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} So far we have seen the following types of congestion control algorithms:
◦ Those that use packet loss as a measure of congestion (Reno, CUBIC)
◦ Those that use queueing latency as a measure of congestion (Vegas, FAST)
◦ Those that use a combination of loss and latency (Compound TCP, Yeah TCP)

} BBR adopts a new way: It uses the available bandwidth in the bottleneck link as a 
measure of congestion.

} TCP Westwood was actually the first to propose measuring the bottleneck 
bandwidth, and used it for setting the window size after a packet loss.

} BBR is a rate based algorithm, hence its sets its rate so as to match its estimate of 
the bottleneck bandwidth.

} BBR tries to provide high link utilization while avoiding the need to overload 
bottleneck buffers.

} BBR was proposed by Google, and is used in Google’s B4 wide area backbone 
network, as well on Google.com and YouTube servers.



} Issue with Loss based algorithms: They fill up the buffer, which have become 
larger over time in routers and switches (bufferbloat). This increases latency 
for all flows traversing the link.

} Alternative: Use Delay based algorithms. But these algorithms are at a 
disadvantage when competing with Loss based algorithms.

} BBR: A Delay type algorithm that is able to hold its own against Loss based 
algorithms. How does it do this?
◦ By using a Rate based scheme, which sets the rate based on bottleneck bw 

estimates, not on either Loss or Delay

} Since BBRv1 does not react to loss, what happens when it shares the link with 
Loss based algos?
◦ BBRv1 tends to get an unfair share of the link capacity!
◦ This hasn’t stopped Google and some other large companies from 

deploying BBR. This also means that the requirement of inter-protocol 
fairness has become less important in recent years.





} The bottleneck link is fully utilized if the amount of inflight data Dinflight 
matches exactly the bandwidth delay product bdp = br RTTmin, where br is 
the available bottleneck data rate and RTTmin is the minimal round-trip time

} A fundamental difficulty of congestion control is to calculate a suitable 
amount of inflight data without exact knowledge of the current bdp.
◦ If Dinflight is smaller than bdp, the bottleneck link is not fully utilized and bandwidth is 

wasted.
◦ If Dinflight is larger than bdp, the bottleneck is overloaded, and any excess data is filled 

into a buffer at the bottleneck link or dropped if the buffer capacity is exhausted. If 
this overload situation persists the bottleneck becomes congested.



} Loss-based congestion controls (such as CUBIC TCP or TCP Reno) use packet 
loss as congestion signal. They tend to completely fill the available buffer 
capacity at a bottleneck link, since most buffers in network devices still apply 
a tail drop strategy. A filled buffer implies a large queuing delay that 
adversely affects everyone’s performance on the Internet: the inflicted 
latency is unnecessarily high.

} This also highly impacts interactive applications (e.g., Voice-over-IP, 
multiplayer online games), which often have stringent requirements to keep 
the one way end-to-end delay below 100 ms.



• If the amount of inflight data Dinflight is just large enough to fill the available bottleneck 
link capacity (i.e., Dinflight = bdp), the bottleneck link is full utilized and the queuing delay is 
still zero or close to zero. 

• This is the optimal operating point (A), because the bottleneck link is already fully utilized at this point. 

• If the amount of inflight data is increased any further, the bottleneck buffer gets filled with the excess data. 
The delivery rate, however, does not increase anymore. The data is not delivered any faster since the bottleneck 
does not serve packets any faster and the throughput stays the same for the sender: the amount of inflight data is
larger, but the round-trip time increases by the corresponding amount.

• BBR tries to shift the operating point of congestion control to the left toward (A).



Since BBR is Rate Based, the only way it can
find out that more bandwidth is available is

by sending probes

BBR tries to get a better
estimate of RTTmin by

draining all the queues
periodically



} BBR uses estimates for the available bottleneck data rate br and the minimal 
round-trip time RTTmin to calculate a path’s available bdp. The estimate for br is 
based on a windowed maximum filter of the delivery rate that the receiver 
experiences.

