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} So far we have introduced congestion control as a 
set of heuristic rules

} Can congestion control be looked upon  as the 
solution to an optimization problem?

} If so, what is the Utility Function that algorithm is 
optimizing for?



} We will use a network level model that represents entire networks with 
multiple connections

} By applying Lagrangian optimization theory to a fluid flow model of the 
network, it is possible to decompose the global optimization problem 
into independent local optimization problems at each source.

} The Lagrangian multiplier that appears in the solution can be interpreted 
as the congestion feedback coming from the network

} This provides an elegant theoretical result that provides a justification 
for the way congestion control protocols are designed.

} TCP can be put into this theoretical framework by modeling it in the fluid 
limit, and then the theory enables us to compute the global utility 
function that TCP optimizes.

} Alternately, we can derive new congestion control algorithms by starting 
from a utility function and then using the theory to compute the optimal 
rate function at the source nodes.







Aggregate rate at link l

Aggregate congestion
feedback for source i



This equation has the following interpretation: If Ui(ri) is the utility that 
the source attains as a result of transmitting at rate ri, and qi is price 
per unit data that it is charged by the network, then the optimization 
leads to  a maximization of a source’s profit.

Optimum rate 𝑟!"#$ occurs at

𝑑𝑈!(𝑟!"#$)
𝑑𝑟!

= 𝑞! = 𝑓%& 𝑟!"#$

Note that this equation is an optimization carried out by each source 
independently of the others, i.e., the solution 𝑟!"#$  is individually optimal.



Find the rates 𝑟!"#$ such that

Are the solutions to the local and global optimization 
problems the same?

Also called the
Primal Problem



A fully distributed implementation to solve the optimality problem
is not possible because the sources are coupled to each other
through the constraint equation.

There are two ways to approach this problem:
• By modifying the objective function for the primal problem by adding

an extra term called the penalty or barrier function, or
• By solving the Dual Problem



Lagrangian multipliers



Define the Dual Function 𝐷(𝜆)

This maximization can be done independently at each source
However since

a source needs information from the network, in the form of +𝑞!, 
before it can compute its optimum rate.
This can be obtained by solving the Dual Problem

Find 𝜆' , 1 ≤ 𝑙 ≤ 𝐿, 𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 

Convex Duality Theorem



Find 𝜆𝑙, 1≤𝑙≤𝐿,  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

Substitute these back into to find the rates          at each source 

The Convex Duality Theorem states that these rates are also a
solution to the original Primal Problem



where

The Dual Problem can be solved by using the Gradient Projection Method

Note that since                      it follows that 
L



So that



At link l:
1. Link l obtains an estimate of the total rate of the traffic from all 

sources that pass through it, yl.
2. It periodically computes the congestion measure pl using this equation, 

and this quantity is communicated to all the sources whose route passes 
through link l. This communication can either explicit as in ECN schemes 
or implicit as in random packet drops with RED.

At source i:
1. Source i periodically computes the aggregate congestion measure 

for all the links which lie along its route given by

2. Source i periodically chooses its new rate using the formula



The solution can be used in two ways:
1. Given the Utility Function U, find the optimum Rate Control r 

that maximizes it, or
2. Given an exiting Rate Control r, find the Utility Function U 

that the Network is trying to maximize.



Recall that
()"(+"

#$%)
(+"

= 𝑞! = 𝑓%& 𝑟!"#$ , where 𝑟 = 𝑓(𝑞)

So that 𝑈! 𝑟!"#$ = 8𝑓%& 𝑟!"#$ 𝑑𝑟

Hence we can find 𝑈! by deriving the function 𝑓 for TCP Reno  



Note that the total round trip delay is given by

The source i rate Ri(t) at time t is defined by

The aggregate congestion measure Qi(t) at a source can be written as

Probability that none of the
links are congested

Probability that at least one of the
links are congested



We ignore the queuing delays so that the round trip delay is now fixed 
and approximated by

and

The rate of change in window size at source i for TCP Reno is given 
by the following equation in the fluid limit

It follows that

Window increase rate in the absence of
congestion

Window decrease rate in the presence of
congestion

𝑄!(𝑡): Packet marking probability

Fraction of ACKs that are positive



Assuming Ri(t)=Ri(t-Ti)

In Steady State = 𝑓(𝑞!)

and = 𝑓%&(𝑟!)

