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} Video traffic comes in two flavors, video on demand (VoD) and live-video streaming. 
VoD traffic is from stored media and is streamed from servers, and it constitutes the 
majority of the video traffic.

} There are real-time constraints in the delivery of video traffic to the client player. this 
constraint arises because the client video device expects data to be constantly available 
so that it can keep updating the screen at a constant rate (which is usually 30 frames/s). 
If there is a hiccup in this process and no data is available, then this results in a 
temporarily frozen screen while the network catches up.

} Most of the early work on packet video transmission focused on providing real-time 
transmission by means of new techniques that supported resource reservations and QoS 
(quality of service) provisioning in the network. Most operators balked at supporting 
these protocols for consumer video transmission because of the extra complexity and 
cost involved at both the servers and in the network infrastructure.

} During the early years of the Web, the conventional wisdom was that video streaming 
would have to be done over the User Datagram Protocol (UDP) because video did not 
require the absolute reliability that TCP provided, and furthermore, TCP retransmissions 
are not compatible with real time delivery that video requires.

} TFRC: TCP Friendly Rate Control – A way to add congestion control to UDP



} TCP’s rate fluctuations, which were thought to be bad for video, could be overcome by 
using a large receive buffer to dampen them out.

} Since most video transmissions were happening over the Web, using the HyperText 
Transfer Protocol (HTTP) for video was also very convenient. The combination of 
HTTP/TCP for video delivery had several benefits, including:
◦ TCP and HTTP are ubiquitous, and most video is accessed over the Web.
◦ A video server built on top of TCP/HTTP uses commodity HTTP servers and requires 

no special (and expensive) hardware or software pieces.
◦ HTTP has built-in Network Address Translation (NAT) traversal capabilities, which 

provide more ubiquitous reach.
◦ The use of HTTP means that caches can be used to improve performance. A client can 

keep playback state and download video segments independently from multiple 
servers while the servers remain stateless.

◦ The use of TCP congestion control guarantees that the network will remain stable in 
the presence of high bit rate video streams.



} DASH enables the video receiver is able to adaptively change the video rate so that it 
matches the bandwidth that the network can currently support. 

} DASH can be considered to be a flow control rather than a congestion control algorithm 
because its objective is to keep the video receive buffer from getting depleted rather 
than to keep network queues from getting congested. 

} DASH operates on top of TCP congestion control, albeit over longer time scales, and the 
interaction between the two is rich source of research problems.

} DASH enables each Video Service Provider to implement their own rate adaptation 
algorithm at the client, while maintaining inter-operability with servers belonging to 
other Service Providers.



• Video compression is done by using the Discrete Cosine Transform (DCT) on th quantized grey 
scale and color components of a picture frame, and then transmitting the truncated DCT 
coefficients instead of the original picture.

• In addition to the intraframe compression, all compression algorithms also carry out interframe 
compression, which takes advantage of temporal picture redundancy in coding a frame by taking 
its delta with respect to a previous frame.

• There are three types of frames shown: I frames are largest because they only use intraframe 
compression; B and P frames are smaller because they use previous I frames to further reduce 
their size. This results in a situation in which the encoded bits per frame is a variable quantity, 
thus leading to Variable Bit Rate (VBR) video.

• As a result of compression, it is possible to send an HD-TV 1080p video using a bit rate of 
just 2 mbps.



} Because we are not depending on the network to provide a guaranteed 
bandwidth for the video stream, there arises the problem of matching the 
video bit rate with the bandwidth that the network can currently provide on a 
best-effort basis.

} If the network bandwidth is not sufficient to support the video bit rate, then 
the decoder at the receiving end starts to consume the video data at rate that 
is greater than the rate at which new data is being received from the 
network. 

} As a result, the decoder ultimately runs out of video data to decode, which 
results in a screen freeze and the familiar “buffer loading” message that we 
often see.

