
Lecture 5
Subir Varma

“The Great Internet TCP Congestion Control Census” Mishra et.al. (2019)

TCP for
high speed
networks

TCP for
high speed

and low latency

TCP for
Data Center

networks

} TCP Reno becomes unstable if either the link capacity, the propagation delay,
or both become large. This results in severe oscillations of the transmission
rates and buffer occupancies, which has been observed in practice in high-
speed networks (see Lecture 3).

} Consider the following scenario: The link capacity is 10 Gbps, and the Round
Trip Latency (RTT) is 100 ms, so the delay bandwidth product is about
100,000 packets (for a packet size of1250 bytes). For TCP to grow its
window from the midpoint (after a multiplicative decrease) to full window
size during the congestion avoidance phase, it will require 50,000 RTTs,
which is about 5000 seconds (1.4 hours). If a connection finishes before
then, the link will be severely underutilized.
◦ Hence, when we encounter a combination of high capacity and large end-

to-end delay, the multiplicative decrease policy on packet loss is too
drastic, and the linear increase is not quick enough.

} The square-root formula for TCP throughput (see Chapter 2) shows that for a
round trip latency of T, the packet drop rate has to be less than 1.5/(RT)2 to
sustain an average throughput of R. Hence, using the same link and TCP
parameters as above, the packet drop rate has to be less than 10-10 to
sustain a throughput of 10 Gbps. This is much smaller than the drop rate
that can be supported by most links.

} High Speed TCP (HSTCP)
} Binary Increase Control (BIC)
} CUBIC
◦ Default in Linux Servers
◦ 45% of servers in the Internet use either BIC or CUBIC. 30% still use

TCP Reno.
} Compound TCP (CTCP)
◦ Used in Windows Servers
◦ 20% of servers use CTCP

} Yeah TCP
} BBR

} XCP Express Control Protocol
} RCP Rate Control Protocol

These algorithms cannot be used over IP Networks since they require
additional fields in the packet header

1. It should be able to make efficient use of the high-speed link without
requiring unrealistically low packet loss rates. This is not the case for TCP
Reno, because of its conservative window increase and aggressive window
decrease rules.

2. In case of very high-speed links, the requirement of inter-protocol fairness
between the high speed TCP protocol and regular TCP is relaxed because
regular TCP is not able to make full use of the available bandwidth. Hence,
in this situation, it is acceptable for the high speed TCP variants to perform
more aggressively than standard TCP.

3. If connections with different round trip latencies share a link, then they
should exhibit good intra-protocol fairness.
This should also be the case for connections with similar round trip
latencies.

Assumption: All packet
drops are due to buffer
overflows.

The packet drop probability is inversely proportional to the square of the link
speed

since

Identical T
Different Capacities

𝑝 =
1
𝑁 =

8
3𝑊!"

≈
8

3(𝐶𝑇)"	 𝑊! ≈ 𝐶𝑇

Definition w = RavgT

Average Tpt Minimum Round Trip Latency

w is the average number of packets transmitted per round trip time

TCP Reno

Additive increase/multiplicative decrease AIMD(32, 0.125)

High Speed TCP (HSTCP)

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

AIMD(32,0.125)

TCP Reno HSTCP
Response
Function

Packet Drop Rate

- The ability of a protocol to use the high amount of bandwidth
 available in high-speed networks is determined by whether it
 can sustain high sending rates under low loss rates.
- A protocol becomes more scalable if its Response Function is
 higher under lower loss rates.

Lower p corresponds to Higher Speed Links

1. At small values of p (or equivalently for very high-speed links), it is
desirable that the Response Function for the high-speed protocol be much
larger than for TCP Reno.
◦ For a given interval between packet drops, this allows the congestion

window to grow to a much larger value compared with Reno.
◦ If Reno and the high-speed protocol compete for bandwidth in a high-

speed link, the latter will end up with a much larger portion of the
bandwidth (i.e., the system will not be fair). However, this is deemed to be
tolerable because the high-speed protocol is taking up link bandwidth
that cannot be used by TCP Reno anyway.

