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} Modern data centers are created by interconnecting together a large number 
of commodity servers and their associated storage systems, with commodity 
Ethernet switches. 

} They create a “warehouse-scale” computing infrastructure that scales 
“horizontally”; that is, we can increase the processing power of the data 
center by adding more servers as opposed to increasing the processing 
power of individual servers (which is a more expensive proposition). 

} The job of a DCN in the data center architecture is to interconnect the servers 
in a way that maximizes the bandwidth between any two servers while 
minimizing the latency between them. 

} The DCN architecture should also allow the flexibility to easily group 
together servers that are working on the same application, irrespective of 
where they are located in the DCN topology.



From the congestion control point of view, DCNs have some unique characteristics 
compared with the other types of networks that we have seen so far:

} The round trip latencies in DCNs are extremely small, usually of the order of a few 
hundred microseconds, as opposed to tens of milliseconds and larger for other 
types of networks.

} Applications need very high bandwidths and very low latencies at the same time.

} There is very little statistical multiplexing, with a single flow often dominating a 
path. 

} To keep their costs low, DCN switches have smaller buffers compared with regular 
switches or routers because vendors implement them using fast (and expensive) 
static random-access memory (SRAM) to keep up with the high link speeds. 
Moreover, buffers are shared between ports, so that a single connection can end 
up consuming the buffers for an entire switch.

} To communicate at full speed between any two servers, the interconnection 
network provides multiple paths between them, which is one of the distinguishing 
features of DCNs. 



} Loss based TCP requires large buffers; indeed, the buffer size should be 
greater than or equal to the delay bandwidth product of the connection to 
fully use the full bandwidth of the link (see Lecture 2)

} End-to-end delays of connections under TCP are much larger than what can 
be tolerated in DCNs. The delays are caused by TCP’s tendency to fill up link 
buffers to capacity to fully use the link.

} How to load balance the traffic among multiple paths in a DCN?

} The Incast problem is a special type of traffic overload situation that occurs 
in data centers. It is caused by the way in which jobs are scheduled in parallel 
across multiple servers, which causes their responses to be synchronized 
with one another, thus overwhelming switch buffers.



1. Algorithms that retain the end-to-end congestion control 
philosophy of TCP:

} Data Center TCP (DCTCP), Deadline-Aware Data Center TCP (D2TCP), and 
High bandwidth Ultra Low Latency (HULL), fall into this category of 
algorithms. 

} They use a more aggressive form of a Random Early Detection (RED) like 
Explicit Congestion Notification (ECN) feedback from congested switches that 
are then used to modify the congestion window at the transmitter. 

} These new algorithms are necessitated due to the fact that Normal RED or 
even the more effective form of Active Queue Management (AQM) with the 
Proportional-Integral (PI) controller is not able to satisfy DCNs’ low latency 
requirements.



2. Algorithms that depend on in-network congestion control 
mechanisms

◦ DCN congestion control protocols such as D3, Preemptive Distributed 
Quick Flow Scheduling (PDQ), DeTail, and pFabric  fall in this category.

◦ They use additional mechanisms at the switch, such as bandwidth 
reservations in D3, priority scheduling in pFabric or packet by packet load 
balancing in DeTail.

◦ The general trend is towards a simplified form of rate control in the end 
systems coupled with greater support for congestion control in the 
network because this leads to much faster response to congestion 
situations.

◦ This is a major departure from the legacy congestion control philosophy of 
putting all the intelligence in the end system.
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} A typical data center consists of thousands of commodity servers that are 
connected together using  special type of Ethernet network called an Inter-
connection Network. 

} Servers are arranged in racks consisting of 20 to 40 devices, each of which is 
connected to a Top of Rack (ToR) switch. Each ToR is connected to two 
aggregation switches (AS) for redundancy, perhaps through an intermediate 
layer of L2 switches. 

} Each AS is further connected to two aggregation routers (ARs), such that all 
switches below each pair of ARs form a single Layer 2 domain, connecting 
several thousand servers. 

