
Lecture 6
Subir Varma

TCP CUBIC is a follow-on design from the same research group that had earlier
come up wit TCP BIC. Their main motivation in coming up with CUBIC was to
improve on BIC in the following areas:

(1) BIC’s window increase function is too aggressive for Reno, especially under
short RTT or low-speed networks, and
(2) Reduce the complexity of BIC’s window increment decrement rules to make
the algorithm more analytically tractable and easier to implement.
(3) Solve the issue of high RTT unfairness in lower speed networks

} To reduce the resulting complexity of the algorithm, CUBIC replaced the
binary search by a cubic function, which contains both concave and convex
portions.

} Another significant innovation in CUBIC is that the window growth depends
only on the real time between consecutive congestion events, unlike TCP BIC
or Reno in which the growth depends at the rate at which ACKs are returning
back to the source.
◦ This makes the window growth independent of the round trip latency, so

that if multiple TCP CUBIC flows with differing RTTs are competing for
bandwidth, then their windows are approximately equal. This results in a
big improvement in the RTT fairness for CUBIC.

𝑊!

(1 − 𝛽)𝑊!
𝜏

Note that K is not a constant

Important Property: The Cubic window increase function is not determined
by the rate ACKs are returning, but solely by the real time interval elapsed
since the last packet drop

} Upon receiving an ACK during congestion avoidance, CUBIC computes the
window growth rate during the next RTT period using W(t) formula

} It sets W(t + RTT) as the candidate target value of congestion window.
} Suppose that the current window size is cwnd. Depending on the value of

cwnd, CUBIC runs in three different modes.
1. If cwnd is less than the window size that (standard) TCP would reach at

time t after the last loss event, then CUBIC is in the TCP mode.
2. If cwnd is less than Wmax, then CUBIC is in the concave region
3. If cwnd is larger than Wmax, CUBIC is in the convex region.

} CUBIC is in the TCP Mode if W(t) is less than the window size that TCP Reno
would reach a time t.

} In short RTT networks, TCP Reno can grow faster than CUBIC because its
window increases by one every RTT, but CUBIC’s window increase rate is
independent of the RTT.

} To keep CUBIC’s growth rate the same as that of Reno in this situation,
CUBIC emulates Reno’s window adjustment algorithm after a packet loss
event using an equivalent AIMD 𝑎, 𝑏 	algorithm as shown next.

Recall that the average throughput for TCP Reno is given by

For an AIMD(a,b) algorithm R is given by

 𝑅 = !
"

#(%&')
%')

Hence, given b, a choice of 𝑎 = *'
%&'

 will ensure that the AIMD algorithm has
the same average throughput as TCP Reno
Because the window size increases by a in every round trip and there are t/T
round trips in time t, it follows that the emulated CUBIC window size after t
seconds is given by

𝑊+,-. = 1 − 𝑏 𝑊/ +
3𝑏

(2 − 𝑏)
𝑡
𝑇

If WAIMD is larger than WCUBIC, then WCUBIC is set equal to WAIMD.
Otherwise, WCUBIC is used as the current congestion window size.

Assume that CUBIC is in steady state with one packet lost every 𝜏	𝑠𝑒𝑐

𝑊 𝑡 = 	𝛼 𝑡 − 𝐾 " +𝑊! so that t = 0 we have W(0) = (1 − 𝛽)𝑊!
and at t = K, we have W(K) = Wm

= K

Using the deterministic assumption from Section 2.3 of Chapter 2, it follows
that the average throughput is given by

 is the number of packets transmitted during a cycle.

N is also given by

Following the usual recipe, we equate N to 1/p, where p is the packet drop rate

It follows that

Cubic Response Function is Piecewise Linear

The crossover point 1𝑝	 increases as T increases

The switch between Cubic and Reno is a function of the round trip latency T!

Why is this a good property to have?

} In LAN environments in which T is small, the Response Functions for Cubic
and Reno coincide for most of the range.

} For WAN environments with large T, the Cubic Response Function grows
much faster.

This is an interesting contrast with the behavior of HSTCP, in which the switch
between HSTCP and TCP Reno happens as a function of the window size W
alone, irrespective of the round trip latency T.

The dependency of the Reno CUBIC cross-over point on T is a very attractive
feature because most traffic, especially in enterprise environments, passes over
networks with low latency, for whom regular TCP Reno works fine.

If a high-speed algorithm is used over these networks, we would like it to
coexist with Reno without overwhelming it, and CUBIC satisfies this requirement
very well.

Over high-speed long-distance networks with a large latency, on the other
hand, TCP Reno is not able to make full use of the available bandwidth, but
CUBIC naturally scales up its performance to do so.

𝑅 =
! 𝛼(4 − 𝛽)
4𝑝"𝑇𝛽

So that e = 0.25, d = 0.75

Hence

Hence, TCP CUBIC has better RTT fairness that any of the other high-speed
protocol and even TCP Reno.