Increase Window Size by more
than one packet per RTT

2. Inter-Protocol Fairness: At larger values of p (or equivalently lower speed
links), it is desirable for TCP friendliness that the point at which the two
curves cross over lie as much to the left as possible.
◦ The reason for this is that for lower speed links, the congestion control

algorithm should be able to sustain smaller window sizes, which is better
suited to coexisting with TCP Reno without taking away bandwidth from it.

◦ To do this, the Response Function for the high-speed algorithm should be
equal to or lower than that for TCP Reno after the two curves cross over.

- Revert back to TCP Reno
for smaller w (HSTCP)

- Keep track of the connections’ queue backlog
in the network and switch to a less aggressive
packet increment rule when the backlog exceeds
a threshold (CTCP, TCP Africa).

3. Intra-Protocol Fairness with different RTT:
Assume that the throughput of a loss based congestion control protocol
with constants A, e, d is given by

Then the throughput ratio between two flows with round trip latencies T1
and T2, whose packet losses are synchronized, is given by

As d increases, the slope of the response function and RTT unfairness
both increase => The slope of the response function on the log-log plot
determines its intra-protocol RTT unfairness.

All three properties of the High Speed Protocol can be read off from the
Response Function

There is a tradeoff between requirements 2 and 3 as follows: Even though it is
possible to design a more TCP-friendly protocol by moving the point of
intersection with the TCP curve to lower packet drop rate, this leads to an
increase in the slope of the Response Function line, thus hurting RTT fairness.

} The HSTCP Response Function should coincide with that of TCP Reno when
the packet drop rate exceeds some threshold P (or equivalently when the
Response Function is equal to or less than w packets). As a default HSTCP
chooses P0 = 0.0015 and w0 = 538 packets.

} We next choose a large ppr, say, w1 = 583,000 packets (which corresponds
to a link capacity of 10 Gbps for packet size of 1500 bytes and round trip
time T = 100 ms) and a corresponding packet loss rate of P1 = 10-7. For
packet loss rates less than P0, we specify that the HSTCP Response Function
should pass through the points (P0, w0) and (P1, w1) and should also be linear
on a log-log scale

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

TCP Reno
HSTCP

Response
Function

Packet Drop Rate

1E-8

(0.0015, 38)

(10-7, 83000)

The Response Function for HSTCP is given by

Where

This equation can also be written as

 packets.

If we substitute the values of (P0,w0) and (P1,w1) in Response Time equation,
then we obtain S = -0.82, so that the HSTCP Response Function is given by

log𝑤 = 𝑆(log 𝑝 − log𝑃#) + log𝑤#

𝑆 =
log𝑤$ − log𝑤#
log 𝑃$ − log𝑃#

𝑤 = 𝑤#
𝑝
𝑃#

%

Find the functions
a(W) and b(W)

For the case 𝑊 ≤ 𝑤!, HSTCP defaults to TCP Reno, so that

	 𝑎 𝑊 = 1	𝑎𝑛𝑑	𝑏 𝑊 = 0.5	𝑓𝑜𝑟	W≤ 𝑤!

For 𝑊 > 𝑤!,	we assume that b(W) varies linearly with respect to log(W) for
𝑊 ∈ [𝑤!, 𝑤$] with 𝑏 𝑤! = 0.5 and 𝑏 𝑤$ = 𝐵, where B is target maximum value
for b(W) (defaulted to B = 0.1 at 𝑊 = 𝑤$)

𝑏 𝑊 = 𝐵 − 0.5
log𝑊 − log𝑤!
log𝑤$ − log𝑤!

+ 0.5

Find the functions
a(W) and b(W)

Note that there are a couple of heuristics in the use of equation 12:
(1) equation 12 is a formula for the response time function, not the window size, and
(2) equation 12 was derived for the case when a and b are constants, which is not the case here.

