
Lecture 11
Subir Varma

} Video traffic comes in two flavors, video on demand (VoD) and live-video streaming.
VoD traffic is from stored media and is streamed from servers, and it constitutes the
majority of the video traffic.

} There are real-time constraints in the delivery of video traffic to the client player. this
constraint arises because the client video device expects data to be constantly available
so that it can keep updating the screen at a constant rate (which is usually 30 frames/s).
If there is a hiccup in this process and no data is available, then this results in a
temporarily frozen screen while the network catches up.

} Most of the early work on packet video transmission focused on providing real-time
transmission by means of new techniques that supported resource reservations and QoS
(quality of service) provisioning in the network. Most operators balked at supporting
these protocols for consumer video transmission because of the extra complexity and
cost involved at both the servers and in the network infrastructure.

} During the early years of the Web, the conventional wisdom was that video streaming
would have to be done over the User Datagram Protocol (UDP) because video did not
require the absolute reliability that TCP provided, and furthermore, TCP retransmissions
are not compatible with real time delivery that video requires.

} TFRC: TCP Friendly Rate Control – A way to add congestion control to UDP

} TCP’s rate fluctuations, which were thought to be bad for video, could be overcome by
using a large receive buffer to dampen them out.

} Since most video transmissions were happening over the Web, using the HyperText
Transfer Protocol (HTTP) for video was also very convenient. The combination of
HTTP/TCP for video delivery had several benefits, including:
◦ TCP and HTTP are ubiquitous, and most video is accessed over the Web.
◦ A video server built on top of TCP/HTTP uses commodity HTTP servers and requires

no special (and expensive) hardware or software pieces.
◦ HTTP has built-in Network Address Translation (NAT) traversal capabilities, which

provide more ubiquitous reach.
◦ The use of HTTP means that caches can be used to improve performance. A client can

keep playback state and download video segments independently from multiple
servers while the servers remain stateless.

◦ The use of TCP congestion control guarantees that the network will remain stable in
the presence of high bit rate video streams.

} DASH enables the video receiver is able to adaptively change the video rate so that it
matches the bandwidth that the network can currently support.

} DASH can be considered to be a flow control rather than a congestion control algorithm
because its objective is to keep the video receive buffer from getting depleted rather
than to keep network queues from getting congested.

} DASH operates on top of TCP congestion control, albeit over longer time scales, and the
interaction between the two is rich source of research problems.

} DASH enables each Video Service Provider to implement their own rate adaptation
algorithm at the client, while maintaining inter-operability with servers belonging to
other Service Providers.

• Video compression is done by using the Discrete Cosine Transform (DCT) on th quantized grey
scale and color components of a picture frame, and then transmitting the truncated DCT
coefficients instead of the original picture.

• In addition to the intraframe compression, all compression algorithms also carry out interframe
compression, which takes advantage of temporal picture redundancy in coding a frame by taking
its delta with respect to a previous frame.

• There are three types of frames shown: I frames are largest because they only use intraframe
compression; B and P frames are smaller because they use previous I frames to further reduce
their size. This results in a situation in which the encoded bits per frame is a variable quantity,
thus leading to Variable Bit Rate (VBR) video.

• As a result of compression, it is possible to send an HD-TV 1080p video using a bit rate of
just 2 mbps.

} Because we are not depending on the network to provide a guaranteed
bandwidth for the video stream, there arises the problem of matching the
video bit rate with the bandwidth that the network can currently provide on a
best-effort basis.

} If the network bandwidth is not sufficient to support the video bit rate, then
the decoder at the receiving end starts to consume the video data at rate that
is greater than the rate at which new data is being received from the
network.

} As a result, the decoder ultimately runs out of video data to decode, which
results in a screen freeze and the familiar “buffer loading” message that we
often see.

} How can we avoid this without doing guaranteed bandwidth management?

Encoder Decoder

Send
Buffer

Receiver
Buffer

NetworkCongestion
Control

• Use of a large receive buffer: As shown in Figure 6.2, the system can smooth out the variations
in network throughput by keeping a large receive buffer. As a result, temporary reductions in
throughput can be overcome by used the video stored in the receive buffer.

Raw Video
Content Transcoder

Controller

Encoding
Parameters

Raw Video
Content

Scalable
Video

Controller

Encoding
Parameters

Scalable
Encoder

(a) (b)

a) Transcoding-based solutions (Figure 6.3A): These algorithms change one or more parameters of
the compression algorithm that operates on the raw video data to vary the resulting bit rate.
Examples include varying the video resolution, compression ratio, or frame rate. Transcoding is
very CPU intensive and requires hardware support to be done at scale, which makes them difficult
to deploy in Content Delivery Networks (CDN).

b) Scalable encoding solutions (Figure 6.3B): These can be implemented by processing the
encoded video data rather than the raw data. Hence, the raw video can be encoded once and
then adapted on the fly by using the scalability features of the encoder. Examples of scalable
encoding solutions include adapting the picture resolution or frame rate by exploiting the spatial
or temporal scalability in the data. However, even scalable encoding is difficult to implement in
CDNs because specialized servers are needed for this.

