
Lecture 8
Subir Varma

} Modern data centers are created by interconnecting together a large number
of commodity servers and their associated storage systems, with commodity
Ethernet switches.

} They create a “warehouse-scale” computing infrastructure that scales
“horizontally”; that is, we can increase the processing power of the data
center by adding more servers as opposed to increasing the processing
power of individual servers (which is a more expensive proposition).

} The job of a DCN in the data center architecture is to interconnect the servers
in a way that maximizes the bandwidth between any two servers while
minimizing the latency between them.

} The DCN architecture should also allow the flexibility to easily group
together servers that are working on the same application, irrespective of
where they are located in the DCN topology.

From the congestion control point of view, DCNs have some unique characteristics
compared with the other types of networks that we have seen so far:

} The round trip latencies in DCNs are extremely small, usually of the order of a few
hundred microseconds, as opposed to tens of milliseconds and larger for other
types of networks.

} Applications need very high bandwidths and very low latencies at the same time.

} There is very little statistical multiplexing, with a single flow often dominating a
path.

} To keep their costs low, DCN switches have smaller buffers compared with regular
switches or routers because vendors implement them using fast (and expensive)
static random-access memory (SRAM) to keep up with the high link speeds.
Moreover, buffers are shared between ports, so that a single connection can end
up consuming the buffers for an entire switch.

} To communicate at full speed between any two servers, the interconnection
network provides multiple paths between them, which is one of the distinguishing
features of DCNs.

} Loss based TCP requires large buffers; indeed, the buffer size should be
greater than or equal to the delay bandwidth product of the connection to
fully use the full bandwidth of the link (see Lecture 2)

} End-to-end delays of connections under TCP are much larger than what can
be tolerated in DCNs. The delays are caused by TCP’s tendency to fill up link
buffers to capacity to fully use the link.

} How to load balance the traffic among multiple paths in a DCN?

} The Incast problem is a special type of traffic overload situation that occurs
in data centers. It is caused by the way in which jobs are scheduled in parallel
across multiple servers, which causes their responses to be synchronized
with one another, thus overwhelming switch buffers.

1. Algorithms that retain the end-to-end congestion control
philosophy of TCP:

} Data Center TCP (DCTCP), Deadline-Aware Data Center TCP (D2TCP), and
High bandwidth Ultra Low Latency (HULL), fall into this category of
algorithms.

} They use a more aggressive form of a Random Early Detection (RED) like
Explicit Congestion Notification (ECN) feedback from congested switches that
are then used to modify the congestion window at the transmitter.

} These new algorithms are necessitated due to the fact that Normal RED or
even the more effective form of Active Queue Management (AQM) with the
Proportional-Integral (PI) controller is not able to satisfy DCNs’ low latency
requirements.

2. Algorithms that depend on in-network congestion control
mechanisms

◦ DCN congestion control protocols such as D3, Preemptive Distributed
Quick Flow Scheduling (PDQ), DeTail, and pFabric fall in this category.

◦ They use additional mechanisms at the switch, such as bandwidth
reservations in D3, priority scheduling in pFabric or packet by packet load
balancing in DeTail.

◦ The general trend is towards a simplified form of rate control in the end
systems coupled with greater support for congestion control in the
network because this leads to much faster response to congestion
situations.

◦ This is a major departure from the legacy congestion control philosophy of
putting all the intelligence in the end system.

ToR ToR ToR ToR

AS AS

AR

CR CR

ToR ToR ToR ToR

AS AS

AR AR

CR: Core Router
AR: Aggregation Router
AS: Aggregation Switch
ToR: Top of Rack Switch

Layer 2 Domains

Internet

} A typical data center consists of thousands of commodity servers that are
connected together using special type of Ethernet network called an Inter-
connection Network.

} Servers are arranged in racks consisting of 20 to 40 devices, each of which is
connected to a Top of Rack (ToR) switch. Each ToR is connected to two
aggregation switches (AS) for redundancy, perhaps through an intermediate
layer of L2 switches.

} Each AS is further connected to two aggregation routers (ARs), such that all
switches below each pair of ARs form a single Layer 2 domain, connecting
several thousand servers.