} How can we avoid this without doing guaranteed bandwidth management?
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• Use of a large receive buffer: As shown in Figure 6.2, the system can smooth out the variations 
in network throughput by keeping a large receive buffer. As a result, temporary reductions in 
throughput can be overcome by used the video stored in the receive buffer.
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a) Transcoding-based solutions (Figure 6.3A): These algorithms change one or more parameters of
the compression algorithm that operates on the raw video data to vary the resulting bit rate. 
Examples include varying the video resolution, compression ratio, or frame rate. Transcoding is 
very CPU intensive and requires hardware support to be done at scale, which makes them difficult 
to deploy in Content Delivery Networks (CDN).

b) Scalable encoding solutions (Figure 6.3B): These can be implemented by processing the 
encoded video data rather than the raw data. Hence, the raw video can be encoded once and 
then adapted on the fly by using the scalability features of the encoder. Examples of scalable
encoding solutions include adapting the picture resolution or frame rate by exploiting the spatial 
or temporal scalability in the data. However, even scalable encoding is difficult to implement in 
CDNs because specialized servers are needed for this.
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c) Stream switching solutions (Figure 6.3C): This technique is the simplest to implement and can 
also be used by CDNs. It consists of preprocessing the raw video data to produce multiple 
encoded streams, each at a different bit rate, resulting in N versions. An algorithm is used at the 
time of transmission to choose the most appropriate rate given the network conditions. Stream 
switching algorithms use the least processing power because after the video is encoded, no 
further operations are needed. The disadvantages of this approach include the fact that more 
storage is needed and the coarser granularity of the encoded bit rates.



} The industry has settled on using a large receive buffer and stream switching as the 
preferred solution for video transmission. 

} Before the coding rate at the source can be changed, the video server has to be informed 
about the appropriate rate to use. Clearly, this is not a function that a congestion 
control protocol such as TCP provides; hence, all video transmissions systems use a rate 
control protocol operating on top of TCP.
But who should do the rate control, the server or the client?

} Early video streaming protocols such as RAP and TFRC used server side rate control 
based on feedback being received from either the network or the receiver; hence, they 
were doing a combination of congestion control and flow control.





The DASH protocol, which dominates video transport today, uses a scheme that differs fro 
these early algorithms in the following ways:
} DASH is built on top of TCP transport, unlike the earlier schemes, which were based on 

UDP.
} Instead of the transmitter, the receiver in HAS drives the algorithm. It keeps track of the 

TCP rate of the video stream as well as the receive buffer occupancy level, and then 
using the HTTP protocol, it informs the transmitter about the appropriate video bit rate 
to use next.

} Instead of sending the video packets in a continuous stream, DASH breaks up the video 
into chunks of a few seconds each, each of which is requested by the receiver by means 
of an HTTP request.

} DASH adapts the sending rate, and consequently the video quality, by taking longer term 
averages of the TCP transmit rate and variations in the receive buffer size. This results in 
a slower variation in the sending rate, as opposed to TCP congestion control, which 
varies the sending rate rapidly in reaction to network congestion or packet drops.



S(t)=Kt is the number of bits the source encoder has transmitted into the network by time t
D(t) is the number of bits the receiving decoder has pulled from the receive buffer by time t

τ is the delay before the decoder starts pulling data from the receive buffer





• DASH adds another layer of rate control on top of TCP.
• DASH is video aware and is able to interact with the video application at the sender to adaptively change 

its sending rate.
• DASH decreases the video rate if  the network congestion increases, and conversely increases it when the 

congestion reduces.

The video is encoded at multiple rates, which can 
be adaptively changed depending on the network 
conditions.
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} A video stream is divided into short segments of a few seconds each, 
referred to as chunks or fragments. 

} Each chunk is encoded and stored in the server at  number of versions, each 
with a different bit rate. 

} At the start of the video session, a client downloads a manifest file that lists 
all the relevant information regarding the video streams. 

} The client then proceeds to download the chunks sequentially using HTTP 
GETs. 

} By observing the rate at which data is arriving to the client and the occupancy 
of the video decoding buffer, the client chooses the video bit rate of the next 
chunk. 

} The precise algorithm for doing so is known as the ABR (Adaptive Bit Rate) 
algorithm

Chunk of 
duration 

𝜏	𝑠𝑒𝑐

Size of the chunk = (Rate a which the chunk was coded * 𝜏)	𝑏𝑖𝑡𝑠 
Hence higher bit rate chunks take longer to transmit







• The TCP inner control loop reacts to network congestion and tries to match the TCP send rate 
with the rate that the network can support, 

• The ABR outer loop reacts to the rates that TCP decides to use and tries to match the rate 
of the video stream to the average TCP rate.