} A BBR sender controls its transmission rate sr with the help of pacing and an 
estimated data rate br, i.e., it is rate-based. It does not use a congestion window 
or ACK clocking to control the amount of inflight data, but uses an inflight data 
limit of 2*bdp.

} BBR probes for more bandwidth by increasing its sending rate sr to 1.25sr0 for an 
RTT and directly reducing it again to 0.75sr0, where sr0 is the current estimate of 
the available data rate. The reduction aims at draining a potential queue that was 
possibly created by the higher rate.

} BBR uses a special ProbeRTT phase that tries to drain the queue completely in 
order to measure RTTmin. Ideally, all BBR flows enter this phase together.

} BBR is neither delay-based nor loss-based and it ignores packet loss as 
congestion signal. It also does not explicitly react to congestion, whereas 
congestion window-based approaches often use a multiplicative decrease strategy 
to reduce Dinflight .



Low-pass filtering is necessary because congestion is caused by the low-frequency components 
and because of the delayed ACK option. 
The filter coefficients are time varying to counteract the fact that the sampling  intervals Δk are 
not constant.

Westwood+: To counteract ACK compression
Instead of computing the bandwidth Rk after every ACK is received, compute 
it once every RTT seconds. Hence, if Dk bytes are acknowledged during the 
last RTT interval Δk, then



} A BBR sender tries to determine the bdp of a network path by getting 
estimates for br and RTTmin from measurements.

} br is estimated by by using TCP ACKs and is calculated by dividing the 
amount of delivered data by the period ∆𝑡 in which the measurement took 
place.

 WB is typically six to ten RTTs. This estimate is updated with every received       
ACK.



∆𝑡

𝑏! =
Δ𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

Δ𝑡

TCP must record the departure time of each packet to
compute RTT. BBR augments that record with the total
data delivered so each ack arrival yields both an RTT and
a delivery rate measurement that the filters convert to
RTprop and br estimates.



} BBR does not use ACK clocking to regulate its sending rate, instead it used 
pacing for every data packet sent.

} BBR does cap the inflight data to 2 $𝑏𝑑𝑝, where $𝑏𝑑𝑝 = $𝑏! )	𝑅𝑇𝑇"#$

} Note that if br decreases, then it takes at least WB roundtrips for $𝑏!	to	change.

} What if br increases?

The rate decrease policy is reminiscent of TCP Westwood
and can be classified as Multiplicative Decrease



} BBR probes for more bandwidth by increasing the sending rate by a certain 
factor (pacing_gain = 1.25) for an estimated RTTmin, then decreasing the 
sending rate by pacing_gain = 0.75 in order to compensate a potential 
excess of inflight data. Thus, if this excess amount filled the bottleneck 
queue, the queue should be drained by the same amount directly afterwards.

} Moreover, the sending rate is varied in an eight-phase cycle using a 
pacing_gain of 5/4,3/4,1,1,1,1,1,1, where each phase lasts for an )𝑅𝑇𝑇"#$. 
The start of the cycle is randomly chosen with 3/4 being excluded as initial 
phase. 

} If the increased sending rate showed an increased delivery rate, the newly 
measured maximum delivery rate $𝑏! is immediately used as new sending 
rate, otherwise the previous rate is maintained.



BBR is an example of Multiplicative Increase Multiplicative (MIMD) Decrease Algorithm

• Case when sending
rate is not increased

• If bottleneck rate had
increased, the the RTT
would not have increased

• In that case the new sending
rate = 1.25*old rate, is retained



Why does it take this
long to react to a
Decrease in BtlBW?

Increase in
sending rate

Decrease in
sending rate

inflight = ,𝑏! RTT



} 	𝑅𝑇𝑇"#$ is calculated by using a minimum filter over a window WR as
)𝑅𝑇𝑇"#$ = min 𝑅𝑇𝑇% 	 ∀𝑡 ∈ [𝑇 −𝑊&, 𝑇] with WR = 10s

} In order to measure RTTmin, BBR uses a periodically occurring phase which is 
called ProbeRTT. ProbeRTT is entered when )𝑅𝑇𝑇"#$ has not been updated by 
a lower measured value for several seconds (default 10 sec).