So that 



For small qi and 

So that

Utility functions of this form are known to lead to rates that 
minimize “potential delay fairness” in the network, that is, they minimize 
the overall potential delay of transfers in progress.



Utility functions of the form

maximizes the “proportional fairness” in the network. 
It can be shown that TCP Vegas’s utility function is of this form, 
hence it achieves proportional fairness.

Utility functions of the form

lead to a max-min fair allocation of rates (cannot be achieved using
AIMD type algorithms).



This results in the rate equation



Define

Which results in the rate equation

In equilibrium

For TCP Reno 𝑞- =
1

1 + 𝑟-.𝑇-.

GAIMD is TCP Friendly if the Utility Functions match, i.e.,



Substituting

Hence the GAIMD is TCP Friendly if and only if

We get





} The stability of a congestion control system is defined in terms of 
the behavior of the bottleneck queue size b(t). 

} If the bottleneck queue size fluctuates excessively and very 
frequently touches zero, thus leading to link under utilization, then 
the system is considered to be unstable. 

} Also, if the bottleneck queue size grows and spends all its time 
completely full, which leads to excessive packet drops, then again 
the system is unstable. 

} Hence, ideally, we would like to control the system so that the 
bottleneck queue size stays in the neighborhood of a target length, 
showing only small fluctuations.



Y(s)U(s) +

-

G(s)
𝑌(𝑠)
𝑈(𝑠) =

𝐺(𝑠)
1 + 𝐺(𝑠)

• To ensure stability, all the roots of the equation 1+G(s) = 0, which in general are complex 
numbers, have to lie in the left half of the complex plane. 

• The Nyquist criterion is a technique for verifying this condition that is often easier to apply 
than finding the roots

Set 𝑠 = 𝑗𝜔 so that G(s) can be written as
𝐺 𝑗𝜔 = |𝐺 𝑗𝜔 |𝑒!"	$%&(( ") )

Vary 𝜔 from 0 to ∞ and plot the corresponding values of 𝐺 𝑗𝜔  on the complex plane.

Nyquist Criterion for System Stability (with feedback): There should be no clockwise
encirclements of the point (-1, 0) by the locus of 𝐺 𝑗𝜔  



Stable System Un-Stable System

Alternative statement of the Nyquist Stability Criterion: Consider the point where the 𝐺 𝑗𝜔  curve
intersects the unit circle, this is called the gain crossover point. For a feedback system to be
stable, the angle arg(𝐺 𝑗𝜔 ) should be less that 180 degrees. 

To show stability: It is sufficient to find a point 𝜔+ such that |𝐺 𝑗𝜔+ | ≤ 1 and arg 𝐺 𝑗𝜔+ < 180,

Find a point
in this part of
the curve that
satisfies
|𝐺 𝑗𝜔! | ≤ 1 and
arg 𝐺 𝑗𝜔! < 180"



W(t) b(t)Q(t)
QueueingRate

Control

N Homogeneous
Sources

Congestion
Indicator at Source

Controller Delay

Find expressions for /(-)
0(-)

and 1(-)
/(-)

Congestion
Indicator at Nw Node

P(t)

Queue size
at nw nodeTCP window

size

b0
+ -



W(t)
b(t)Q(t)

QueueingRate
Control

N Homogeneous
Sources

Window control dynamics are given by

These are Non-Linear Equations!

Substituting W(t) = R(t)T(t) in the first term on the RHS and making the approximations
                                      leading to the equation

where



After Linearization

Linearize around the operating point (W0, b0, Q0) which is defined by dW/dt = 0 and db/dt = 0.  

where

Define

With Laplace
Transforms



Congestion
Indicator at Source

Controller Delay

Congestion
Indicator at Nw Node

Diff of Queue size
at nw node

Diff of TCP window
size

𝑃-(𝑠)0

+
-

The objective of the control loop is to keep the target queue size at the network node close to b0,
 i.e., drive the difference 𝑏- to zero.

𝑒!"#!