To obtain the corresponding a(W), we use the following formula for the response
function of AIMD congestion control: We choose a point 𝑊 ∈ [𝑤!, 𝑤$]  and compute
the corresponding probability P(W) . Substitute (P(W),W) into the following equation

so that

A significant issue with HSTCP is the fact that the window increment function
a(W) increases as W increases and exceeds more 70 for large values of W.

This implies that at the time when the link buffer approaches capacity, it is subject
to a burst of more than 70 packets, all of which can then be dropped.
Almost all follow-on high-speed design reduce a(W) as the link approaches saturation.

HSTCP is more stable than TCP Reno at high speeds because it is less aggressive in reducing
its window after a packet loss which reduces the queue size oscillations at the bottleneck node.

• Because of the aggressive window increment policy of HSTCP, combined
with small values of the decrement multiplier, connections with a larger
round trip latency are at a severe throughput disadvantage.

• There is a positive feedback loop which causes the connection with the large
latency to loose throughput, which operates as follows:

- Even if the two connections start with the same window size, the connection
 with smaller latency will gain a small advantage after a few round trip delays
 because it is able to increase its window faster.
- However this causes its window size to increase, which further accelerates this trend.
- Conversely the window size of the large latency connection goes into a

 downward spiral as reductions in its throughput causes a further reduction in its window size.

} The main idea behind TCP BIC, is to grow the TCP window quickly when the
current window size is far from the link saturation point (at which the
previous loss happened), and if it is close to the saturation point then the
rate of increase is slowed down.

} This results in a concave increase function, which decrements the rate of
increase as the window size increases.

} The small increments result in a smaller number of packet losses if the
window size exceeds the capacity. This makes BIC (and its successor CUBIC)
very stable and also very scalable.

} If the available link capacity has increased since the last loss, then both BIC
and CUBIC increase the window size exponentially using a convex function.
Since this function shows sub-linear increase initially, this also adds to the
stability of the algorithm for cases in which the new link capacity did not
increase significantly.

Additive
Increase

Binary
Search

Max Probing

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

AIMD(32,0.125)

TCP Reno

HSTCP

Response
Function

Packet Drop Rate

} Because the BIC response time graph intersects with that of Reno around the
same point as that of HSTCP, it follows BIC is also TCP friendly at lower link
speeds.

} The slope of BIC’s response time at first rises steeply and then flattens out to
that of TCP Reno for larger link speeds. This implies that for high-speed
links, BIC exhibits the RTT intra-protocol fairness property (or it is at least as
fair as TCP Reno).

} Because of the fast initial rise in its response time, BIC scales well with link
speeds.

1. Additive Increase
2. Binary Search Increase
3. Max Probing

Additive
Increase

Binary
Search

Max Probing

The Binary Search window increase rule in BIC was inspired by the binary search
algorithm and operates as follows:
} If Wmax is the maximum window size that was reached just before the last

packet loss, and Wmin is the window size just after the packet loss, then after
1 RTT, the algorithm computes Wmid, the midpoint between Wmax and Wmin,
and sets the current window size cwnd to Wmid.

} After the resulting packet transmissions:
◦ If there are no packet losses, then Wmin is set to Wmid, or
◦ If there are packet losses then Wmax is set to Wmid.

} For the case of no packet losses the process repeats for every RTT until the
difference between Wmax and Wmin falls below a preset threshold Smin.
Results in logarithmic increase in window size.

Binary Search allows the bandwidth probing to be more aggressive when the difference
between the current window cwnd and the target window Wmax is large and gradually becomes
less aggressive as cwnd gets closer to Wmax.

This results in a reduction in the number of lost packets as the saturation point is reached.

This behavior contrasts with HSTCP, which increases its window increase rate near the link
saturation point, resulting in excessive packet loss.

} When the distance to Wmid from the current Wmin is large, then increasing the
window cwnd to that midpoint leads to a large burst of packets transmitted
into the network, which can result in losses.

} In this situation, cwnd is increased by a configured maximum step value Smax
and Wmin is set cwnd.