} Servers are also partitioned into Virtual Local Area Networks (VLANs) to limit 
packet flooding and Address Resolution Protocol (ARP) broadcasts and to 
create a logical server group that can be assigned to a single application. ARs 
in turn are connected to core routers (CRs) that are responsible for the 
interconnection of the data center with the outside world.



} Lack of bisection bandwidth: 

◦ Bisection bandwidth is defined as the maximum capacity between any two servers. 
Even though each server may have a 1-Gbps link to its ToR switch and hence to other 
servers in its rack, the links further up in the hierarchy are heavily oversubscribed. 

◦ For example, only 4 Gbps may be used on the link between the ToR and AS switches, 
resulting in 1:5 oversubscription when there are 20 servers per rack, and paths 
through top-most layers of the tree may be as much as 1:240 oversubscribed. 

◦ As a result of this, designers tend to only user servers that are closer to each other, 
thus fragmenting the server pool (i.e., there may be idle servers in part of the data 
center that cannot be used to relieve the congestion in another portion of the 
system).



} Configuration complexity: 
◦ Adding additional servers to scale the service outside the domain requires 

reconfiguration of IP addresses and VLAN trunks because IP addresses are 
topologically significant and are used to route traffic to a particular Layer 
2 domain. As a result, most designs use a more static policy whereby they 
scale up by adding servers idle within the same domain, thus resulting in 
server under-utilization.

} Poor reliability and redundancy: 
◦ Within a Layer 2 domain, the use of Spanning Tree protocol for data 

forwarding results in only a single path between two servers. Between 
Layer 2 domains, up to two paths can be used if Equal Cost Multi-Path 
(ECMP) routing is turned on.
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} Each ToR switch is still connected to two AS switches using 1-Gbps links, but 
unlike the Tree Architecture, each AS switch is connected to every other AS 
switch in 2-hops, through a layer of intermediate switches (ISs) using 10 
Gbps or higher speed links.

} As a result, if there are n IS switches, then there are n paths between any two 
ASs, and if any of the IS fails, then it reduces the bandwidth between 2 AS 
switches by only 1/n.

} For the VL2 network shown in prior page, the total capacity between each 
layer is given by DIDA/2 times the link capacity, assuming that there are DI AS 
switches with DA ports each. 

} Also note that the number of ToR switches is given by DADI/4, so that if there 
are M servers attached with a 1-Gbps link to the ToR and the links between 
the AS and IS are at 10 Gbps, then equating the total bandwidth from the AS 
to the ToR switches to the total bandwidth in the opposite direction, we 
obtain



} The VL2 architecture uses Valiant Load Balancing (VLB) among flows to 
spread the traffic through multiple paths. VLB is implemented using ECMP 
(Equal Cost Multi Path) forwarding in the routers.

} VL2 enables the system to create multiple Virtual Layer 2 switches (hence the 
name), such that it is possible to configure a virtual switch with servers that 
may be located anywhere in the DCN. 

} All the servers in Virtual Switch are able to communicate at the full bisection 
bandwidth and furthermore are isolated from servers in the other Virtual 
Switches.



} To route packets to a target server, the system uses two sets of IP addresses. 
Each application is assigned an Application Specific IP Address (AA), and all 
the interfaces in the DCN switches are assigned a Location Specific IP 
Address (LA) (a link-state based IP routing protocol is used to disseminate 
topology information among the switches in the DCN). 

} An application’s AA does not change if it migrates from server to server, and 
each AA is associated with an LA that serves as the identifier of the ToR 
switch to which it is connected. VL2 has a Directory System (DS) that stores 
the mapping between the AAs and LAs.

} When a server sends a packet to its ToR switch, the switch consults the DS to 
find out the destination ToR and then encapsulates the packet at the IP level, 
known as tunneling, and forwards it into the DCN. 