TCP Rate
Dynamics

Queue
Dynamics

Target





Simple On-Off Controller

The plant dynamics for this system is
p

b
b0

Controller

𝑃- 𝑠 =	0

+
-

TCP Rate
Dynamics

Queue
Dynamics

Target

1.0



The open loop transfer function of this system is of the form

The corresponding close loop transfer function W(s) is given by



In order to apply Nyquist Critereon set 𝑠 = 𝑗𝜔 so that 

𝑈 𝑗𝜔 = 2	456(%7 8/980 )
(&9#0:0)(&910:0)

 where 𝜃& = 𝑡𝑎𝑛%& aω 	𝑎𝑛𝑑	𝜃. = 𝑡𝑎𝑛%& bω

Thus U(0) = K and as 𝜔 increases 𝜃& →
;
.
 and as does 𝜃.

Also as 𝜔 increases |𝑈 𝑗𝜔 | → 0 

Using the Nyquist criterion, we can see that the locus of 
𝑈(𝑗𝜔) as ω varies from 0 to ∞, does not encircle the 
point (-1, 0), even for large values of K; hence, the 
system is unconditionally stable K



Next let’s introduce the propagation delay into the system, so that
so that 𝑄<(𝑠) = 𝑒%-=1𝑃<(𝑠)

Given x = a +jb =|x|𝑒$	&'((*)

|x| = 𝑎, + 𝑏,

Arg(x) = 𝑡𝑎𝑛!- .
/  radians

Controller

𝑃- 𝑠 	0

+
-

TCP Rate
Dynamics

Queue
Dynamics

Target



In order to apply Nyquist Critereon set 𝑠 = 𝑗𝜔 so that 

𝑈 𝑗𝜔 = 2	456(%7 :=198/980 )
(&9#0:0)(&910:0)

 where 𝜃& = 𝑡𝑎𝑛%& aω 	𝑎𝑛𝑑	𝜃. = 𝑡𝑎𝑛%& bω

Thus U(0) = K and as 𝜔 increases 𝜔𝑇> increase and 𝜃& →
;
.
  as does 𝜃.

|𝑈 𝑗𝑤 | = 2
(&9#0?0)(&910?0)

 

At the 𝜔=w value at which 

w𝑇> + 𝑡𝑎𝑛%& a𝑤 + 𝑡𝑎𝑛%& b𝑤 = 	π 

This value can be greater than 1,
Thus rendering the system unstable

K



Recall that 

so that the system can become unstable in the presence of feedback if either 
(1) C increases or 
(2) T0 increases or 
(3) N decreases. 

Thus, this shows that high link capacity or high round trip latency can cause 
system instability.

Instability can also be triggered for smaller values of N. Why?





Because the On-Off Controller can become unstable, we now explore the option 
of dropping (or marking) packets in a probabilistic fashion if the queue size
exceeds the threshold b0.



Once the queue length exceeds b0, packets get marked with probability p

p

bb0

1.0
slope = Kp

• The feedback signal is simply the regulated output (queue length) multiplied by a gain 
factor. 

• In the RED context, it corresponds to obtaining the loss probability from the instantaneous 
queue length instead of the averaged queue length.



The Transfer Function is given by

And in the Frequency Domain

KP



𝜔@

𝑇A 𝜔@ = 1

Choose 𝜔@ such that
𝑇A 𝜔@ = 1

Then show that
𝜔@ < 180B

This implies that the point
where the locus touches the
Real Axis, is also <1
Why?



Choose

Then

Note that this choice of Kp precisely cancels out the high loop gain caused by 
TCP’s window dynamics.



Also

This equals 90 degrees (why?)

𝜔+𝑇, =
2𝑁
𝐶𝑇,

=
2
𝑊,

< 1	𝑖𝑓	𝑊, > 2and

So that

a

b

𝜃.

𝜃/

Hence, the Phase Margin is given by PM = 1800 - 1470 = 330 , which proves 
stability of the  proportional controller.



} The Proportional controller works better than the On-Off controller, however it has a few 
shortcomings

} The slope Kp is usually a small number to guarantee stability. However this means that if 
the buffer size is small, then the maximum drop rate may not be sufficient to keep the 
queue size near the operating point.

} This leads to a steady state error in the queue size. This can be driven down to zero 
using Proportional + Integral controllers.





