
Lecture 2
Subir Varma

The focus on a large part of this course is on models for Congestion Control.
Hence rather than just describing the algorithm, we also try to analyze its
behavior using models. Why do this?
} Models enable us to capture the fundamental factors that influence the

algorithm’s behavior, and in some cases, summarize it in the form of an
equation. This provides valuable guidelines on ways the congestion control
algorithm can be improved or adapted to different network conditions.

} The analysis of congestion control algorithms provides fundamental insight
into their ultimate performance limits.
◦ Modeling of TCP led to the realization that it becomes unstable if the link

speed or the round trip delay becomes very large.
◦ More recently, modeling of delay based congestion control has shown that

their performance degrades if the network jitter is high.

Data
Source

TCP Send
Congestion

Control
TCP

Receive

C, TdB

Tu

ACK
Delay

Total Fixed Round Trip Latency

Assumptions:
} The window size is in equilibrium with size Wmax

} There is sufficient buffering at the bottleneck node, so no
packets get dropped because of overflows, and

} The link is error free.

Pk 1

Pk 2

Pk Wmax

ACK 1

ACK 2

T

1/C

Wmax/C

Pk Wmax+1

The sender transmits the entire window
full of packets before it receives the ACK for first
packet back.
Hence, the average connection throughput
Ravg is limited by the window size and is given by

Because the rate at which the bottleneck node is
transmitting packets is greater than or equal to
the rate at which the source is sending packets into
the network, the bottleneck node queue size is
zero (also due to ACK self clocking).

Hence, at any instant in time, all the packets are
in one of two places: either in the process of
being transmitted in the downstream direction
(= Ravg.Td packets), or their ACKs are in the process
of being transmitted in the upstream direction
 (= Ravg.Tu ACKs).

Pk 1

Pk 2

Pk Wmax

ACK 2

ACK 1

T 1/C

Wmax/C

The ACKs for the first packet in the window
arrive at the sender before it has finished
transmitting the last packet in that window.

As a result, the sender is
continuously transmitting. The system
throughput is no longer limited by the window size,
and is able to attain the full value of the link capacity

In this case, C.Td packets are the process of being
transmitted in the downstream direction, and
C.Tu ACKs are in the process of being transmitted
in the upstream direction, for a total of
C. (Td+Tu)=CT packets and ACKs.

Because CT<Wmax,
this leaves (Wmax-CT) packets from the
TCP window unaccounted for, and indeed they are
to be found queued up in the bottleneck node!
Hence, in equilibrium, the maximum buffer occupancy
at the bottleneck node is given by

Ravg

Wmax

C

CT B+CT

Ideal Window Size
Larger Window Size causes queueing delays
without adding to the throughput

Is that bad?

bmax

Wmax

B

CT B+CT

bmax=Wmax-CT

When Wmax increases to B+CT, then bmax=B, and any increase of Wmax
beyond this value will cause the buffer to overflow.

Assumptions:
• We assume that we are in the steady phase of a long file transfer, during which the system spends

all its time in the congestion avoidance phase, i.e., the initial Slow-Start phase is ignored, and all
packet losses are recovered using duplicates ACKs (i.e., without using timeouts).

• We also ignore the Fast Recovery phase because it has a negligible effect on the overall throughput,
and including it considerably complicates the analysis.

• Even though the window size W increases and decreases in discrete quantities, we replace it by a
continuous variable W(t), thus resulting in what is known as a fluid approximation.

Drop in Window Size
leaves the buffer full

Wf: Window size at
which packet is lost

Define b(t) as the fluid approximation to the buffer occupancy process at time t, given by

Define T(t) is the total round trip latency at time t (includes propagation + transmission +
queueing delays), given by

The throughput R(t) at time t is defined by

and the average throughput is given by

W(t)

t

Wf=B+CT

Wf/2

tB

Minimum number of buffers required to
avoid underflow

• W(t) increases up to a maximum value of Wf = B + CT and is accompanied by an increase in
buffer size to B, at which point a packet is lost at the bottleneck node because
of buffer overflow.

• TCP Reno then goes into the congestion recovery mode, during which it retransmits the missing
packet and then reduces the window size to Wf/2.

• if Wf/2 exceeds the delay-bandwidth product for the connection, then Ravg = C.
!!

"
≥ 𝐶𝑇 implies that #$%&

"
≥ 𝐶𝑇,	i.e., 𝐵 ≥ 𝐶𝑇.

Type	equation	here.

b(t)=W(t)-CT

2

B < CT: This causes the queue to periodically empty out

Two phase evolution in Window Size

Phase 1 Phase 2

• In phase 1, W(t) < CT, which implies that the queue at the bottleneck node is empty.
• Hence, the rate at which ACKs are returning to the sender is equal to the TCP throughput

R(t) = W(t)/T. This implies that the rate at which the window is increasing is given by

so that

This results in a linear increase in the window size during phase 1

Phase 1 ends when W = Wf = CT, so if tA is the duration of this phase, then

so that

The number of packets nA transmitted during phase 1 is given by

• In phase 2, W(t).CT so that the bottleneck node has a persistent backlog.
• Hence, the rate a which ACKs are returning back to the sender is given by C. It follows

that the rate of increase of the window is given by

So that i.e.,

Sub-linear increase

It follows that and

Number of packets transmitted
during a cycle is proportional
to the square of the max
Window size Wfand

So that

Substituting Wf = B+CT

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f vs 𝛽

f

𝛽

Define

Then

Define

Two conclusions:
• In networks with large delay bandwidth product,

TCP may not be able to achieve full link capacity
due to lack of buffers

• Even with very small buffer sizes, TCP is
still able to get to 0.75C

} Fluid Flow Models
} Mean Value Analysis (MVA)
} Markov Chain Models
} Stochastic Models

W(t)

t

Wm/2

Wm

TWm/2

Packet lost and then recovered using
Duplicate ACKs

Wm is now a Random Variable

} The value of the maximum window size is Wm, so that the value of the
window after a packet loss is Wm/2.

