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} TCP Reno becomes unstable if either the link capacity, the propagation delay, 
or both become large. This results in severe oscillations of the transmission 
rates and buffer occupancies, which has been observed in practice in high-
speed networks (see Lecture 3).

} Consider the following scenario: The link capacity is 10 Gbps, and the Round 
Trip Latency (RTT) is 100 ms, so the delay bandwidth product is about 
100,000 packets (for a packet size of1250 bytes). For TCP to grow its  
window from the midpoint (after a multiplicative decrease) to full window 
size during the congestion avoidance phase, it will require 50,000 RTTs, 
which is about 5000 seconds (1.4 hours). If a connection finishes before 
then, the link will be severely underutilized. 
◦ Hence, when we encounter a combination of high capacity and large end-

to-end delay, the multiplicative decrease policy on packet loss is too 
drastic, and the linear increase is not quick enough.



} The square-root formula for TCP throughput (see Chapter 2) shows that for a 
round trip latency of T, the packet drop rate has to be less than 1.5/(RT)2 to 
sustain an average throughput of R. Hence, using the same link and TCP 
parameters as above, the packet drop rate has to be less than 10-10 to 
sustain a throughput of 10 Gbps. This is much smaller than the drop rate 
that can be supported by most links.



} High Speed TCP (HSTCP)
} Binary Increase Control (BIC)
} CUBIC 
◦ Default in Linux Servers
◦ 45% of servers in the Internet use either BIC or CUBIC. 30% still use 

TCP Reno.
} Compound TCP (CTCP)
◦ Used in Windows Servers
◦ 20% of servers use CTCP

} Yeah TCP
} BBR



} XCP Express Control Protocol
} RCP Rate Control Protocol

These algorithms cannot be used over IP Networks since they require 
additional fields in the packet header



1. It should be able to make efficient use of the high-speed link without 
requiring unrealistically low packet loss rates. This is not the case for TCP 
Reno, because of its conservative window increase and aggressive window 
decrease rules.

2. In case of very high-speed links, the requirement of inter-protocol fairness 
between the high speed TCP protocol and regular TCP is relaxed because 
regular TCP is not able to make full use of the available bandwidth. Hence, 
in this situation, it is acceptable for the high speed TCP variants to perform 
more aggressively than standard TCP.

3. If connections with different round trip latencies share a link, then they 
should exhibit good intra-protocol fairness.
This should also be the case for connections with similar round trip 
latencies.



Assumption: All packet
drops are due to buffer
overflows.

The packet drop probability is inversely proportional to the square of the link
speed

since
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Definition         w = RavgT

Average Tpt Minimum Round Trip Latency

w is the average number of packets transmitted per round trip time



TCP Reno

Additive increase/multiplicative decrease AIMD(32, 0.125) 

High Speed TCP (HSTCP)
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- The ability of a protocol to use the high amount of bandwidth 
    available in high-speed networks is determined by whether it
    can sustain high sending rates under low loss rates.
- A protocol becomes more scalable if its Response Function is 
   higher under lower loss rates.

Lower p corresponds to Higher Speed Links



1. At small values of p (or equivalently for very high-speed links), it is 
desirable that the Response Function for the high-speed protocol be much 
larger than for TCP Reno.
◦ For a given interval between packet drops, this allows the congestion 

window to grow to a much larger value compared with Reno. 
◦ If Reno and the high-speed protocol compete for bandwidth in a high-

speed link, the latter will end up with a much larger portion of the 
bandwidth (i.e., the system will not be fair). However, this is deemed to be 
tolerable because the high-speed protocol is taking up link bandwidth 
that cannot be used by TCP Reno anyway.

Increase Window Size by more
than one packet per RTT



2. Inter-Protocol Fairness: At larger values of p (or equivalently lower speed 
links), it is desirable for TCP friendliness that the point at which the two 
curves cross over lie as much to the left as possible. 
◦ The reason for this is that for lower speed links, the congestion control 

algorithm should be able to sustain smaller window sizes, which is better 
suited to coexisting with TCP Reno without taking away bandwidth from it. 

◦ To do this, the Response Function for the high-speed algorithm should be 
equal to or lower than that for TCP Reno after the two curves cross over.

- Revert back to TCP Reno 
for smaller w (HSTCP)

- Keep track of the connections’ queue backlog 
in the network and switch to a less aggressive 
packet increment rule when the backlog exceeds 
a threshold (CTCP, TCP Africa).



3. Intra-Protocol Fairness with different RTT:
Assume that the throughput of a loss based congestion control protocol 
with constants A, e, d is given by 

Then the throughput ratio between two flows with round trip latencies T1 
and T2, whose packet losses are synchronized, is given by

As d increases, the slope of the response function and RTT unfairness 
both increase  => The slope of the response function on the log-log plot 
determines its intra-protocol RTT unfairness.

