =~ e Vivace latency 1 3 : e LEDBAT
-B 0 3 -u
® V9 T ® 04+
‘E‘ 02 .Spm'f § @ Sprout
s O S
< < 02|
o 01 — o
N | | | | | | il | | | |

2048 1024 512 256 128 64 32 16 16 8 4 2

Avg. Queuing Delay (ms) Avg. Queuing Delay (ms)

Figure 5: Real-world experiments on Pantheon paths: Average normalized throughput vs. queuing delay achieved
by various congestion control algorithms under two different types of Internet connections. Each type is averaged
over several runs over 6 Internet paths. Note the very different axis ranges in the two graphs. The x-axis is flipped
and in log scale. Copa achieves consistently low queueing delay and high throughput in both types of networks.
Note that schemes such as Sprout, Verus, and Vivace LTE are designed specifically for cellular networks. Other
schemes that do well in one type of network don’t do well on the other type. On wired Ethernet paths, Copa’s
delays are 10x lower than BBR and Cubic, with only a modest mean throughput reduction.

COPA Performance with Link Loss

12

o — ——————0DA__
N 30 = BBR =
g o s
= B \ -
6 4 - NBeno @ -
E s L CUbl'c e —— e ; __ et
0 | | L N
0 1 2 3 4 5 6

Packet Loss %

Figure 7: Performance of various schemes in the
presence of stochastic packet loss over a 12 Mbit/s
emulated link with a 50 ms RTT.

TIMELY

TIMELY: RTT-based Congestion Control for the
Datacenter

Radhika Mittal<(UC Berkeley), Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi*(Microsoft), Amin Vahdat, Yaogong Wang, David Wetherall, David Zats

Google, Inc.

ABSTRACT

Datacenter transports aim to deliver low latency messag-
ing together with high throughput. We show that simple
packet delay, measured as round-trip times at hosts, is an
effective congestion signal without the need for switch feed-
back. First, we show that advances in NIC hardware have
made RTT measurement possible with microsecond accu-
racy, and that these RTTs are sufficient to estimate switch
queueing. Then we describe how TIMELY can adjust trans-
mission rates using RTT gradients to keep packet latency low
while delivering high bandwidth. We impkment our design
in host softwam running over NICs with OS-bypass capabil-
ities. We show using experiments with up to hundreds of ma-
chines on a Clos network topology that it provides excellent
performance: turning on TIMELY for OS-by pass messaging
over a fabric with PFC lowers 99 percentike tail latency by
9X while maintaining near li te throughput. Our system
also outperforms DCTCP running in an optimized kernel,
reducing tail latency by 13X. To the best of our knowledge,
TIMELY is the first delay-based congestion control protocol
for use in the datacenter, and it achieves its results despite
having an order of magnitude fewer RTT signals (due to NIC
offload) than earlier delay-based schemes such as Vegas.

CCS Concepts
eNetworks — Transport protocols;

Keywords

datacenter transport; delay-based congestion control; OS-
bypass; RDMA

*Work done whik at Google

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies an not made or
distributed for profit or ial advantage and that copies bear this notice
and the full citatica om the finst page. Copyrights for thind-pasty components of
this work must be hoacred. For all other uses, costact the owser/author(s).
SIGCOMM 15 August 17-21, 2015, London, Unired Kingdom

@ 2015 Copyright held by the cwner/msthor(s).

ACM ISBN 978145033542 ¥ 1508,

DOE http://dx.doi.org/10. 11452785956.2787510

1. INTRODUCTION

Datacenter networks run tightly-coupled computing tasks
that must be responsive to users, e.g., thousands of back-
end computers may exchange information to serve a user
request, and all of the transfers must compkte quickly
enough to let the compkte response to be satisfied within
100 ms [24]. To meet these requirements, datacenter trans-
ports must simultancously deliver high bandwidth (:Gbps)
and utilization at low latency (< msec), even though these
aspects of performance are at odds. Consistently low la-
tency matters because even a small fraction of late operations
can cause a rippk effect that degrades application perfor-
mance [21]. As a result, datacenter transports must strictly
bound latency and packet loss.

Since traditional loss-based transports do not meet these
strict requi . new d ports [10,18,30,35,
37,47], take advantage of network support to signal the on-
set of congestion (e.g., DCTCP [35] and its successors use
ECN), introduce flow abstractions to minimize compktion
latency, cede scheduling to a central controller, and more.
However, in this work we take a step back in search of a
simpler, immediately deployable design.