} During the period in which the window size increases from Wm/2 to Wm
(called a cycle), it increases by 1 for every round trip duration T; hence, it
takes Wm/2 round trips to increase from Wm/2 to Wm.

} This implies that the length of a cycle is given by TWm/2 seconds.

The number of packets that are transmitted during a cycle is given by

Throughput R for a single cycle is given by

So that

What is the distribution of Y?

Simplifying assumption 𝐸 𝑌 = 𝐸(𝑌)

Assuming iid packet drop probability

So that E(Y) = 1/p

True only if Y is a constant

Without simplifying assumption

The most important information in the formula for the average
throughput is not the constant but the nature of the functional
dependence on p and T.

The deterministic approximation gives the correct functional
dependence while using fairly straightforward computations

𝑅!"# =
1 − 𝑝 + 𝑝	min(1,3 3𝑝

8)

𝑇 1 − 𝑝 2𝑝
3 + 𝑇$𝑝𝑓 𝑝 	min(1,3 3𝑝

8)

T0: Timeout interval

𝑅!"# =
1

𝑇 2𝑝
3 + 𝑇$𝑝(1 + 32𝑝%)min(1,3

3𝑝
8)

, 	if	p ≪ 1

(a,b) are constants

Some of the most effective algorithms combine AIMD with increase decrease
parameters (a,b) that are allowed to vary as a function of either the congestion
feedback or the window size itself.

} Choosing the value of a,
◦ the designer can make the congestion control more aggressive

(if a > 1) or less aggressive than TCP Reno (if a <1) than less aggressive than
TCP Reno

◦ The choice a >1 is used in high-speed.
networks because it causes the window to increase faster to take advantage of
the available bandwidth.

◦ Protocols such as High Speed TCP (HSTCP), TCP BIC, TCP FAST and TCP LEDBAT
use an adaptive scheme in which they vary the value of a depending on the
current window size, the congestion feedback, or both.

} The value of b
◦ B influences how readily the connection gives up its bandwidth during

congestion.
◦ TCP Reno uses a rather aggressive reduction of window size by half, which

causes problems in higher speed links.
◦ By choosing b<0.5, the reduction in window size is smaller on each loss, which

leads to a more stable congestion control algorithm. But this can lead to
fairness issues because existing connections don’t give up their bandwidth as
readily.

◦ Protocols such as Westwood, Data Center TCP (DCTCP) and HSTCP vary b as a
function of the congestion feedback (Westwood, DCTCP) or the window size
(HSTCP).

W(t)

t

(1-b)Wm

Wm

TWmb/a

(a,b) are constants

} The window size reduces from Wm to (1-b)Wm on packet loss
(i.e., a reduction of bWm packets).

} On each round trip, the window size increases by a packets,
so that it takes bWm/a round trips for the window to get back
to Wm. So that the cycle length 𝜏	is given by

𝜏 = 𝑇
𝑏𝑊&
𝑎

𝑏

The number of packets transmitted over a single cycle Y is given by

TCP Reno

If

𝑝(𝐶𝑇%) ≈
8
3

Then buffer overflows account for most packet drops

If

𝑝(𝐶𝑇%) ≫
8
3

Then link errors account for most packet drops

Since
Wm << Wf

Main assumption: Session synchronization.
• The window size variations for all the K sessions happen together (i.e., their cycles start and

 end at the same time).
• This assumption is justified from observations that tail drop causes the packet loss to get

synchronized across all sessions.
• This is because packets get dropped because of buffer overflow at the bottleneck node;

hence, because typically multiple sessions encounter the buffer overflow condition at the
same time, their window size evolution tends to get synchronized.

Using synchronized connections assumption:

From which it follows that

and

Since it is sufficient to find an expression for R(t)

If B > CT, the bottleneck queue is always occupied so that

If B < CT

and

Note that

Also, the average throughput for the ith session is given by

Assume 𝐵 ≫ 𝐶𝑇!, 1 = 1,2, … , 𝐾

This means that the bottleneck buffer is continuously occupied, so that
𝑡!" = 0

This implies

This implies that all the K windows increase at the same rate; hence,
the maximum window sizes are also approximately equal, so that
𝑊!

= 𝑊$
$ 	𝑎𝑛𝑑	𝑡!% = 𝑡$% 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖, 𝑗

It follows that

Hence, when the number of buffers in the bottleneck node is large,
each connection gets a fair share of the capacity despite any differences
in propagation delays.

Assume 𝐵 ≪ 𝐶𝑇!, 1 = 1,2, … , 𝐾

Also assume synchronized connections

This implies

So that

Since

It follows that

Hence, for large delay-bandwidth products, TCP Reno
with tail drop has a very significant bias against connections
with larger propagation delays.

For more general AIMD protocols, the average Response Time is given by

For these systems it can be shown that

h, e, d are constants

For example for TCP Cubic e = 0.25 and d = 0.75

} These results are critically dependent on the assumption that the
packet drops are synchronized among all connections, which is true
for tail-drop queues.

} A buffer management policy that breaks this synchronization leads
to a fairer sharing of capacity among connections with unequal
latencies.

} One of the objectives of RED buffer management was to break the
synchronization in packet drops by randomizing individual packet
drop decisions.

} Simulations have shown that RED indeed achieves this objective, and
as a result, the ratio of the throughputs of TCP connections using
RED varies as the first power of their round trip latencies rather than
the square.

} Chapter 2 of Internet Congestion Control