} Servers are also partitioned into Virtual Local Area Networks (VLANs) to limit
packet flooding and Address Resolution Protocol (ARP) broadcasts and to
create a logical server group that can be assigned to a single application. ARs
in turn are connected to core routers (CRs) that are responsible for the
interconnection of the data center with the outside world.

} Lack of bisection bandwidth:

◦ Bisection bandwidth is defined as the maximum capacity between any two servers.
Even though each server may have a 1-Gbps link to its ToR switch and hence to other
servers in its rack, the links further up in the hierarchy are heavily oversubscribed.

◦ For example, only 4 Gbps may be used on the link between the ToR and AS switches,
resulting in 1:5 oversubscription when there are 20 servers per rack, and paths
through top-most layers of the tree may be as much as 1:240 oversubscribed.

◦ As a result of this, designers tend to only user servers that are closer to each other,
thus fragmenting the server pool (i.e., there may be idle servers in part of the data
center that cannot be used to relieve the congestion in another portion of the
system).

} Configuration complexity:
◦ Adding additional servers to scale the service outside the domain requires

reconfiguration of IP addresses and VLAN trunks because IP addresses are
topologically significant and are used to route traffic to a particular Layer
2 domain. As a result, most designs use a more static policy whereby they
scale up by adding servers idle within the same domain, thus resulting in
server under-utilization.

} Poor reliability and redundancy:
◦ Within a Layer 2 domain, the use of Spanning Tree protocol for data

forwarding results in only a single path between two servers. Between
Layer 2 domains, up to two paths can be used if Equal Cost Multi-Path
(ECMP) routing is turned on.

1G
ToR ToR ToR ToR

AS AS

IS

ToR ToR

AS

IS

IS: Intermediate Switch
AS: Aggregation Switch
ToR: Top of Rack Router

Internet

DI Aggregation Switches
With DA Ports each

DA/2 Intermediate Switches
With DI Ports each

DADI/4 ToR Switches

10G

10G

DA/2 Links

DA/2 Links

5DADI Servers

} Each ToR switch is still connected to two AS switches using 1-Gbps links, but
unlike the Tree Architecture, each AS switch is connected to every other AS
switch in 2-hops, through a layer of intermediate switches (ISs) using 10
Gbps or higher speed links.

} As a result, if there are n IS switches, then there are n paths between any two
ASs, and if any of the IS fails, then it reduces the bandwidth between 2 AS
switches by only 1/n.

} For the VL2 network shown in prior page, the total capacity between each
layer is given by DIDA/2 times the link capacity, assuming that there are DI AS
switches with DA ports each.

} Also note that the number of ToR switches is given by DADI/4, so that if there
are M servers attached with a 1-Gbps link to the ToR and the links between
the AS and IS are at 10 Gbps, then equating the total bandwidth from the AS
to the ToR switches to the total bandwidth in the opposite direction, we
obtain

} The VL2 architecture uses Valiant Load Balancing (VLB) among flows to
spread the traffic through multiple paths. VLB is implemented using ECMP
(Equal Cost Multi Path) forwarding in the routers.

} VL2 enables the system to create multiple Virtual Layer 2 switches (hence the
name), such that it is possible to configure a virtual switch with servers that
may be located anywhere in the DCN.

} All the servers in Virtual Switch are able to communicate at the full bisection
bandwidth and furthermore are isolated from servers in the other Virtual
Switches.

} To route packets to a target server, the system uses two sets of IP addresses.
Each application is assigned an Application Specific IP Address (AA), and all
the interfaces in the DCN switches are assigned a Location Specific IP
Address (LA) (a link-state based IP routing protocol is used to disseminate
topology information among the switches in the DCN).

} An application’s AA does not change if it migrates from server to server, and
each AA is associated with an LA that serves as the identifier of the ToR
switch to which it is connected. VL2 has a Directory System (DS) that stores
the mapping between the AAs and LAs.

} When a server sends a packet to its ToR switch, the switch consults the DS to
find out the destination ToR and then encapsulates the packet at the IP level,
known as tunneling, and forwards it into the DCN.