} This continues until the distance between Wmin and Wmid falls below Smax, at
which time Wmin is set directly to Wmid.

} After a large window size reduction, the additive increase rule leads to an
initial linear increase in window size followed by a logarithmic increase for
the last few RTTs.

Additive
Increase

Binary
Search

Max Probing

} When the current window size grows past Wmax, the BIC algorithm switches to
probing for the new maximum window, which is not known.

} It does so in a slow-start fashion by increasing its window size in the
following sequence for each RTT: Wmax + Smin, Wmax + 2Smin, Wmax + 4Smin,
Wmax + Smax.

} The reasoning behind this policy is that it is likely that the new saturation
point is close to the old point; hence, it makes sense to initially gently probe
for available bandwidth before going at full blast.

} After the max probing phase, BIC switches to additive increase using the
parameter Smax.

Additive
Increase

Binary
Search

Max Probing

Wmin=

BIC switches to the logarithmic increase phase when the distance from the
Wmin to Wmax is less than 2Smax

Proof:
Additive increase until the distance between Wmin and Wmid falls below
Smax i.e.,

𝑊!&' +𝑊!()

2
−𝑊!() < 𝑆!&'

<

𝛽Wmax

2

<2

𝛽Wmax

= X

=>

<

X

X/2 X/4
Binary
Increase

N2: Number of RTT rounds in the logarithmic increase phase

=
𝐴!
𝑇

Y1: Number of packets transmitted in additive increase phase

𝑌" =
1
𝑇
:
*!+

*"+

𝑊 𝑡 𝑑𝑡 =
𝐴"
𝑇
=
𝑊!&'𝑁"𝑇 − 𝐴,

𝑇

𝐴,
𝑇 =

𝑋
2 +

𝑋
2" +

𝑋
2" +

𝑋
2, +⋯+

𝑋
2*" +

𝑋
2*"-$ +

𝑆!()
2

= 𝑋 1 −
1
2*" +

𝑋
2 1 −

1
2*" +

𝑆!()
2

= 1.5𝑋 − 𝑆!()

𝑌" = 𝑊!&'𝑁" − 1.5 𝛽𝑊!&' − 𝑁$𝑆!&' + 𝑆!()

Y2: Number of packets transmitted in logarithmic increase phase

Use to express Wmax as a function of p, 𝛽, Smax, Smin

+

A closed form expression for Wmax does not exist in general

Special Cases:

(1) 𝛽𝑊%&' ≫ 2𝑆%&' :

For large window sizes (i.e. very high speed links, BIC reduces
to AIMD congestion control

Because large values of Wmax also correspond to large link capacities (because Wmax ≈CT),
it follows that for high-capacity links, BIC operates similar to an AIMD protocol with
increase parameter a = Smax, decrease parameter of b = β, and the exponent d = 0.5.
This follows from the fact that for high-capacity links, the BIC window spends most of its
time in the linear increase portion.

log𝑤 = 0.5 log
𝑆!&'
2

2 − 𝛽
𝛽 − 0.5 log 𝑝

For moderate values of C, we can get some insight into BIC’s behavior by computing the
constants in equation for Ravg. If we choose the following values for BIC’s
parameters: β = 0.125; Smax = 32; Smin = 0.01. It follows that a = 0.0036, b = 18.5, and c = 31.
It follows that

For large window sizes, d = 0.5

For moderate window sizes, d =1

For high BW links, BIC has the same RTT fairness as Reno

For moderate BW links, BIC can be very unfair to connections
with large RTT.

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1

1E+1

1E+2

1E+3

1E+4

1E+5

TCP Reno
Response
Function

Packet Drop Rate

Smax Increasing

Linear
Growth Logarithmic

Growth

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2

p

w

1

1E+1

1E+2

1E+3

1E+4

1E+5

TCP Reno
Response
Function

Packet Drop Rate

Smin Decreasing

Reducing Smin makes BIC more TCP friendly, but also makes the
RTT unfairness worse.

} Chapter 5, Sections 5.1-5.4 of Internet Congestion
Control