} In ProbeRTT, the sender abruptly limits its amount of inflight data to 4 
packets for max(RTT, 200 ms) and then returns to the previous state.

} This should drain the queue completely under the assumption that only BBR 
flows are present, so )𝑅𝑇𝑇"#$ = 𝑅𝑇𝑇"#$  since no queuing delay exists.

} Large flows that enter ProbeRTT will drain many packets from the queue, so 
other flows will update their )𝑅𝑇𝑇"#$, which creates a synchronization effect 
among all flows thus increasing the probability to actually measure )𝑅𝑇𝑇"#$.

} Note that )𝑅𝑇𝑇"#$ only modifies the the inflight cap of 2 $𝑏𝑑𝑝, the sending rate 
itself is set to $𝑏!

Issue: What if the queue is not empty?



} In its startup phase BBR nearly doubles its sending rate every RTT as long as 
the delivery rate is increasing.

} This is achieved by using a pacing_gain of  ⁄' () ' =2.885 and an inflight cap 
of 3bdp, i.e., it may create up to 2bdp of excess queue.

} BBR tries to determine whether it has saturated the bottleneck link by looking 
at the development of the delivery rate.

} If for several (three) rounds attempts to double the sending rate results only 
in a small increase of the delivery rate (less than 25%), BBR has found the 
current limit of $𝑏! and exits the startup phase.

} Then it enters a drain phase in order to reduce the amount of excess data 
that may have led to a queue. It uses the inverse of the startup’s gain to 
reduce the excess queue and enters the ProbeBW phase once Dinflight = bdp 
holds.



“Towards a Deeper Understanding of TCP BBR Congestion Control” Scholz et.al



RTTmin = 20 ms



} BBR works well if there is only single flow
} With multiple flows each sender overestimates the bottleneck bandwidth 

leading to a too high total Dinflight. As a result it leads to:
◦ Increased queueing delays
◦ High packet losses
◦ Unfair rate sharing
$𝑏!! > 𝑏!!   and also   ∑# $𝑏!! > 𝑏!, which leads to ∑# 𝑠!! > 𝑏! (=> overloaded 
link)

and this can happen for for sustained periods of time. They also showed that

C
#

$𝑏!! ∈ [𝑏!, 1.25𝑏!)

} As a result, the amount of inflight data steadily increases until it gets limited 
by the inflight cap of 𝐷"

#$% = 2bdp.

“Experimental Evaluation of BBR Congestion Control”, Hock, Bless, Zitterbart

Sending rate



∑"𝐷"
#$% = 2∑" ,𝑏!!. 0𝑅𝑇𝑇&"'

Since ∑" ,𝑏!! ∈ 𝑏! , 1.25𝑏!  it follows that 2𝑏𝑑𝑝 ≤ ∑"𝐷"
#$% < 2.5𝑏𝑑𝑝

This means that multiple BBR flows typically create a queuing delay of about one to
1.5 times the RTT

As a result of BW
overestimation, the

inflight cap is regularly
reached

Multiple BBR flows operate at their in-flight cap in buffer-bloated
Networks, i.e. it effectively becomes a windows based protocol!



RTTmin = 20 ms

• It can be observed that the RTT is increased to a value around 40 ms most 
of the time

• The peak at the beginning is caused by the startup phase of BBR.



If flows with different RTTs share a bottleneck, a flow i with a larger RTT than a 
flow j will usually get a larger rate share than j.
• Since 𝐷#

*+, depends on RTT, it follows that 𝐷#
*+, > 𝐷-

*+,

• Most of this data is queued at the bottleneck, which means that flow i can queue
more data than flow j before reaching inflight cap

• This results in a larger rate share for flow i which further increases 𝐷#
*+,



• If the bottleneck buffer is smaller than a bdp the bottleneck buffer is exhausted before 
the inflight cap is reached.