} To take advantage of the multiple paths, the system does load balancing at
the flow level by randomizing the selection of the Intermediate Switch used
for the tunnel.

AS AS

ES ES

AS AS

ES ES

AS AS

ES ES

AS AS

ES ES

(k/2)2 Core
k port switches

k2/2 Aggregation
k port switches

k2/2 Edge
k port switches

Po
d

1

Po
d

2

Po
d

3

Po
d

k

k/2 sw

k/2 sw

k/2 servers

k3/4 servers

Servers

Internet

} Fat Tree is also CLOS based

} The network is built entirely with k-port 1-Gbps switches and is constructed
around k pods, each of which has two layers of switches, with (k/2) switches in
each layer.

} The bottom layer of switches in a pod is connected to the servers, with (k/2)
servers connected to each switch. This implies that the system with k pods can
connect
(k/2) switches/pod *  (k/2) server facing ports per switch * k pods = (k3/4) servers per
network.

} Similarly, it can be shown that there are k2/4 core switches per network, so that
the number of equal-cost multipaths between any pair of hosts is also given by
k2/4.

} Because the total bandwidth between the core switch and aggregation switch
layers is given by k3/4, it follows that the network has enough capacity to support
a full 1-Gbps bisectional bandwidth between any two servers in the ideal case.

Root
(200 ms)

Parent
(100 ms)

Parent
(100 ms)

Parent
(100 ms)

Leaf
(45 ms)

Query
200 msec
Deadline

5 ms
20 ms 5 ms5 ms

5 ms
5 ms 5 ms 5 ms 5 ms 5 ms

25 ms

30 ms

20 ms 20 ms
20 ms

20 ms 20 ms 20 ms

Leaf
(45 ms)

Leaf
(45 ms)

Leaf
(45 ms)

Leaf
(45 ms)

Leaf
(45 ms)

} Each of the nodes represents the processing at a server node; the connector
between nodes stands for the transmission of a flow across the interconnection
network.

} A typical online transaction is generated when a user enters a query into a search
engine. A very large data set is required to answer the query, which is spread
among thousands of servers in the DCN, each with its own storage.

} The way a query progresses through a DCN is shown in the figure:
◦ The query arrives at the root node, which broadcasts it to down to the next

level,
◦ These in turn generate their own queries one level down until the leaf nodes

holding the actual data are reached.
◦ Each leaf node sends its response back to its parent, which aggregates the

replies from all its child nodes and sends it up to the root.

} Furthermore, answering a query may involve iteratively invoking this pattern; one
to four iterations are typical, but as many as 20 may occur.

} Studies have shown that the response needs to be generated within a short
deadline of 230 to 300 ms.

} The propagation of the request down to the leaves and the responses back to
the root must complete within the overall deadline that is allocated to the
query; otherwise, the response is discarded.

} To satisfy this, the system allocates a deadline to each processing node,
which gets divided up into two parts:
◦ The computation time in the leaf node and the communication latency between the

leaf and the parent.
◦ The deadlines for individual computational nodes typically vary from about 10 to 100

ms.

} The deadlines for communications between hosts cannot exceed tens of
milliseconds if the system is to be able to meet the overall job deadline.

Objectives
} Minimization of flow latency is a very important requirement in DCNs.

} At the same time, other flows in the data center are throughput intensive. For
example, large transfers that update the internal data structures at a server
node fall into the latter category; hence, throughput maximization and high
link utilization cannot be ignored as the congestion control objective.

} To meet the requirements for such a diverse mix of short and long flows,
switch buffer occupancies need to be persistently low while maintaining high
throughput for long flows.

} Two ways to control queueing latency:
◦ Delay-based protocols such as TCP Vegas: Problem with these – they rely on a very

accurate measurement of RTT which is a problems in a DCN environment because the
RTTs are extremely small, of the order of a few hundred microseconds.

◦ AQM algorithms: These use explicit feedback from the congested switches to regulate
the transmission rate, RED being the best known member of this class of algorithms.
However RED and and even PI controllers do not work well in environments where there is low
statistical multiplexing and the traffic is bursty, both of which are present in DCNs.