} To take advantage of the multiple paths, the system does load balancing at 
the flow level by randomizing the selection of the Intermediate Switch used 
for the tunnel.
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} Fat Tree is also CLOS based

} The network is built entirely with k-port 1-Gbps switches and is constructed 
around k pods, each of which has two layers of switches, with (k/2) switches in 
each layer.

} The bottom layer of switches in a pod is connected to the servers, with (k/2) 
servers connected to each switch. This implies that the system with k pods can 
connect 
(k/2) switches/pod *  (k/2) server facing ports per switch * k pods = (k3/4) servers per 
network. 

} Similarly, it can be shown that there are k2/4 core switches per network, so that 
the number of equal-cost multipaths between any pair of hosts is also given by 
k2/4. 

} Because the total bandwidth between the core switch and aggregation switch 
layers is given by k3/4, it follows that the network has enough capacity to support 
a full 1-Gbps bisectional bandwidth between any two servers in the ideal case.
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} Each of the nodes represents the processing at a server node; the connector 
between nodes stands for the transmission of a flow across the interconnection 
network. 

} A typical online transaction is generated when a user enters a query into a search 
engine. A very large data set is required to answer the query, which is spread 
among thousands of servers in the DCN, each with its own storage.

} The way a query progresses through a DCN is shown in the figure: 
◦ The query arrives at the root node, which broadcasts it to down to the next 

level, 
◦ These in turn generate their own queries one level down until the leaf nodes 

holding the actual data are reached. 
◦ Each leaf node sends its response back to its parent, which aggregates the 

replies from all its child nodes and sends it up to the root. 

} Furthermore, answering a query may involve iteratively invoking this pattern; one 
to four iterations are typical, but as many as 20 may occur.

} Studies have shown that the response needs to be generated within a short 
deadline of 230 to 300 ms. 



} The propagation of the request down to the leaves and the responses back to 
the root must complete within the overall deadline that is allocated to the 
query; otherwise, the response is discarded. 

} To satisfy this, the system allocates a deadline to each processing node, 
which gets divided up into two parts:
◦ The computation time in the leaf node and the communication latency between the 

leaf and the parent.
◦ The deadlines for individual computational nodes typically vary from about 10 to 100 

ms.

} The deadlines for communications between hosts cannot exceed tens of 
milliseconds if the system is to be able to meet the overall job deadline.





Objectives
} Minimization of flow latency is a very important requirement in DCNs. 

} At the same time, other flows in the data center are throughput intensive. For 
example, large transfers that update the internal data structures at a server 
node fall into the latter category; hence, throughput maximization and high 
link utilization cannot be ignored as the congestion control objective. 

} To meet the requirements for such a diverse mix of short and long flows, 
switch buffer occupancies need to be persistently low while maintaining high 
throughput for long flows.

} Two ways to control queueing latency:
◦ Delay-based protocols such as TCP Vegas: Problem with these – they rely on a very 

accurate measurement of RTT which is a problems in a DCN environment because the 
RTTs are extremely small, of the order of a few hundred microseconds.

◦ AQM algorithms: These use explicit feedback from the congested switches to regulate 
the transmission rate, RED being the best known member of this class of algorithms.
However RED and and even PI controllers do not work well in environments where there is low 
statistical multiplexing and the traffic is bursty, both of which are present in DCNs.



1. At the switch: An arriving packet at a switch is marked with Congestion Encountered 
(CE) codepoint if the queue occupancy is greater than a threshold K at its arrival. A 
switch that supports RED can be reconfigured to do this by setting both the low and 
high threshold to K and marking based on instantaneous rather than average queue 
length.

2. At the receiver: A DCTCP receiver tries to accurately convey the exact sequence of 
marked packets back to the sender by ACKing every packet and setting the ECN-Echo 
flag if and only if the data packet has a marked CE codepoint. This algorithm can also 
be modified to take delayed ACKs into account while not losing the continuous 
monitoring property at the sender.