• This means point (B) is reached and packet loss occurs
• In order to handle non-congestion related packet loss, BBR does not back off if packet 

loss is detected. But in this case the packet loss is caused by congestion.
• Since BBR has no means to distinguish congestion related from non-congestion related 

loss, point (B) is actually crossed, which can lead to massive amounts of packet loss

BBR v1 does not have any mechanism to deal with
packet loss (other than re-transmission)!



• In the scenario with a 10 Gbit/s bottleneck and small buffers (shown in fig. 7b) 
two of the flows get a significantly larger rate share than the remaining four flows. 
These flows, in turn, only achieve very small rates, for prolonged timespans.
 

• Even with large buffers, rate differences are observed.





• The fairness among BBR flows with different RTTs strongly depends on the bottleneck buffer size.
• With small buffers (figs. 13b and 13d) flow1 (smaller RTTmin) gets more bandwidth than flow2.

In this case both flows are most likely not limited by their inflight cap, due to the small buffer size.
• With large buffers (figs. 13a and 13c) flow2 (larger RTTmin) gets significantly more bandwidth 

than flow1, because the buffer size is large enough so that both flows are most likely limited by 
their inflight cap.

• Both flows can put one bdp into the bottleneck buffer. Due to the larger RTTmin, the bdp of 
flow2 is larger as well. This corresponds to a larger share of data in the bottleneck buffer, thereby 
resulting in a larger throughput for flow2



• As loss-based congestion control, CUBIC TCP tends to fill the bottleneck buffer up 
to exhaustion, no matter how big the buffer is, whereas BBR limits its inflight data 
to two bdp. 

• This means, the larger the bottleneck buffer, the larger the rate share of CUBIC 
TCP. 

• However, since CUBIC TCP produce long lasting standing queues, a competing BBR 
flow may not be able to see the actual RTTmin, even during its ProbeRTT phase.

• During ProbeRTT the BBR flow reduces its own inflight data close to zero, however, 
the CUBIC TCP flow does not. 

• Thus, the bottleneck buffer is usually not drained completely.
• In this case, the BBR flow assumes a higher RTTmin and, thus, also increases the 

inflight cap to a larger value



} Assume a link capacity C, where BBR and the loss-based CCAs, in aggregate, 
are consuming all of the available capacity. 

} By probing for 125% of its current share of bandwidth, BBR pushes extra data 
into the network (offered load > C) leading to loss for all senders. 

} Loss-based algorithms back off, dropping their window sizes and 
corresponding sending rate. 

} BBR does not react to losses and instead increases its sending rate, since it 
successfully sent more data during bandwidth probing than it did in prior 
cycles. 

} The loss-based CCA returns to ramping up its sending rate, and together the 
combined throughput of the two becomes slightly higher than the link 
capacity and the two flows begin to fill the bottleneck buffer. 

} This process continues until BBR hits an in-flight cap; we expect that in the 
absence of a cap it would consume the entire link capacity.



With small buffers, BBR gets a vastly bigger rate share than CUBIC TCP 



Scholz et. al. ran tests for up to 10 BBR flows competing with up to 10 Cubic 
flows in a large buffer and conclude that, “independent of the number of BBR 
and Cubic flows, BBR flows are always able to claim at least 35% of the total 
bandwidth.”

“Towards a Deeper Understanding of TCP BBR Congestion Control”, Scholz et.al.



} Reduce loss rate in shallow buffers
} Reduce queueing delay
} Improved fairness with shallow buffers

“The Great Internet TCP Congestion Control Census”, Mishra et.al.





} The XCP congestion control algorithm is an example of a “clean slate” design, that 
is, it is a result of a fundamental rethink of the congestion control problem 
without worrying about the issue of backward compatibility. 