This is because it does not use ACK clocking to time its packet transmissions.

• Figure shows the ratio between the throughputs of two flows of CUBIC, BIC, HSTCP, and
TCP SACK, for a bottleneck link capacity of 400 mbps, and with one of the flows with a fixed
RTT of 162 ms. The RTT of the other flow is varied between 16 ms and 162 ms.

• This clearly shows that CUBIC has better inter-RTT fairness than the other protocols.

𝑅#
𝑅$

T1 > T2

T1 is fixed at 162 ms

• Measurement of the the intra-protocol fairness between two flows of a protocol with the
same RTT. Throughput ratio between these two flows is used for representing the intra-
protocol fairness.

• This metric represents a degree of bandwidth shares between two flows of the same
protocol. For this experiment, RTT was varied between 16 ms and 324 ms

Due to Reno instability at
high RTTs

} Both BIC and CUBIC show stability with high RTTs and link
capacities, even with plain tail drop routers. Why is that?

} There has been no formal proof for this, but the Averaging Principle
offers a clue as to why this is the case.

} Both protocols reduce the rate of window increase as the link
approaches saturation, and this seems to be the crucial property.

Link utilization at the
bottleneck node with

varying RTT

} All the algorithms we have considered use packet loss as their main indicator
of network congestion, with the exception of TCP Vegas.

} The problem with TCP Vegas was that it didn’t do very well when competing
with loss based connections.

} In the last 10-15 years there have been several proposals that aim to
introduce some aspect of delay based congestion control, while avoiding the
pitfalls of TCP Vegas. Strategies include:
◦ Combine loss based and delay based congestion indicators (example

Compound TCP)
◦ Limit queueing delay without having to measure end to end latency

(example BBR)
◦ Allow for larger changes in window size in response to changing delay

(example TCP FAST)
◦ Use optimization based congestion control in which delay is included as

one of the optimization components (example COPA)
◦ React to delay gradient rather than just delay (example TIMELY)

Main Idea:

} In order to avoid overloading the network, the system should keep track of
congestion using the TCP Vegas queue size estimator and use an aggressive
window increase rule only when the estimated queue size is less than some
threshold.

} When the estimated queue size exceeds the threshold, then CTCP switches to
a less aggressive window increment rule, which approaches the one used by
TCP Reno.

} CTCP Window Size is decomposed into two components:

} Wc(t) is the part of the window that reacts to loss-based congestion signals
and changes its size according to the rules used by TCP Reno.

} Wd(t), on the other hand, reacts to a delay-based congestion signal and uses
a new set of rules for changing its window size.

} Specifically, Wd(t) has a rapid window increase rule when the network is
sensed to be underutilized and gracefully reduces its size when the
bottleneck queue builds up.

} Hence the delay indicator is not being used to control latency (as in Vegas)
but to boost throughput when the link is under utilized, and conversely to
default to Reno when the link becomes congested.

W(t): CTCP Window size at time t

Wc(t): Congestion component of the CTCP window size at time t

Wd(t): Delay component of the CTCP window size at time t

T: Base value of the round trip latency

Ts(t): Smoothed estimate of the round trip latency at time t

RE(t): Expected estimate of the CTCP throughput at time t

R(t): Observed CTCP throughput at time t

Θ(t): Delay-based congestion indicator at time t

γ: Delay threshold, such that the system is considered to be congested if
 θ(t) ≥	γ

Note that

which by Little’s law equals the number of queued packets in the network

CTCP specifies that the congestion window should evolve according to the
following equations on a per RTT basis:

Given that the standard TCP congestion window evolves according to (per RTT):

It follows that:

Delay caused decrease

• When the network queuing backlog is smaller than γ,
the delay-based congestion window Wd grows rapidly.

• When the congestion level reaches γ, the congestion
window continues to increase at the rate of one packet
per round trip time, and the delay window starts to
ramp down.

• If the rate of increase of the congestion window Wc
equals the rate of decrease of the delay window Wd,
then the resulting CTCP window W stays constant at
W0 until the size of the congestion window Wc
exceeds W0.

• At that point, the CTCP window W resumes its increase
at the same linear rate as the congestion window, and
the delay window dwindles to zero

NDE

NEF

NFG

TDE TEF
TFG

Phase 1: Interval TDE (Queueing delay is below threshold)
The CTCP window increases according to

For k = 0.75

Since the window increases by every Ts seconds.