3. At the sender: The sender maintains an estimate of the fraction of packets that are 
marked, called α, which is updated once for every window of data as follows:

where F is the fraction of packets that were marked in the last window of data and 
0<g<1 is the smoothing factor. 
Note that because every packet gets marked, α estimates the probability that the queue 
size is greater than K.

𝛼 = 𝑃(𝑏 > 𝐾)



4. Features of TCP rate control such as Slow Start, additive increase during congestion 
avoidance, or recovery from lost packets are left unchanged. However, instead of 
cutting its window size by 2 in response to a marked ACK, DCTCP applies the following 
rule once every RTT:

5. Thus, a DCTCP sender starts to reduce its window as soon as the queue size exceeds K 
(rather than wait for a packet loss) and does so in proportion to the average fraction of 
marked packets. Hence, if very few packets are marked then the window size hardly 
reduces, and conversely in the worst case if every packet is marked, then the window 
size reduces by half every RTT (as in Reno).

Simulation results in Alizadeh et. al. show that DCTCP achieves its main objective of reducing
the size of the bottleneck queue size; indeed, the queue size with DCTCP is 1/20th the size of
the corresponding queue with TCP Reno and RED.

Marking
Probability

Queue Size
K

1.0



Here p(t) indicates the packet marking process at the switch and is given by

The following non-linear, delay-differential equations describe the dynamics 
of W(t), 𝛼(t), and the queue size at the switch, q(t):

Using the approximation T = D + K/C (where D is the round trip propagation delay), 
it was shown by Alizadeh et al. that this fluid model agrees quite well with 
simulations results.

Stability Condition: and
To attain 100% throughput, the minimum buffer size K at the bottleneck node is given by

Contrast this with TCP Reno



The steady-state fraction of marked packets is given by



W*=(CD+K)/N

When the window increases to W*=(CD+K)/N, t
hen the queue size reaches K (because CD+K is 
the maximum number of packets that can be in 
transit + waiting for service for a buffer size of 
K and a single source), and the switch starts to 
mark packets with the congestion codepoint. 
However, it takes one more round trip delay 
for this information to get to the source,
during which the window size increases to W*+1. 

Steady state fraction of marked packets is given by:



To compute the magnitude of oscillations in the queue size, we first compute the magnitude of
oscillations in window size of a single connection, which is given by

Because there are N flows, it follows that the oscillation in the queue size bδ, is given by



• It follows that the amplitude of queue size oscillations in DCTCP is            which is much smaller 
than the oscillations in TCP Reno, which are O(CD) . 

• This allows for a smaller threshold value K, without the loss of throughput. Indeed, the 
minimum value of the queue size bmin, can also be computed and is given by

To find a lower bound on K, we can minimize this equation over N and then choose K so that
this minimum is larger than zero, which results in

𝑏!"# = 𝑏!$% − 𝑏&

         = 𝐾 + 𝑁 − '()*+,)
.



It is possible to reduce the flow latencies across a DCN even further than DCTCP by signaling 
switch congestion based on link utilizations rather than queue lengths

Phantom queue operating at 10%
lower capacity



} Consider a simulated queue called Phantom Queue (PQ), which is a virtual queue 
associated with each switch egress port, and in series with it.

} Note that the PQ is not really a queue because it does not store packets; however, it is 
simply a counter that is updated as packets exit the link to determine the queuing that 
would have occurred on a slower virtual link (typically about 10% slower).

} It then marks the ECN for packets that pass through it when the simulated queue is 
above a fixed threshold. The PQ attempts to keep the aggregate transmission rate for 
the congestion-controlled flows to be strictly less than the link capacity, which keeps 
the switch buffers mostly empty.

} The system also uses DCTCP as its congestion control algorithm to take advantage of its 
low latency properties.

} To further reduce the queue build-up in the switches, HULL also implements Packet 
Pacing at the sender. The pacer should be implemented in hardware in the server 
Network Interface Card (NIC) to smooth out the burstiness caused by the data transfer 
mechanism between the main memory and the NIC.