All three properties of the High Speed Protocol can be read off from the
Response Function



There is a tradeoff between requirements 2 and 3 as follows: Even though it is 
possible to design a more TCP-friendly protocol by moving the point of 
intersection with the TCP curve to lower packet drop rate, this leads to an 
increase in the slope of the Response Function line, thus hurting RTT fairness.





} The HSTCP Response Function should coincide with that of TCP Reno when 
the packet drop rate exceeds some threshold P (or equivalently when the 
Response Function is equal to or less than w packets). As a default HSTCP 
chooses P0 = 0.0015 and w0 = 538 packets.

} We next choose a large ppr, say, w1 = 583,000 packets (which corresponds 
to a link capacity of 10 Gbps for packet size of 1500 bytes and round trip 
time T = 100 ms) and a corresponding packet loss rate of P1 = 10-7. For 
packet loss rates less than P0, we specify that the HSTCP Response Function 
should pass through the points (P0, w0) and (P1, w1) and should also be linear 
on a log-log scale
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The Response Function for HSTCP is given by

Where

This equation can also be written as

                                                                 packets.

If we substitute the values of (P0,w0) and (P1,w1) in Response Time equation, 
then we obtain S = -0.82, so that the HSTCP Response Function is given by

log𝑤 = 𝑆(log 𝑝 − log𝑃#) + log𝑤#

𝑆 =
log𝑤$ − log𝑤#
log 𝑃$ − log𝑃#

𝑤 = 𝑤#
𝑝
𝑃#

%



Find the functions
a(W) and b(W)

For the case 𝑊 ≤ 𝑤!, HSTCP defaults to TCP Reno, so that

	 𝑎 𝑊 = 1	𝑎𝑛𝑑	𝑏 𝑊 = 0.5	𝑓𝑜𝑟	W≤ 𝑤!

For 𝑊 > 𝑤!,	we assume that b(W) varies linearly with respect to log(W) for
𝑊 ∈ [𝑤!, 𝑤$] with 𝑏 𝑤! = 0.5 and 𝑏 𝑤$ = 𝐵, where B is target maximum value
for b(W) (defaulted to B = 0.1 at 𝑊 = 𝑤$)

𝑏 𝑊 = 𝐵 − 0.5
log𝑊 − log𝑤!
log𝑤$ − log𝑤!

+ 0.5



Find the functions
a(W) and b(W)

Note that there are a couple of heuristics in the use of equation 12: 
(1) equation 12 is a formula for the response time function, not the window size, and 
(2) equation 12 was derived for the case when a and b are constants, which is not the case here.

To obtain the corresponding a(W), we use the following formula for the response 
function of AIMD congestion control: We choose a point 𝑊 ∈ [𝑤!, 𝑤$]  and compute 
the corresponding probability P(W) . Substitute (P(W),W) into the following equation

so that





A significant issue with HSTCP is the fact that the window increment function
a(W) increases as W increases and exceeds more 70 for large values of W.

This implies that at the time when the link buffer approaches capacity, it is subject 
to a burst of more than 70 packets, all of which can then be dropped. 
Almost all follow-on high-speed design reduce a(W) as the link approaches saturation.

HSTCP is more stable than TCP Reno at high speeds because it is less aggressive in reducing 
its window after a packet loss which reduces the queue size oscillations at the bottleneck node.



• Because of the aggressive window increment policy of HSTCP, combined 
with small values of the decrement multiplier, connections with a larger 
round trip latency are at a severe throughput disadvantage. 

• There is a positive feedback loop which causes the connection with the large 
latency to loose throughput, which operates as follows: 

- Even if the two connections start with the same window size, the connection 
   with smaller latency will gain a small advantage after a few round trip delays 
   because it is able to increase its window faster. 
- However this causes its window size to increase, which further accelerates this trend. 
- Conversely the window size of the large latency connection goes into a

        downward spiral as reductions in its throughput causes a further reduction in its window size.





} The main idea behind TCP BIC, is to grow the TCP window quickly when the 
current window size is far from the link saturation point (at which the 
previous loss happened), and if it is close to the saturation point then the 
rate of increase is slowed down. 

} This results in a concave increase function, which decrements the rate of 
increase as the window size increases. 

} The small increments result in a smaller number of packet losses if the 
window size exceeds the capacity. This makes BIC (and its successor CUBIC) 
very stable and also very scalable. 

} If the available link capacity has increased since the last loss, then both BIC 
and CUBIC increase the window size exponentially using a convex function. 
Since this function shows sub-linear increase initially, this also adds to the 
stability of the algorithm for cases in which the new link capacity did not 
increase significantly.