Raw Video
Content Encoder

Controller

D
E
M
U
X

L1

L2

LN

(c)

c) Stream switching solutions (Figure 6.3C): This technique is the simplest to implement and can
also be used by CDNs. It consists of preprocessing the raw video data to produce multiple
encoded streams, each at a different bit rate, resulting in N versions. An algorithm is used at the
time of transmission to choose the most appropriate rate given the network conditions. Stream
switching algorithms use the least processing power because after the video is encoded, no
further operations are needed. The disadvantages of this approach include the fact that more
storage is needed and the coarser granularity of the encoded bit rates.

} The industry has settled on using a large receive buffer and stream switching as the
preferred solution for video transmission.

} Before the coding rate at the source can be changed, the video server has to be informed
about the appropriate rate to use. Clearly, this is not a function that a congestion
control protocol such as TCP provides; hence, all video transmissions systems use a rate
control protocol operating on top of TCP.
But who should do the rate control, the server or the client?

} Early video streaming protocols such as RAP and TFRC used server side rate control
based on feedback being received from either the network or the receiver; hence, they
were doing a combination of congestion control and flow control.

The DASH protocol, which dominates video transport today, uses a scheme that differs fro
these early algorithms in the following ways:
} DASH is built on top of TCP transport, unlike the earlier schemes, which were based on

UDP.
} Instead of the transmitter, the receiver in HAS drives the algorithm. It keeps track of the

TCP rate of the video stream as well as the receive buffer occupancy level, and then
using the HTTP protocol, it informs the transmitter about the appropriate video bit rate
to use next.

} Instead of sending the video packets in a continuous stream, DASH breaks up the video
into chunks of a few seconds each, each of which is requested by the receiver by means
of an HTTP request.

} DASH adapts the sending rate, and consequently the video quality, by taking longer term
averages of the TCP transmit rate and variations in the receive buffer size. This results in
a slower variation in the sending rate, as opposed to TCP congestion control, which
varies the sending rate rapidly in reaction to network congestion or packet drops.

S(t)=Kt is the number of bits the source encoder has transmitted into the network by time t
D(t) is the number of bits the receiving decoder has pulled from the receive buffer by time t

τ is the delay before the decoder starts pulling data from the receive buffer

• DASH adds another layer of rate control on top of TCP.
• DASH is video aware and is able to interact with the video application at the sender to adaptively change

its sending rate.
• DASH decreases the video rate if the network congestion increases, and conversely increases it when the

congestion reduces.

The video is encoded at multiple rates, which can
be adaptively changed depending on the network
conditions.

Movie A – 200 kbps

Movie A – 500 kbps

Movie A – 1 mbps

Movie A – 200 kbps

ClientServer
Request Manifest

Manifest

Request Movie A (200 kbps)

Request Movie A (500 kbps)

Request Movie A (1 mbps)

Request Movie A (500 kbps)

Request Movie A (1 mbps)

Quick Start

Improve Quality

Improve Quality

Congestion Detection

Restore Quality

Stored Video Chunks in Server

Switch From
200 kbps to

500 kbps

Switch From
500 kbps to

1 mbps

Video Chunk Flow
Across Network

} A video stream is divided into short segments of a few seconds each,
referred to as chunks or fragments.

} Each chunk is encoded and stored in the server at number of versions, each
with a different bit rate.

} At the start of the video session, a client downloads a manifest file that lists
all the relevant information regarding the video streams.

} The client then proceeds to download the chunks sequentially using HTTP
GETs.

} By observing the rate at which data is arriving to the client and the occupancy
of the video decoding buffer, the client chooses the video bit rate of the next
chunk.

} The precise algorithm for doing so is known as the ABR (Adaptive Bit Rate)
algorithm

Chunk of
duration

𝜏	𝑠𝑒𝑐

Size of the chunk = (Rate a which the chunk was coded * 𝜏)	𝑏𝑖𝑡𝑠
Hence higher bit rate chunks take longer to transmit

• The TCP inner control loop reacts to network congestion and tries to match the TCP send rate
with the rate that the network can support,

• The ABR outer loop reacts to the rates that TCP decides to use and tries to match the rate
of the video stream to the average TCP rate.

• The TCP control loop operates in order of a time period, which is approximately equal to the
round trip delay (i.e., tens of milliseconds in most cases)

• the ABR control loop operates over a much larger time period, ranging from a few seconds
to tens of seconds depending on the ABR algorithm

• This leads to a natural averaging effect because ABR does not attempt to match the fluctuating
short-term TCP throughput but rather a smoothed throughput that is averaged over
several seconds.