} As a result of these enhancements, HULL has been shown achieve 46% to 58% lower 
average latency compared with DCTCP, and 69% to 78% slower 99th percentile latency.





} Flows in DCNs come with real-time constraints on their completion times, 
typically of the order of tens of milliseconds. 

} One of the issues with DCTCP is that it does not take these deadlines into 
account; instead, because of its TCP heritage, it tries to assign link 
bandwidth fairly to all flows irrespective of their deadlines. 

} As a result, it has been shown that as much as 7% of flows may miss their 
deadlines with DCTCP.

} Two algorithms that take deadlines into account
◦ Deadline Aware Datacenter TCP (D2TCP)
◦ D3



The basic idea behind D2TCP is to modulate the congestion window size based on both 
deadline information and the extent of congestion. The algorithm works as follows:
} As in DCTCP, each switch marks the CE bit in a packet if its queue size exceeds a 

threshold K. This information is fed back to the source by the receiver though ACK 
packets.

} Also as in DCTCP, each sender maintains a weighted average of the extent of congestion 
α, given by

where F is the fraction of marked packets in the most recent window and g is the weight 
given to new samples.

} D2TCP introduces a new variable that is computed at the sender, called the deadline 
imminence factor d, which is a function of a flows deadline value, and such that the 
resulting congestion behavior allows the flow to safely complete within its deadline.

} Define Tc as the time needed for a flow to complete transmitting all its data under a 
deadline agnostic behavior, and δ as the time remaining until its deadline expires. If Tc 
>δ, then the flow should be given higher priority in the network because it has a tight 
deadline and vice versa. Accordingly, the factor d is defined as



} Note that δ is known at the source.
} To compute Tc, consider the following: Let X be the amount of data (in packets) that 

remain to be transmitted and let Wm be the current maximum window size.
} Recall from the DCTCP analysys that the number of packets transmitted per window 

cycle N is given by

so that
} Hence, the number round trip latencies M in a window increase decrease cycle is given 

by 

} The length τ of a cycle is given by

} It follows that Tc is given by 

so that 



𝑊 ← #
𝑊 + 1, 	𝑖𝑓	𝑝 = 0

𝑊(1 −
𝑝
2
), 𝑖𝑓	𝑝 > 0

• When α=1, then p=1, and the window size is halved just as in regular TCP or DCTCP.

• For 0<α<1, the algorithm behaves differently compared with DCTCP, and depending 
on the value of d, the window size gets modulated as a function of the deadlines.

𝛼 = 𝑃(𝑏 > 𝐾)



• When d=1, then p = α, so that the system matches DCTCP.

• If d>1, it follows that the time required to transmit the remaining data is larger than 
allowed by the deadline; hence, the flow should be given higher priority by the network. 
The equation          brings this about by reducing the value of p for such a flow, resulting in a 
larger window size.

• Conversely, d<1  leads to a smaller window size and hence lower priority for the flow.

• Hence, the net effect of these window change rules is that far-deadline flows relinquish bandwidth 
so that near-deadline flows can have greater short-term share to meet their deadlines.

𝛼 = 𝑃(𝑏 > 𝐾)





} One of the features that differentiates a DCN from other types of networks is the 
presence of multiple paths between end points. In order to realize the full bisection 
bandwidth between the end points, the system should be able to spread its traffic 
among the multiple paths while at the same time providing congestion control along 
each of the paths.

} Traditional Way: 
◦ Do Load Balancing on a per flow basis, with each flow mapped randomly to one of the 

available paths. This is usually done with the help of routing protocols, such as ECMP, 
that use a hash of the address, port number and other fields to do the 
randomization.

◦ However, randomized load balancing cannot achieve the full bisectional bandwidth in 
most topologies because often a random selection causes a few links to be 
overloaded and other links to have little load.

} MPTCP combines a better way of doing Load Balancing along with Congestion Control.
◦ It uses a simple yet effective mechanism to link the congestion control dynamics on 

the multiple sub-flows, which results in the movement of traffic away from more 
congested paths and on to less congested ones.