The crux of our search is the congestion signal. An ideal
signal would have several properties. It would be fine-
grained and timely to quickly inform senders about the ex-
tent of congestion. It would be discriminative enough to
work in plex envi with multipk traffic classes.
And, it would be casy to deploy.

Surprisingly, we find that a well-known signal, properly
adapted, can meet all of our goals: delay in the form of
RTT measurements. RTT is a fine-grained measure of con-
gestion that comes with every acknowledgment. It effec-
tively supports multipke traffic classes by providing an in-
flated measure for lower-priority transfers that wait behind
higher-priority ones. Further, it requires no support from
network switches.

Delay has been explored in the wide-area Intemet since at
least TCP Vegas [16], and some modem TCP variants use
delay estimates [44,46]. But this use of delay has not been
without problems. Delay-based schemes tend to compete
poorly with more aggressive, loss-based schemes, and delay

TIMELY Congestion Control

» Specialized for Data Center environments

» Uses very precise measurements for round trip latency, made
possible by advances in NIC Card technology

» Uses a Rate Based congestion control algorithm

» Uses a combination of Delay AND Delay Gradients to keep queue
size within a tight range.

» Requires no switch support, purely end-to-end based

Delay based Algorithms in the
Data Center

» Delay had not been used as a congestion signal in the datacenter because datacenter
RTTs are difficult to measure at microsecond granularity. This level of precision is easily
overwhelmed by host delays such as interrupt processing for acknowledgments.

» However recent NIC advances do allow datacenter RTTs to be measured with sufficient
precision. They provide hardware support for high-quality timestamping of packet
events plus hardware-generated ACKs that remove unpredictable host response delays.

» Using RTTs provides richer and faster information about the state of network switches
than explicit network switch signals such as ECN marks. The ECN signal does not
correlate well with RTT and hence with the amount of queuing.

ECN Fraction

TIMELY Protocol

Data

I]

TIMELY Congestion Control Engine v
3 RTT Rate > 3
: Measurement =————: Computation == Pacing Engine :
Engine : R p Engine i :]
PRGN, STy 00 eemmeewaeen

Timestamps

Paced Data

TIMELY has 3 components
1. RTT measurement to monitor the network for congestion

2. A computation engine that converts RTT signals into target sending rates
3. A control engine that inserts delays between segments to achieve the target rate.

RTT Measurement Engine

Completion Time
A

Serialization Delay RTT

el *\/

Figure 7: Finding RTT from completion time.

» A segment consisting of multiple packets is sent as a single burst and then ACKed as a
unit by the receiver. A completion event is generated upon receiving an ACK for a
segment of data and includes the ACK receive time.

» The time from when the first packet is sent (t;.,q) until the ACK is receive (t.ompletion) IS
defined as the completion time.

seg. size
RTT =t letion — tsend — :
completion /Ef" NIC line rate
Propagation Serialization

Delay Delay

TIMELY Congestion Control

» The rate computation engine runs the congestion control algorithm upon
each completion event, and outputs an updated target rate for the flow.

» TIMELY does not try to control the queueing delay directly since it has been

shown that it is not possible to control the queue size when it is shorter in
time than the control loop delay.

» TIMELY’s congestion controller achieves low latencies by reacting to the delay
gradient or derivative of the queuing with respect to time, instead of trying
to maintain a standing queue.

> This is possible because we can accurately measure differences in RTTs
that indicate changes in queuing delay.

> A positive delay gradient due to increasing RTTs indicates a rising queue,
while a negative gradient indicates a receding queue.

> By using the gradient, we can react to queue growth without waiting for a
standing queue to form - a strategy that helps us achieve low latencies.

Delay Gradients

4

Delay gradient is a proxy for the rate mismatch at the bottleneck queue. RCP,
XCP etc have shown that explicit feedback on the rate mismatch has better
stability and convergence properties than explicit feedback based only on
queue sizes.

We denote the queuing delay through the bottleneck queue by q(t). If y(t) >
C, the rate at which the queue builds up is (y(t) - C). Since queued data
drains at a rate C, the queuing delay gradient is given by

(y(t)—C) _ dg(t) _ d(RTT)
. - dt dt :

Hence, the delay gradient measured through RTT signals acts as an indicator
for the rate mismatch at the bottleneck.