Additive 
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} Because the BIC response time graph intersects with that of Reno around the 
same point as that of HSTCP, it follows BIC is also TCP friendly at lower link 
speeds.

} The slope of BIC’s response time at first rises steeply and then flattens out to 
that of TCP Reno for larger link speeds. This implies that for high-speed 
links, BIC exhibits the RTT intra-protocol fairness property (or it is at least as 
fair as TCP Reno).

} Because of the fast initial rise in its response time, BIC scales well with link 
speeds.



1. Additive Increase
2. Binary Search Increase
3. Max Probing

Additive 
Increase

Binary
Search

Max Probing



The Binary Search window increase rule in BIC was inspired by the binary search 
algorithm and operates as follows:
} If Wmax is the maximum window size that was reached just before the last 

packet loss, and Wmin is the window size just after the packet loss, then after 
1 RTT, the algorithm computes Wmid, the midpoint between Wmax and Wmin, 
and sets the current window size cwnd to Wmid.

} After the resulting packet transmissions:
◦ If there are no packet losses, then Wmin is set to Wmid, or
◦ If there are packet losses then Wmax is set to Wmid.

} For the case of no packet losses the process repeats for every RTT until the 
difference between Wmax and Wmin falls below a preset threshold Smin.
Results in logarithmic increase in window size.



Binary Search allows the bandwidth probing to be more aggressive when the difference 
between the current window cwnd and the target window Wmax is large and gradually becomes
less aggressive as cwnd  gets closer to Wmax.

This results in a reduction in the number of lost packets as the saturation point is reached. 

This behavior contrasts with HSTCP, which increases its window increase rate near the link 
saturation point,  resulting in excessive packet loss.



} When the distance to Wmid from the current Wmin is large, then increasing the 
window cwnd to that midpoint leads to a large burst of packets transmitted 
into the network, which can result in losses.

} In this situation, cwnd is increased by a configured maximum step value Smax 
and Wmin is set cwnd. 

} This continues until the distance between Wmin and Wmid falls below Smax, at 
which time  Wmin is set directly to Wmid. 

} After a large window size reduction, the additive increase rule leads to an 
initial linear increase in window size followed by a logarithmic increase for 
the last few RTTs.

Additive 
Increase

Binary
Search

Max Probing



} When the current window size grows past Wmax, the BIC algorithm switches to 
probing for the new maximum window, which is not known.

} It does so in a slow-start fashion by increasing its window size in the 
following sequence for each RTT: Wmax + Smin, Wmax + 2Smin, Wmax + 4Smin, 
Wmax + Smax.

} The reasoning behind this policy is that it is likely that the new saturation 
point is close to the old point; hence, it makes sense to initially gently probe 
for available bandwidth before going at full blast. 

} After the max probing phase, BIC switches to additive increase using the 
parameter Smax.

Additive 
Increase

Binary
Search

Max Probing



Wmin=





BIC switches to the logarithmic increase phase when the distance from the 
Wmin to Wmax is less than 2Smax

Proof: 
Additive increase until the distance between Wmin and Wmid falls below 
Smax i.e.,
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N2: Number of RTT rounds in the logarithmic increase phase
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Y1: Number of packets transmitted in additive increase phase 
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Y2: Number of packets transmitted in logarithmic increase phase 



Use                              to express Wmax as a function of p, 𝛽, Smax, Smin

 

+

A closed form expression for Wmax does not exist in general



Special Cases:

(1) 𝛽𝑊%&' ≫ 2𝑆%&' :

For large window sizes (i.e. very high speed links, BIC reduces 
to AIMD congestion control 



Because large values of Wmax also correspond to large link capacities (because Wmax  ≈CT),
it follows that for high-capacity links, BIC operates similar to an AIMD protocol with 
increase parameter a = Smax, decrease parameter of b = β, and the exponent d = 0.5. 
This follows from the fact that for high-capacity links, the BIC window spends most of its 
time in the linear increase portion.

log𝑤 = 0.5 log
𝑆!&'
2

2 − 𝛽
𝛽 − 0.5 log 𝑝





For moderate values of C, we can get some insight into BIC’s behavior by computing the
constants in equation for Ravg. If we choose the following values for BIC’s
parameters: β = 0.125; Smax = 32; Smin = 0.01. It follows that a = 0.0036, b = 18.5, and c = 31.
It follows that



For large window sizes, d = 0.5

For moderate window sizes, d =1

For high BW links, BIC has the same RTT fairness as Reno

For moderate BW links, BIC can be very unfair to connections
with large RTT.
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Smin Decreasing

Reducing Smin makes BIC more TCP friendly, but also makes the
RTT unfairness worse.



} Chapter 5, Sections 5.1-5.4 of Internet Congestion 
Control