𝜏 =
𝐵(𝑛)
𝑉(𝑛)

=
𝐵(𝑚)
𝑉(𝑚)

If V(n) > V(m) then B(n) >B(m)
Hence a chunk encoded at a larger video bitrate
takes longer to traverse the network

nth chunk
Rate V(2)

(n+1)st chunk
Rate V(1)

nth
request

(n+1)st
request

𝑇!"#

Download Duration

Playout Time

Buffer Overflow
ABR Action:
Increase Un

Buffer Underflow
ABR Action:
Decrease Un

Rate at which data is
arriving is faster than

the rate it is being
consumed

Rate at which data is
arriving is slower than

the rate it is being
consumed

Ideal
Situation

• Because of the quantization in video rates, it is impossible to get to Un = R, and this can result
in the video rate constantly fluctuating between V(m) and V(m+1) to keep the buffer from
overflowing or underflowing.

• To avoid this, most ABR algorithms stop increasing the video rate Un after it gets to V(m) and
compensate for the difference between V(m) and R by increasing the gap between successive
 downloads.

Buffer Overflow
ABR Action: Increase Un

What if Un is already
at its max?

Buffer Underflow
ABR Action: Decrease Un

• In this case the receive buffer size keeps increasing.
• If the ABR algorithm observes that the buffer size is increasing even at the maximum

video bit rate, then it can stabilize the buffer by increasing the gap between successive downloads

There are two ways in which it can choose the gap size:
• The gap size is fixed at τ: In this case, during each period, the amount of video data consumed

is equal to the data being added, resulting in a stable buffer.
• After the end of the chunk download, the ABR algorithm waits for the buffer to drain until it

reaches a target level before starting the next download.

} The video bit rate for the next download is set equal to the latest value of the
TCP throughput estimate, so that

} The quantization function Q chooses the video bit rate that is smaller than Rn and
closest to it.

} The rate estimate cancels out the instantaneous fluctuations in TCP throughput by
averaging over an interval, which is typically 2 to 10 seconds long.

} The NTB algorithm is very effective in avoiding buffer underruns because it reacts
instantaneously to fluctuations in TCP throughput. Studies have shown that receive
buffer size shows the least amount of variation under NTB compared with the other
algorithms.

} However, on the flip side, it has the largest rate of changes in the video bit rate because
it does nothing to dampen any of these fluctuations. As a result, it is not commonly
used in practice except as a way to benchmark other ABR algorithms.

}

Download
Start

Initial
Buffer

Fill

Steady State for
U=VL<R

Drop in Network
Throughput so that

R<VL

Re-buffering

This figure shows an example a typical sample path of the NTB algorithm.
• The video rate is typically set to the minimum value V(1) at start-up, but it quickly increases

to the maximum bit rate V(L) because of application of equation 11.
• Downloads are done in a back-to-back manner until the receive buffer is full.

When this happens, the download interval is increased to τ seconds to keep the average
TCP throughput R equal to V(L).

• If the TCP throughput falls below V(L), then the receive buffer occupancy starts to reduce,
and the algorithm switches to the back-to- back downloads again. This takes the system to
the scenario illustrated in Figure 6.9, where in the absence of any smoothing, the algorithm
where in the absence of any smoothing, the algorithm will constantly switch between the bit
rates that are above and below R.

𝜏

} Using the same notation as before, the ATB algorithm keeps track of the ratio µ given by

𝜇 =
𝜏
$𝑇!
=
𝑅!
𝑈!

} if µ<1, then the video bit rate is larger than the TCP throughput, and the converse is
true when µ>1. Hence, µ serves as a measure of network congestion.

} The bit rate increment decrement rules are as follows:

𝑅
𝑉!
> 1 + 𝜀

⇒ 𝑅 > 𝑉!"#

Getting a good estimate of the TCP rate is not straightforward
} The chunk download start-time instances of the connections may get stuck in

suboptimal locations. For example, if there are three active connections, then the chunk
download times of two of the connections may overlap, while the third connection gets
the entire link capacity. This leads to unfairness in the bit rate allocation.

} Connections with higher bit rate tend to see a higher estimate of their chunk’s TCP
throughput. This is because the chunks of connections with higher bit rates occupy the
bottleneck link longer, and as a result, they have a greater chance of experiencing time
intervals during which they have access to the entire link capacity.

Even with just 2 connections sharing a bottleneck
link, the average TCP throughput over estimates
the amount of bandwidth actually available

Correct Estimate

If the link utilization is less than 100%, then the measured
throughput is much higher than the fair bandwidth
allocation (about three times the fair-share
bandwidth in this example). This causes ABR to increase
the video bit rate allocations. As a result
of this, the link subscription soon rises above 100%,
which causes the TCP throughput to fall precipitously,
and the cycle repeats.