Timely Congestion Control

Use gradient based rate increase and
decrease in this region
Use latency based rate increase

Use latency based rate decrease
in this region

in this region

v

Additive Gradient-based Multiplicative
Increase Increase/Decrease Decrease
 — ><¢ >
2
[} T [}
o Tlov Thigh

« The T,y and Tygy thresholds effectively bring the delay within a
target range and play a role similar to the target queue occupancy
in many AQM schemes.

Using the delay gradient improves stability and helps keep the latency
within the target range [Tiow, Thignl

Timely Congestion Control

Algorithm 1: TIMELY congestion control.
Data: new_rtt
Result: Enforced rate
new_rtt_diff = new_rtt - prev_rtt ;
prev_rtt = new_rtt ; Filtered estimate of
rtt_diff = (1 - @) - rtt_diff + o - new_rtt_diff ; «— Delay Gradient
> a: EWMA weight parameter
normalized_gradient = rtt_diff / minRTT ;
if new_rit < T,y then
rate +— rate + 4 ;

> 4: additive increment step
| return;

if new_rit > T, then
rate(—rate-(l-ﬁ-(l-h));

3 " new_rtt f If the gradient is negative or equals zero,
> [: multiplicative decrement factor the network can keep up with the aggregate
| return; incoming rate, and therefore

if normalized_gradient < () then there is room for a higher rate.
rate +rate + N -4 ; /

& N =5 if gradient<0 for five completion events

(HAI mode); otherwise N = 1 When the gradient is positive, the
" total sending rate is greater than

else .
. . / network capacity. Hence,
| rate + rate - (I - 5 - normalized_gradient) TIMELY performs a multiplicative
rate decrement, scaled
by the gradient factor:

Comparison with DCTCP

1 BURSRIET o e S R
L 0.8 W aas
0.6 ‘
()])
3 04 / MELY
Olg N)%»(WN PCTCFI) ‘‘‘‘‘ ki“ﬂl_ -
200 400 600 800 1000 1200 1400
RTT (us)

Figure 14: CDF of RTT distribution

« TIMELY keeps the average end-to-end RTT 10X lower than
DCTCP (60 s vs. 600 s).

« More significantly, the tail latency drops by almost 13X
(116 svs. 1490 5s).

Issues with Delay Bounding

Schemes (2022)

Starvation in End-to-End Congestion Control

Venkat Arun, Mohammad Alizadeh, Hari Balakrishnan
{venkatar, alizadeh, hari}@csail.mit.edu
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA

ABSTRACT 1 INTRODUCTION

To J in traditional loss-based With the rise of i ive and real-ti licati the
control algorithms (CCAs), hers have developed and id d ition of bufferbloat as a s prob-
deployed several delay-bounding CCAs that achieve high uti- lem [17), and increasing user expectations for high quality-of-
lization without bloating delays (e.g., Vegas, FAST, BBR, PCC, i the kil ity has developed a vari-

Copa, etc.). When run on a path with a fixed bottleneck rate,
these CCAs converge to a small delay range in equilibrium.
This paper proves a result: although designed to
achieve reasonable inter-flow fairness, current methods to de-
velop delay-bounding OCAs cannot always avoid starvation,
an extreme form of unfairmess. Starvation may occur when
such a CCA runs on paths where non-congestive network
delay variations due to real-world factors such as ACK ag-
gregation and end-host scheduling exceed double the delay
range that the CCA converges to in equilibrium. We provide
experimental evidence for this result for BBR, PCC Vivace,
and Copa with a link emulator. We discuss the implicati

ety of delay-bounding congestion control algorithms (CCAs)
for applications to use on the Internet. Unlike CCAs such
as Reno/NewReno (22, 24], Cubic [20], and Compound [41),
delay-bounding CCAs do not keep increasing their conges-
tion window (cwnd) until they experience packet loss or
receive acknowledgments (ACKs) with explicit congestion
notification (ECN) bits [14]. Instead they use the measured
round-trip time (RTT) and other factors (e.g., rate estimates)
to set cwnd. They aim to achieve high utilization without
bloating delays, and are also more efficient in the face of
some packet loss.

The devel of delay-bounding CCAs for the Internet

of this result and posit that to guarantee no starvation an
efficient delay-bounding CCA should design for a certain
amount of non-congestive jitter and ensure that its equilib-
rium delay oscillations are at least one-half of this jitter.