} As a result, it cannot deployed in a regular TCP/IP network because it requires 
multi-bit feedback, but it can be used in a self-contained network that is 
separated from the rest of the Internet (which can done by using the split TCP 
architecture).

} XCP fundamentally changes the nature of the feedback from the network nodes by 
having them provide explicit window increase or decrease numbers back to the 
sources. 

} It reverses TCP’s design philosophy in the sense that all congestion control 
intelligence is now in the network nodes. 

} As a result, the connection windows can be adjusted in a precise manner so that 
the total throughput at a node matches its available capacity, thus eliminating rate 
oscillations.

} This allows the senders to decrease their windows rapidly when the bottleneck is 
highly congested while performing smaller adjustments when the sending rate is 
close to the capacity.

} To improve system stability, XCP reduces the rate at which it makes window 
adjustments as the round trip latency increases.



} Another innovation in XCP is the decoupling of efficiency control (the ability 
to get to high link utilization) from fairness control (the problem of how to 
allocate bandwidth fairly among competing flows). 

} This is because efficiency control should depend only on the aggregate 
traffic behavior, but any fair allocation depends on the number of 
connections passing through the node. 

} Hence, an XCP-based AQM controller has both an efficiency controller (EC) 
and a fairness controller (FC), which can be modified independently of the 
other. 

} In regular TCP, the two problems coupled together because the AIMD window 
increase decrease mechanism is used to accomplish both objectives



} Traffic source k maintains a congestion window Wk, and keeps track of the 
round trip latency Tk. It communicates these numbers to the network nodes 
via a congestion header in every packet. Note that the rate Rk at source k is 
given by

} Whenever a new ACK arrives, the following equation is used to update the 
window:

where Sk is explicit window size adjustment that is computed by the 
bottleneck node and is conveyed back to the source in the ACK packet. Note 
that Sk can be either positive or negative, depending on the congestion 
conditions at the bottleneck.



} Network nodes monitor their input traffic rate. Based on the difference 
between the link capacity C and the aggregate rate Y given by

the node tells the connections sharing the link to increase or decrease their 
congestion windows, which is done once every average round trip latency, for 
all the connections passing through the node (this automatically reduces the 
frequency of updates as the latencies increase). This information is conveyed 
back to the source by a field in the header. 

} Downstream nodes can reduce this number if they are experiencing greater 
congestion, so that in the end, the feedback ACK contains information from 
the bottleneck node along the path.



} The EC’s objective is to maximize link utilization while minimizing packet 
drops and persistent queues. The aggregate feedback φ (in bytes) is 
computed as follows:

} where α; β are constants whose values are set based on the stability analysis, 
Tav is the average round trip latency for all connections passing through the 
node, and b is the minimum queue seen by an arriving packet during the last 
round trip interval (i.e., it’s the queue that does not drain at the end of a 
round trip interval).

} The first term on the RHS is proportional to the mismatch between the 
aggregate rate and the link capacity (multiplied by the round trip latency to 
convert it into bytes).

} The second term is useful for the following reason: When there is a persistent 
queue even if the rates in the first term are matching, then the second term 
helps to reduce this queue size.

Equivalent to the Proportional +
Integral Controller!



} The job of the FC is to divide up the aggregate feedback among the K 
connections in a fair manner. It achieves fairness by making use of the AIMD 
principle, so that:
◦ If φ > 0, then the allocation is done so that the increase in throughput for 

all the connections is the same.
◦ If φ < 0, then the allocation is done so that the decrease in throughput of 

a connection proportional to its current throughput.
} When φ is approximately zero, then the convergence to fairness comes to a 

halt. To prevent this, XCP does an artificial deallocation and allocation of 
bandwidth among the K connections by using the feedback h given by

so on every RTT, at least 10% of the traffic is redistributed according to 
AIMD.