The Transfer
Function is given

by

𝑃-(𝑠) = 𝐿%01(𝑏 − 𝑚𝑖𝑛23)



Note that



Note that



Also



(a) (b)







Transfer Function of Controller



The Transfer Function of the system with PI control is given by

And in the Frequency Domain

VP+I(s)



Choose the zero as and the critical frequency 𝜔@ as 

If then 

Note that

If 0 < 𝛽 < 0.85	𝑡ℎ𝑒𝑛 arg 𝑇CD 𝑗𝜔@ < 𝜋

To show stability, it is sufficient to show that                           radians

Given x = a +jb =|x|𝑒$	&'((*)

|x| = 𝑎, + 𝑏,

Arg(x) = 𝑡𝑎𝑛!- .
/  radians

= (3.142/2) + 0.85 + 𝑡𝑎𝑛!. 0.85 < 	𝜋



(a) (b)
• Simulation with a bottleneck queue size of 800 packets, in which the reference b0 of the 

PI controller was set to 200 packets and the traffic consisted of a mixture of http and ftp flows. 
• (a) clearly shows the faster response time PI compared with the RED controller as well as the 

regulation of the buffer occupancy to the target size of 200 packets.
• (b) shows the case when the number of flows has been increased to the point that the system is 

close to its capacity. Neither RED nor the proportional controllers are able to stabilize the queue 
because high packet drop rates have pushed the operating point beyond the size of the queue.



becomes

So that where
𝑃< = 𝑃 with 𝑃B = 0

So that

This can also be written as



𝑎 − 𝑐 + 𝑐(1 − 𝑧%&)
𝑏<(𝑘𝑆) 1

1 − 𝑧%&
P(kS)

VP+I(s)



} The system converges when both                and                                     go to zero
} This implies that the queue length has converged to the reference value, and also the 

derivative of the queue length (since                                    is an approximation to
the derivative) has converged to zero.

} The derivative of the queue length converging to zero implies that the input rate to the 
flows to the router exactly matches the link capacity and there is no growth or drain in 
the router queue.

} If the input rate is lower than the link capacity, then the queue starts to drain, making 
the derivative negative and the marking probability gets correspondingly reduced.   

This is the critical discovery: The best control signal should not only
incorporate information about 𝑏< but also (12

(E
 



} The TIMELY protocol for use in Data Center Networks
◦ Uses derivative of delay rather than queue length.

} The QCN protocol that is part of the IEEE 802.1Qau Standard for use in 
Ethernet networks
◦ The queue length + derivative value is fed back by means of a 6 bit field in 

the Ethernet Header
} Protocols such as XCP and RCP
◦ P+I control is carried out at the nodes and the resulting rate fed back to 

the source.



“Stability Analysis of QCN: The Averaging Principle” Alizadeh et.al.



VP(s)

VP+I(s)

Modified

Can we modify the Source Rate Control Algorithm so as to mimic
the effect of the derivative information?

𝑃 𝑘𝑆 = 𝐾𝑏< 𝑘𝑆 + 𝑃( 𝑘 − 1 𝑆)



VP(s)

VP+I(s)

Modified

vs

The two controllers can be shown to be equivalent, provided
the TCP window control for the Proportional Controller 

obeys the Averaging Principle



In the absence of congestion, increase the TCP window using binary search, rather that
increasing it by 1 every RTT. 



The Averaging Principle was shown to be true under the following assumptions:
• Rate control is being used at the source, as opposed to window based control. 
• The error information is fed back directly to the source. As opposed to the error

information being used to modify the packet marking probability, which in turn
influences the TCP window dynamics.



} AQM schemes that incorporate the first or higher derivatives of the buffer 
occupancy process lead to more stable and responsive systems. This was 
shown to be the case in the analysis of the PI controller. Also, because the 
first derivative of the buffer occupancy process can be written as

} It also follows that knowing the derivative is equivalent to knowing how close 
the queue is to its saturation point C. 

} Some protocols such as QCN feed back the value of db/dt directly, and 
others such as XCP and RCP feed back the rate difference in the RHS of the 
equation.



} If the network cannot accommodate sophisticated AQM algorithms 
(which is the case for TCP/IP networks), then an AP-based algorithm 
can have an equivalent effect on system stability and performance as 
the derivative-based feedback. Examples of algorithms that have 
taken this route include the BIC and CUBIC algorithms



} Chapter 3 of Internet Congestion Control