CCS CONCEPTS
. ks — T tp 1
ness;

KEYWORDS
Congestion Control, Delay-Convergence, Starvation

ACM Reference Format:

Venkat Arun, Alzadeh, Hari {venkatar,
alizadeh, hari}@csail.mit.edu MIT Computer Science and Ar-
tificial Intelligence Lab, Cambridge, MA. 2022. Starvation in End-to-
End Congestion Control. In AQM SIGOOMM 2022 Conference (SIG-

Protocol correct-

began with Vegas in 1994 [6], followed by FAST [44], but
largely stagnated because of the inability of these schemes
to obtain good throughput when competing with buffer-
filling CCAs such as Reno/NewReno and especially Cubic.
Over the past ten years, however, delay-bounding CCAs
have i da with several Is that
overcome these issues, including Sprout [46], Remy [45],
BBR [8, 10], PCC [12, 13], Copa [3], and Verus [48). Some
of these schemes are widely deployed, most notably BBR,
which is now the CCA used by many popular Internet sites.
In this paper we study how multiple flows running a given
delay-bounding CCA share bandwidth. We start by noting
that many CCAs share a common property. On ideal network
paths with a constant bottleneck rate and propagation delay,
they converge to a small delay range and oscillate within
that range. The mean queueing delay range experienced at
ilibrium is either constant (no matter what the bottleneck

COMM 22), August 22-26, 2022, Amsterds ACM, New
York, NY, USA, 16 pages. https:/doi.org/10.1145/3544216.3544223

rate) or a decreasing function of the bottleneck rate (e.g., the

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copy rights for third-
party components of this wark must be honored. For all ather uses, contact
the owner/authar(s).

SIGOOMM 22, Augus 22-26, 2022, Amterdam, Netherlands

© 2022 Copyright held by the cwner/author(s).

ACM ISBN 078-1-4503-5420-8/22/08.
https/doi.org/10.1145/3544216.3544223

CCA maintains a certain number of enqueued packets).

‘We show that this convergence property has an important
consequence. Because most CCAs attempt to work across
many orders of magnitude of rates, they must map alarge rate
range into a small delay range.’ Thus, even small changes in
estimated queueing delay would induce enormous changes

Unless they are also willing to let the delay bound grow with the rate,
which is not interesting in practice.

Objective

» The paper focuses on how multiple flows running a given delay-bounding CCA share
bandwidth.

» The problem the authors identified is the following: Because most CCAs attempt to work
across many orders of magnitude of rates, they must map a large rate range into a small
delay range. Thus, even small changes in estimated queueing delay would induce
enormous changes in the inferred rate.

» Can perfect measurements solve the problem:

> No, since there is no way to precisely measure congestive queueing delays. The reason is that non-
congestive (i.e., non-bottleneck-queueing) contributions to network delay are rarely constant in
practice, and hard to separate from congestion.

> Due to effects such as ACK aggregation, delayed ACKs, end-host operating system or thread
scheduling, token bucket filters, hardware offload timing variations, etc., packets experience jitter
on network paths unrelated to bottleneck queueing.

» Hence they focus on understanding the effects of non-congestive jitter on delay-
bounding CCAs, expecting some degree of unfairness and hoping to quantify it as a
function of the delay jitter.

Main Results

» Efficient delay-bounding CCAs that converge in steady state to a bounded delay range
are not merely unfair, but cannot avoid starvation.

» When two flows using the same CCA share a bottleneck link, if the non-congestive delay
variations exceed double the difference between the maximum and minimum queueing
delay at equilibrium, then there are patterns of non-congestive delay where one flow will
get arbitrarily low throughput compared to the other.

» Congestion Control Algorithms can target at most two out of the following three
properties:

1. High throughput,
2. Convergence to a small and bounded delay range, and
3. No starvation.

» Are we are doomed to choose between bounding delays and avoiding starvation?

- We might be able to achieve both desirable goals by being explicit about non-
congestive delays in CCA design, ensuring that the CCA’s delay variations in
equilibrium are at least half as as large as the non-congestive jitter expected along a
path.

- |f that is not the case, then the results prove that starvation is inevitable.