1. At the switch: An arriving packet at a switch is marked with Congestion Encountered
(CE) codepoint if the queue occupancy is greater than a threshold K at its arrival. A
switch that supports RED can be reconfigured to do this by setting both the low and
high threshold to K and marking based on instantaneous rather than average queue
length.

2. At the receiver: A DCTCP receiver tries to accurately convey the exact sequence of
marked packets back to the sender by ACKing every packet and setting the ECN-Echo
flag if and only if the data packet has a marked CE codepoint. This algorithm can also
be modified to take delayed ACKs into account while not losing the continuous
monitoring property at the sender.

3. At the sender: The sender maintains an estimate of the fraction of packets that are
marked, called α, which is updated once for every window of data as follows:

where F is the fraction of packets that were marked in the last window of data and
0<g<1 is the smoothing factor.
Note that because every packet gets marked, α estimates the probability that the queue
size is greater than K.

𝛼 = 𝑃(𝑏 > 𝐾)

4. Features of TCP rate control such as Slow Start, additive increase during congestion
avoidance, or recovery from lost packets are left unchanged. However, instead of
cutting its window size by 2 in response to a marked ACK, DCTCP applies the following
rule once every RTT:

5. Thus, a DCTCP sender starts to reduce its window as soon as the queue size exceeds K
(rather than wait for a packet loss) and does so in proportion to the average fraction of
marked packets. Hence, if very few packets are marked then the window size hardly
reduces, and conversely in the worst case if every packet is marked, then the window
size reduces by half every RTT (as in Reno).

Simulation results in Alizadeh et. al. show that DCTCP achieves its main objective of reducing
the size of the bottleneck queue size; indeed, the queue size with DCTCP is 1/20th the size of
the corresponding queue with TCP Reno and RED.

Marking
Probability

Queue Size
K

1.0

Here p(t) indicates the packet marking process at the switch and is given by

The following non-linear, delay-differential equations describe the dynamics
of W(t), 𝛼(t), and the queue size at the switch, q(t):

Using the approximation T = D + K/C (where D is the round trip propagation delay),
it was shown by Alizadeh et al. that this fluid model agrees quite well with
simulations results.

Stability Condition: and
To attain 100% throughput, the minimum buffer size K at the bottleneck node is given by

Contrast this with TCP Reno

The steady-state fraction of marked packets is given by

W*=(CD+K)/N

When the window increases to W*=(CD+K)/N, t
hen the queue size reaches K (because CD+K is
the maximum number of packets that can be in
transit + waiting for service for a buffer size of
K and a single source), and the switch starts to
mark packets with the congestion codepoint.
However, it takes one more round trip delay
for this information to get to the source,
during which the window size increases to W*+1.

Steady state fraction of marked packets is given by:

To compute the magnitude of oscillations in the queue size, we first compute the magnitude of
oscillations in window size of a single connection, which is given by

Because there are N flows, it follows that the oscillation in the queue size bδ, is given by

• It follows that the amplitude of queue size oscillations in DCTCP is which is much smaller
than the oscillations in TCP Reno, which are O(CD) .

• This allows for a smaller threshold value K, without the loss of throughput. Indeed, the
minimum value of the queue size bmin, can also be computed and is given by

To find a lower bound on K, we can minimize this equation over N and then choose K so that
this minimum is larger than zero, which results in

𝑏!"# = 𝑏!$% − 𝑏&

 = 𝐾 + 𝑁 − '()*+,)
.

It is possible to reduce the flow latencies across a DCN even further than DCTCP by signaling
switch congestion based on link utilizations rather than queue lengths

Phantom queue operating at 10%
lower capacity

} Consider a simulated queue called Phantom Queue (PQ), which is a virtual queue
associated with each switch egress port, and in series with it.

} Note that the PQ is not really a queue because it does not store packets; however, it is
simply a counter that is updated as packets exit the link to determine the queuing that
would have occurred on a slower virtual link (typically about 10% slower).

} It then marks the ECN for packets that pass through it when the simulated queue is
above a fixed threshold. The PQ attempts to keep the aggregate transmission rate for
the congestion-controlled flows to be strictly less than the link capacity, which keeps
the switch buffers mostly empty.