} The per packet feedback to source k can be written as

where pk is the positive feedback and nk is the negative feedback.
} First consider the case when φ > 0. This quantity needs to be equally divided 

among the throughputs of the K connections. The corresponding change in 
window size of the kth connection is given by

because the throughput deltas are equal.
} This change needs to be split equally among the packets from connection k 

that pass through the node during time Tk, say mk (per packet window 
change is H∆/" "")

} Note that mk is proportional to Wk/MSSk and inversely proportional to Tk. It 
follows that the change in window size per packet for connection k is given 
by

where Kp is a constant.



} It follows that

} From which we obtain

the total increase in aggregate 
traffic rate

=



} When φ < 0, then the decrease in throughput should be proportional to the 
current throughput. 

} It follows that

} Splitting up this change in window size among all the mk packets that pass 
through the node during an RTT, it follows that 

where the constant Kn is given by





} The RCP protocol was inspired by XCP and builds on it to assign traffic rates 
to connections in a way such that they can quickly get to the ideal Processor 
Sharing (PS) rate. 

} RCP is an entirely rate-based protocol (i.e., no windows are used). 
} Network nodes compute the ideal PS-based rate and then pass this 

information back to the source, which immediately changes its rate to the 
minimum PS rate that was computed by the nodes that lie along its path.



RCP was designed to overcome the following issue with XCP:
} When a new connection is initiated in XCP and the nodes along its path are 

already at their maximum link utilizations, then XCP does a gradual 
redistribution of the link capacity using the bandwidth-shuffling process

} This process can be quite slow because new connections start with a small 
window and get to a fair allocation of bandwidth in a gradual manner by 
using the AIMD principle.

} However, it takes several round trips before convergence happens, and for 
smaller file sizes, the connection may never get to a fair bandwidth 
distribution.

} One of the main innovations in RCP, compared with XCP, is that the 
bandwidth reallocation happens in one round trip time, in which a 
connection gets its equilibrium rate.



} Every network node periodically computes a fair-share rate R(t) that it 
communicates to all the connections that pass through it. This computation 
is done approximately once per round trip delay.

} RCP mandates two extra fields in the packet header: 
◦ Field 1: Each network node fills field 1 with is fair share value R(t), and 

when the packet gets to the destination, it copies this field into the ACK 
packet sends it back to the source. 

◦ Field 2: As in XCP, it is used communicate the current average round trip 
latency Tk, from a connection to all the network nodes on its path. The 
nodes use this information to compute the average round trip latency Tav 
of all the connections that pass through it.

} Each source transmits at rate Rk, which is the smallest offered rate along its 
path.

  



} If the router has perfect information on the number of ongoing flows at time 
t, and there is no feedback delay between the congested link and the source, 
then the rate assignment per flow would simply be:

} But the router does not know N(t) and it is complicated to keep track of. And 
even if it could, there is a feedback delay and so by the time R(t) reached the 
source, N(t) would have changed.

} In RCP routers have an adaptive algorithm that updates the rate assigned to 
the flows, to approximate processor sharing in the presence of feedback 
delay, without any knowledge of the number of ongoing flows



} Each network node updates its local rate R(t) according to the equation 
below:

where )𝑁(𝑡) is the node’s estimate of the number of connections that pass 
through it and the other variables are as defined for XCP.

} The basic idea behind this equation is the following: 
◦ If there is spare bandwidth available (equal to C-Y(t)), then share it equally among all 

the connections
◦ If C-Y(t) < 0, then the link is over subscribed, and each connection is asked to 

decrease its rate evenly
◦ If there is a queue build-up of b(t), then a rate decrease of b(t)/Tav will bring it down 

to zero within a round trip interval.

  

Change in rate per
connection, updated

once per RTT





} RCP replaces the interval at which the node recomputes R(t) to T0, so that it 
is user configurable and uses the following estimate for the number of 
connections:

} The rate equation becomes

where the rate change has been scaled down by H01 0#$ because it is done more 
than once per Tav seconds.



} “BBR: Congestion based Congestion Control” 
Cardwell et.al.

} Chapter 5, Sections 5.7-5.8 of Internet Congestion 
Control