Results (cont)

« Shows delay profile of a session over time
¢ dnax and d.,;, are the max and min
delays after convergence
* 8 =dmngx — dmin Aand 6™ is upper bound
oné

Figure 1: Ideal-path behavior of a hypothetical delay-convergent

CCA.

CCAs that ensure a smaller §,,,,, and hence are “more convergent” are more
susceptible to starvation.

Starvation can occur if the delay ambiguity caused by non-congestive jitter delay is
> 26 max-

For many CCAs, 6,,., is small because they strive to keep delay variations small
compared to R,,. Hence even a little ambiguity can cause starvation.

A
E dima
£ 4(C)
5 Omin _IEJ'D Variation of § (€) with C
s AC
0 ’

Link rate

e -

Results (cont)

A dmax

Figure 1: Ideal-path behavior of a hypothetical delay-convergent
CCA.

« §(C)is O for Vegas, FAST, and BBR in cwnd limited mode
 4q/C for Copa, where «a is the packet size

« Rm/4 for BBR in pacing mode

« Rm/20 for PCC Vivace

« ALL these protocols suffer from starvation even in simple two-flow scenarios with
small non-congestive jitter

>

3(C) Variation of delays with link rate for a fixed Rm

F
|
B

Equilibrium RTT

0 Link rate
IRERRRRRRRRRRRRRRR R T~ -,

Network Model

ccal [€ o

D
} @Rm' :D

(

Random delay between 0 and D

CCA2

« Non-congestive delays create ambiguity about the amount of queueing delay at the bottleneck.
« For example, when a CCA measures an RTT increase of Ad=5 it only knows that the increase due

to congestion is between Ad—D and Ad.
« This ambiguity creates confusion at the sender. If the delay observed is truly caused by congestion,

the CCA should reduce its rate, but if it does so and the delay turns out to be non-congestive, it

may under-utilize the network.
« When flows sharing a link estimate the queueing delay differently, they may send at unequal rates,

which can cause starvation

Example:
* Consider a CCA such as Vegas or FAST that seeks to maintain « packets in the queue per flow in equilibrium.a is a

parameter of the algorithm (e.g., a = 4 packets).
« Over an ideal path, once the CCA hits this target, its rate stabilizes and the queue length never changes.

 Hence 6,,,, = 0 and the RTT is R,, + a/C

An Example

« Consider a CCA such as Vegas or FAST that seeks to maintain a packets in the queue per flow in
equilibrium where «a is a parameter of the algorithm (e.g., @ = 4 packets).

« Over an ideal path, once the CCA hits this target, its rate stabilizes and the queue length never
changes. Hence 6,,,, = 0 and the RTTis R, + a/C

« To achieve this equilibrium, the CCA must measure the queueing delay with high precision.
For example, with « = 4 and a packet size of 1500 bytes, a/C = 0.5 ms for € = 96 Mbit/s and
0.05 ms for ¢ = 960 Mbit/s.

« Thus a difference of only 0.45 ms in the estimated queueing delay can cause the CCA to vary its
sending rate by 10x!

« Therefore, if the delay measurement ambiguity exceeds this amount, it can easily cause severe
unfairness. Delay jitter of tens of milliseconds occur on Wi-Fi and cellular links.

« Any delay-convergent CCA that seeks to bound delay variation below the level of jitter
(delay ambiguity) of the network will suffer from the same problem.

« The fundamental issue is that very different link rates are consistent with similar delay measurements.
When different flows experience different non-congestive delays, they can infer very different link
s, causing unfairness and starvation.

Delay Variations for Some CCAs

Vegas and FAST Copa BBR PCC Vivace

wn
g cwnd-limiteq
3 2Rm = 2Rm 2Rm 2Rm =
[
£
o
> Pacing limited

Rm T T Rm T E— T Rm Rm -

0.1 1 10 100 0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

Link rate (Mbit/s) Link rate (Mbit/s) Link rate (Mbit/s) Link rate (Mbit/s)

To Avoid Starvation

1. To utilize the link efficiently, a CCA must maintain a queue that is larger
than the non-congestive delay on the path;

2. This alone is not enough to avoid starvation, but in addition the variation

in the queueing delay in steady state must also be greater than one-half of
the delay jitter;

3. If we have a prior upper bound on sending rate, we may be able to avoid
starvation while also reducing the queueing delay variation.

Loss based algorithms actually satisfy these requirements, but the tradeoff is
that delay is no longer small or bounded