} The system also uses DCTCP as its congestion control algorithm to take advantage of its
low latency properties.

} To further reduce the queue build-up in the switches, HULL also implements Packet
Pacing at the sender. The pacer should be implemented in hardware in the server
Network Interface Card (NIC) to smooth out the burstiness caused by the data transfer
mechanism between the main memory and the NIC.

} As a result of these enhancements, HULL has been shown achieve 46% to 58% lower
average latency compared with DCTCP, and 69% to 78% slower 99th percentile latency.

} Flows in DCNs come with real-time constraints on their completion times,
typically of the order of tens of milliseconds.

} One of the issues with DCTCP is that it does not take these deadlines into
account; instead, because of its TCP heritage, it tries to assign link
bandwidth fairly to all flows irrespective of their deadlines.

} As a result, it has been shown that as much as 7% of flows may miss their
deadlines with DCTCP.

} Two algorithms that take deadlines into account
◦ Deadline Aware Datacenter TCP (D2TCP)
◦ D3

The basic idea behind D2TCP is to modulate the congestion window size based on both
deadline information and the extent of congestion. The algorithm works as follows:
} As in DCTCP, each switch marks the CE bit in a packet if its queue size exceeds a

threshold K. This information is fed back to the source by the receiver though ACK
packets.

} Also as in DCTCP, each sender maintains a weighted average of the extent of congestion
α, given by

where F is the fraction of marked packets in the most recent window and g is the weight
given to new samples.

} D2TCP introduces a new variable that is computed at the sender, called the deadline
imminence factor d, which is a function of a flows deadline value, and such that the
resulting congestion behavior allows the flow to safely complete within its deadline.

} Define Tc as the time needed for a flow to complete transmitting all its data under a
deadline agnostic behavior, and δ as the time remaining until its deadline expires. If Tc
>δ, then the flow should be given higher priority in the network because it has a tight
deadline and vice versa. Accordingly, the factor d is defined as

} Note that δ is known at the source.
} To compute Tc, consider the following: Let X be the amount of data (in packets) that

remain to be transmitted and let Wm be the current maximum window size.
} Recall from the DCTCP analysys that the number of packets transmitted per window

cycle N is given by

so that
} Hence, the number round trip latencies M in a window increase decrease cycle is given

by

} The length τ of a cycle is given by

} It follows that Tc is given by

so that

𝑊 ← #
𝑊 + 1, 	𝑖𝑓	𝑝 = 0

𝑊(1 −
𝑝
2
), 𝑖𝑓	𝑝 > 0

• When α=1, then p=1, and the window size is halved just as in regular TCP or DCTCP.

• For 0<α<1, the algorithm behaves differently compared with DCTCP, and depending
on the value of d, the window size gets modulated as a function of the deadlines.

𝛼 = 𝑃(𝑏 > 𝐾)

• When d=1, then p = α, so that the system matches DCTCP.

• If d>1, it follows that the time required to transmit the remaining data is larger than
allowed by the deadline; hence, the flow should be given higher priority by the network.
The equation brings this about by reducing the value of p for such a flow, resulting in a
larger window size.

• Conversely, d<1 leads to a smaller window size and hence lower priority for the flow.

• Hence, the net effect of these window change rules is that far-deadline flows relinquish bandwidth
so that near-deadline flows can have greater short-term share to meet their deadlines.

𝛼 = 𝑃(𝑏 > 𝐾)

} One of the features that differentiates a DCN from other types of networks is the
presence of multiple paths between end points. In order to realize the full bisection
bandwidth between the end points, the system should be able to spread its traffic
among the multiple paths while at the same time providing congestion control along
each of the paths.

} Traditional Way:
◦ Do Load Balancing on a per flow basis, with each flow mapped randomly to one of the

available paths. This is usually done with the help of routing protocols, such as ECMP,
that use a hash of the address, port number and other fields to do the
randomization.

◦ However, randomized load balancing cannot achieve the full bisectional bandwidth in
most topologies because often a random selection causes a few links to be
overloaded and other links to have little load.