} MPTCP support is negotiated during the initial SYN exchange when clients learn about 
additional IP addresses that the server may have. Additional sub-flows can then be 
opened with IP addresses or in their absence by using different ports on a single pair of 
IP addresses. MPTCP then relies on ECMP routing to hash the sub-flows to different 
paths.

} After the multiple sub-flows have been established, the sender’s TCP stack stripes data 
across all the sub-flows. The MPTCP running at the receiver reconstructs the receive 
data in the original order. Note that there is no requirement for an application to be 
aware that MPTCP is being used in place of TCP.

} Each MPTCP sub-flow have its own sequence space and maintains its own congestion 
window so that it can adapt independently to conditions along the path.

TCP1

TCP2

Resequencer

W1

W2

WT = W1 + W2



} Recall that for AIMD(a,b) system the max Window Size is given by

} If we choose a = 1/n2, and assuming equal T, results in an equilibrium window size of 
W/n for each subflow.

} However, this algorithm can result in suboptimal allocations of the subflows through the 
network because it uses static splitting of the source traffic instead of adaptively trying 
to shift traffic to routes that are less congested.

𝑊! =
2𝑎

(2𝑏 − 𝑏")
1
𝑝



• Each subflow increases its window by (Wr/WT) per roundtrip, so the the total across
all flows will increase by 1 per RTT

• Consider the case when the packet drop rates are not equal. The window increment and 
decrement amounts are the same for all paths; hence, it follows that the paths with higher 
drop rate will see more window decreases, and in equilibrium, the window size on these 
paths will go to zero.

This is a 
problem



Assuming that each of the paths have the same packet loss rate p and using the argument that in
equilibrium, the rates of increases and decreases of the window size must balance out, 
it follows that

• It follows that the total window size WT, is the same as for the case when all the traffic was 
carried on a single path. 

• Hence, unlike the case of static splitting, the adaptive splitting rule does not use more 
bandwidth by virtue of the fact that it is using multiple paths.



Modified increment-decrement rule

Note that this causes a decrease in the rate at which the window decreases for higher
loss rate links, and the factor a increases the rate of increase.

• MPTCP Version 2 leads to the situation where there is no traffic directed to links with higher 
packet drop rates. 

• If there is no traffic going to a path for a subflow, then this can be a problem because if the 
drop rate for that link decreases, then there is no way for the subflow to get restarted on that path. 

• To avoid this, it is advisable to have traffic flow even on links with higher loss rates,



Because the window size increases by aWr/WT for every RTT and the total increase in window size 
during a cycle is Wr/2, it follows that

Also

Equating Nr to 1/pr, it follows that



This algorithm allocates  a nonzero window
size to flows with larger packet drop rates.

It follows that

Substituting for WT back into prior equation, it follows that 



• The window increment decrement rules are effective in guiding traffic 
toward links with lower loss rates; however, they do not work very well if the paths have 
differing round trip delays. 

• This is because the path with the higher round trip delay will experience a lower rate of 
increase of window size, resulting in a lower throughput even if the packet loss rates are the same.

Impose the condition

Where 𝑊#$%&  is the window size attained by a single-path TCP experiencing path r’s
loss rate. This implies:

1. The multipath flow takes at least as much capacity as a single path TCP flow on the 
best of the paths, and

2. The multipath flow takes no more capacity on any single path (or collection of paths) 
than if it was a single path TCP using the best of those paths.



Version 3

The difference between this algorithm and the Version 3 is that window increase is capped
at 1/Wr, which means that the multipath flows can take no more capacity on any path than a
single-path TCP flow would.





Note that the window size for the rth sub-flow increases by                 on each roundtrip.
Hence it follows that

Since it follows that

Since  𝑊#$%& =
'
$!

(
)*!

it follows that

Substituting for 𝑝# and 𝜏#  from prior page, we finally obtain 

from which                           follows



} Chapter 7 of Internet Congestion Control