} To reduce the effect of BW unfairness between multiple connections, randomize the
start of the chunk download times; that is, instead of downloading a chunk strictly at
intervals of τ seconds (or equivalently when the buffer size reaches a target value), move
it randomly either backward or forward by a time equal to the length of download.

} Connections with higher bit rate tend to see a higher estimate of their chunk’s TCP
throughput. This is because the chunks of connections with higher bit rates occupy the
bottleneck link longer, and as a result, they have a greater chance of experiencing time
intervals during which they have access to the entire link capacity.
To solve this problem, the rate of increase of the bit rate for a connection should not be
linear but should decrease as the bit rate increases (another instance of the averaging
principle!). This policy can be implemented as follows: If the bit rate is at level k, then
increase it to level k+1 only after k chunks have been received. This will lead to a faster
convergence between bit rates of two connections that are initially separated from each
other.

} Simple averaging of the TCP throughput estimates is biased by outliers if one chunk
sees a very high or very low throughput. To avoid this, use a harmonic mean estimate of
the last 20 throughput samples, which is less sensitive to outliers.

Also see PANDA algorithm to avoid video bitrate oscillation

} Buffer size based ABR algorithms use receive buffer size as their primary input, although
most of them also use the TCP throughput estimate to do fine tuning.

} It has been recently shown that buffer size based algorithms outperform those based on
rate estimates using Quality of Experience as a performance measure

Mapping of bitrate to perceived video quality

A nice feature of the TBB algorithm is that it enables the designer to explicitly control the
trade-off between variation in buffer occupancy and fluctuations in video bit rate in response to
varying TCP throughput. This is done by controlling the thresholds Bhigh and Blow, such that a large
value of the difference (Bhigh - Blow) will reduce video bit rate changes.

Sample path of the algorithm for
the case when Bhigh=50 sec, Blow=20 sec
(so that Bopt=30 sec), and Bmin=10 sec,
with a single video stream passing over
a network bottleneck link whose capacity is varied.

} Formal Control Theory can be used to design ABR Algorithms. These require
that the performance measure to be optimized be explicitly defined, in
addition to a model for the system under consideration.

} We will look at two types of algorithms:
◦ Model based systems: These require an explicit model for parts of the

system that evolve randomly, in this case it is the TCP throughput for the
network. Model Predictive Control (MPC) is an example of this type of
system

◦ Model Free Control: These are based on Reinforcement Learning (RL).
Model Free versions of RL can be used for Optimal Control of systems for
which sample paths for the random evolution of the system state are
available.

Problem with this algo: At time tk when the ABR algorithm is invoked to
choose Uk, only the past throughputs {Ri; i<k} are known; the future throughputs {Ri; i>=k} are
not known.

Source of Randomness

} Bandwidth predictors can be used to obtain predictions defined as {𝑅$ ≥ 𝑘}.
} Several bandwidth predictors using filtering techniques such as AR (autoregressive),

ARMA (autoregressive moving average), autoregressive integrated moving average
(ARIMA), fractional ARIMA (FARIMA), and so on are known, which are all combinations of
moving average and autoregressive filtering.

} Based on this, the ABR algorithm selects bit rate of the next chunk k as:

} Issue with MPC: It relies heavily on accurate throughput estimates that are not always
available. When these predictions are incorrect, MPC’s performance can degrade
significantly.

} Pensieve is a system that learns ABR algorithms automatically, without using any pre-
programmed control rules or explicit assumptions about the operating environment.

} It learns a control policy for bitrate adaptation purely through experience. During
training, Pensieve starts knowing nothing about the task at hand. It then gradually
learns to make better ABR decisions through reinforcement, in the form of reward
signals that reflect video QoE for past decisions.

“Neural Adaptive Video Streaming with Pensieve”, Mao et.al.

• Pensieve represents its control policy as a neural network that maps “raw” observations
(e.g., throughput samples, playback buffer occupancy, video chunk sizes) to the bitrate
decision for the next chunk.

• The resulting QoE is then observed and passed back to the ABR agent as a reward. The agent
uses the reward information to train and improve its neural network model.

• The neural network provides an expressive and scalable way to incorporate a rich variety
of observations into the control policy.

• Pensieve trains this neural network using A3C, a state-of-the-art actor-critic RL algorithm.
• To train its models, Pensieve uses simulations over a large corpus of network traces.

Updating the Actor Network parameters

Updating critic network parameters

Mapping of bitrate to perceived video quality

Controller Video Rate
Quantizer

Receive
Buffer

TCP Tpt
Estimate

Actual TCP
Tpt

Bn
Bref

+ + +

Rn

Un Q(Un)

R’n

Wn

} Chapter 6 of Internet Congestion Control