} MPTCP combines a better way of doing Load Balancing along with Congestion Control.
◦ It uses a simple yet effective mechanism to link the congestion control dynamics on

the multiple sub-flows, which results in the movement of traffic away from more
congested paths and on to less congested ones.

} MPTCP support is negotiated during the initial SYN exchange when clients learn about
additional IP addresses that the server may have. Additional sub-flows can then be
opened with IP addresses or in their absence by using different ports on a single pair of
IP addresses. MPTCP then relies on ECMP routing to hash the sub-flows to different
paths.

} After the multiple sub-flows have been established, the sender’s TCP stack stripes data
across all the sub-flows. The MPTCP running at the receiver reconstructs the receive
data in the original order. Note that there is no requirement for an application to be
aware that MPTCP is being used in place of TCP.

} Each MPTCP sub-flow have its own sequence space and maintains its own congestion
window so that it can adapt independently to conditions along the path.

TCP1

TCP2

Resequencer

W1

W2

WT = W1 + W2

} Recall that for AIMD(a,b) system the max Window Size is given by

} If we choose a = 1/n2, and assuming equal T, results in an equilibrium window size of
W/n for each subflow.

} However, this algorithm can result in suboptimal allocations of the subflows through the
network because it uses static splitting of the source traffic instead of adaptively trying
to shift traffic to routes that are less congested.

𝑊! =
2𝑎

(2𝑏 − 𝑏")
1
𝑝

• Each subflow increases its window by (Wr/WT) per roundtrip, so the the total across
all flows will increase by 1 per RTT

• Consider the case when the packet drop rates are not equal. The window increment and
decrement amounts are the same for all paths; hence, it follows that the paths with higher
drop rate will see more window decreases, and in equilibrium, the window size on these
paths will go to zero.

This is a
problem

Assuming that each of the paths have the same packet loss rate p and using the argument that in
equilibrium, the rates of increases and decreases of the window size must balance out,
it follows that

• It follows that the total window size WT, is the same as for the case when all the traffic was
carried on a single path.

• Hence, unlike the case of static splitting, the adaptive splitting rule does not use more
bandwidth by virtue of the fact that it is using multiple paths.

Modified increment-decrement rule

Note that this causes a decrease in the rate at which the window decreases for higher
loss rate links, and the factor a increases the rate of increase.

• MPTCP Version 2 leads to the situation where there is no traffic directed to links with higher
packet drop rates.

• If there is no traffic going to a path for a subflow, then this can be a problem because if the
drop rate for that link decreases, then there is no way for the subflow to get restarted on that path.

• To avoid this, it is advisable to have traffic flow even on links with higher loss rates,

Because the window size increases by aWr/WT for every RTT and the total increase in window size
during a cycle is Wr/2, it follows that

Also

Equating Nr to 1/pr, it follows that

This algorithm allocates a nonzero window
size to flows with larger packet drop rates.

It follows that

Substituting for WT back into prior equation, it follows that

• The window increment decrement rules are effective in guiding traffic
toward links with lower loss rates; however, they do not work very well if the paths have
differing round trip delays.

• This is because the path with the higher round trip delay will experience a lower rate of
increase of window size, resulting in a lower throughput even if the packet loss rates are the same.

Impose the condition

Where 𝑊#$%& is the window size attained by a single-path TCP experiencing path r’s
loss rate. This implies:

1. The multipath flow takes at least as much capacity as a single path TCP flow on the
best of the paths, and

2. The multipath flow takes no more capacity on any single path (or collection of paths)
than if it was a single path TCP using the best of those paths.

Version 3

The difference between this algorithm and the Version 3 is that window increase is capped
at 1/Wr, which means that the multipath flows can take no more capacity on any path than a
single-path TCP flow would.

Note that the window size for the rth sub-flow increases by on each roundtrip.
Hence it follows that

Since it follows that

Since 𝑊#$%& =
'
$!

(
)*!

it follows that

Substituting for 𝑝# and 𝜏# from prior page, we finally obtain

from which follows

} Chapter 7 of Internet Congestion Control