Shows rapid increase in window size during Phase 1

Since W increases from (1 − 𝛽)𝑊! to
W0, it follows that

Phase 2: Interval TEF (Queueing delay is at threshold)

Note that the interval TEF comes to an end when the size of the congestion
window Wc becomes equal to W0. Because it follows that

Phase 3: Interval TFG (Queueing delay is above threshold)

and

𝑁%& =
#
'"
∫'#
'$𝑊 𝑡 𝑑𝑡 = #

'%
[𝑊(𝑇%& +

#
$
𝑊! −𝑊(𝑇%&]=

)&*)'
$'"

𝑇%& =
)&'+)('

$

Putting it all together

This can be numerically solved to obtain Wm for a given value of 1/p

so that

Substitute this back to obtain TDG

For the special case when the packet loss occurs in Phase 1:

For k = 0.75, it follows that d = 0.8 and 1/(1-d) = 5

High Latency
=> Larger W0

Low Latency
=> Smaller W0

Higher Capacity
=> Larger Wm

Note: W0 does not depend on C

𝑊! ≈ 𝐶𝑇

} As link speed C increases, for a fixed value of end-to-end latency, then Wm
increases, and as a result, the number of packets transmitted in the linear
portion of window increases. This can also be seen by the formula for NFG. As
a result, at higher link speeds, the CTCP throughput converges toward that
for TCP Reno.

} As the end-to-end latency increases, then W0 increases, and the number of
packets transmitted in the quartic region of the CTCP window increases. This
can also be seen by the formula for NDE. As a result, an increase in latency
causes the CTCP throughput to increase faster compared with that of Reno.

} This behavior is reminiscent with that of CUBIC because CUBIC’s throughput
also increased with respect to Reno as the end-to-end latency increases.

} However, the CTCP throughput will converge back to that for Reno as the link
speed becomes sufficiently large, while the CUBIC throughput keeps
diverging.

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1E+2

1E+3

1E+4

1E+5

1E+6

TCP Reno

CUBIC

Response
Function

Packet Drop Rate

} TCP Africa is a dual state algorithm; the congestion window is updated
differently in the two operation modes.

} Specifically the algorithm switches between the “slow” mode state in which
the congestion window is updated according to Reno algorithm, and the
“fast” mode state in which the congestion window is updated according to
HSTCP increase rule.

} Switching between states is governed by the number of queued packets in
the bottleneck buffer, inferred through a delay-based approach.

} Hence, TCP Africa is aggressive when the pipe is not full and it behaves like
Reno when the full link utilization is achieved.

} Similar to CTCP (actually TCP Africa came first), with the difference that TCP
Africa switches between algorithms, while CTCP keeps two different
windows.

} Yeah TCP also has two modes: “Fast” and “Slow”, like Africa TCP and CTCP.

} During the “Fast” mode, YeAH-TCP increments the congestion window according
to an aggressive rule. In the “Slow” mode, it acts as Reno TCP.

} The state is decided according to the estimated number of packets in the
bottleneck queue, which is estimated as

𝜃 𝑡 =
𝑊 𝑡
𝑇)*+ 𝑡

(𝑇)*+(𝑡) − 𝑇)

Where Tmin(t) is the minimum RTT estimated in the current data window of cwnd
packets (this is a better estimate of persistent congestion at the node).

} Define 𝐿 = *,"#$(.)
,, which is a measure of the network congestion level.

} If 𝜃 < 𝜃)01 and 𝐿 < 1/𝜑, the algorithm is in the “Fast” mode, otherwise it is in the
“Slow” mode.

} Whenever 𝜃 > 𝜃)01, the congestion window is diminished by 𝜃 and ssthresh set to
cwnd/2. Note that this action, called precautionary decongestion, is done even in
the absence of a packet loss event.

} The precautionary decongestion is optimal only when the flows that implement it do not
compete with “greedy” sources, such as Reno. When competing with “greedy” flows, the
precautionary decongestion makes the conservative flow lose capacity, since it releases
bandwidth to the greedy sources.

} To avoid unfair competition with legacy flows, YeaH-TCP implements a mechanism to
detect if it is competing with “greedy” sources:
◦ When 𝜃 > 𝜃!"# 	YeAH-TCP attempts to remove packets from the queue. If the queuing

delay increases further because Reno flows are “greedily” filling up the buffer, then
YeAH-TCP will stay hardly ever in “Fast” mode state and frequently in “Slow” mode.

◦ On the other hand, when competing with non greedy flows, the YeAH algorithm will
cause a state change from “Fast” to “Slow” whenever buffer content builds up above
𝜃!"# and back as soon as the precautionary decongestion becomes effective.

} On detecting packet loss, the window decrease rule used is similar to that of Westwood,
i.e., cwnd is decreased to the BDP rather than by half as in Reno. This helps sustain
performance in high loss environments.

This is an example of a mechanism that allows delay based algorithms
to compete fairly with loss based algorithms

YeAH TCP is RTT fair, because every flow attempts to keep in the bottleneck
buffer a fixed number of packets independently of RTT thus every flow attempts
to share the bottleneck buffer fairly.

All the loss based algorithms experience a serious
goodput degradation when operating with low buffer sizes.

} Chapter 5, Sections 5.4-5.5 of Internet Congestion
Control