• The TCP control loop operates in order of a time period, which is approximately equal to the
round trip delay (i.e., tens of milliseconds in most cases)

• the ABR control loop operates over a much larger time period, ranging from a few seconds 
to tens of seconds depending on the ABR algorithm

• This leads to a natural averaging effect because ABR does not attempt to match the fluctuating 
short-term TCP throughput but rather a smoothed throughput that is averaged over 
several seconds.



𝜏 =
𝐵(𝑛)
𝑉(𝑛)

=
𝐵(𝑚)
𝑉(𝑚)

If V(n) > V(m) then B(n) >B(m)
Hence a chunk encoded at a larger video bitrate
takes longer to traverse the network
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• Because of the quantization in video rates, it is impossible to get to Un = R, and this can result 
in the video rate constantly fluctuating between V(m) and V(m+1) to keep the buffer from 
overflowing or underflowing. 

• To avoid this, most ABR algorithms stop increasing the video rate Un after it gets to V(m) and 
compensate for the difference between V(m) and R by increasing the gap between successive
 downloads.

Buffer Overflow
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What if Un is already
at its max?
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• In this case the receive buffer size keeps increasing. 
• If the ABR algorithm observes that the buffer size is increasing even at the maximum 

video bit rate, then it can stabilize the buffer by increasing the gap between successive downloads

There are two ways in which it can choose the gap size:
• The gap size is fixed at τ: In this case, during each period, the amount of video data consumed 

is equal to the data being added, resulting in a stable buffer.
• After the end of the chunk download, the ABR algorithm waits for the buffer to drain until it 

reaches a target level before starting the next download.





} The video bit rate for the next download is set equal to the latest value of the 
TCP throughput estimate, so that

} The quantization function Q chooses the video bit rate that is smaller than Rn and 
closest to it.

} The rate estimate cancels out the instantaneous fluctuations in TCP throughput by 
averaging over an interval, which is typically 2 to 10 seconds long.

} The NTB algorithm is very effective in avoiding buffer underruns because it reacts 
instantaneously to fluctuations in TCP throughput. Studies have shown that receive 
buffer size shows the least amount of variation under NTB compared with the other 
algorithms.

} However, on the flip side, it has the largest rate of changes in the video bit rate because 
it does nothing to dampen any of these fluctuations. As a result, it is not commonly 
used in practice except as a way to benchmark other ABR algorithms.

}
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This figure shows an example a typical sample path of the NTB algorithm. 
• The video rate is typically set to the minimum value V(1) at start-up, but it quickly increases 

to the maximum bit rate V(L) because of application of equation 11. 
• Downloads are done in a back-to-back manner until the receive buffer is full. 

When this happens, the download interval is increased to τ seconds to keep the average 
TCP throughput R equal to V(L). 

• If the TCP throughput falls below V(L), then the receive buffer occupancy starts to reduce, 
and the algorithm switches to the back-to- back downloads again. This takes the system to 
the scenario illustrated in Figure 6.9, where in the absence of any smoothing, the algorithm
where in the absence of any smoothing, the algorithm will constantly switch between the bit 
rates that are above and below R.

𝜏



} Using the same notation as before, the ATB algorithm keeps track of the ratio µ given by

𝜇 =
𝜏
$𝑇!
=
𝑅!
𝑈!

} if µ<1, then the video bit rate is larger than the TCP throughput, and the converse is 
true when µ>1. Hence, µ serves as a measure of network congestion.

} The bit rate increment decrement rules are as follows:

𝑅
𝑉!
> 1 + 𝜀

⇒ 𝑅 > 𝑉!"#



Getting a good estimate of the TCP rate is not straightforward
} The chunk download start-time instances of the connections may get stuck in 

suboptimal locations. For example, if there are three active connections, then the chunk 
download times of two of the connections may overlap, while the third connection gets 
the entire link capacity. This leads to unfairness in the bit rate allocation.

} Connections with higher bit rate tend to see a higher estimate of their chunk’s TCP 
throughput. This is because the chunks of connections with higher bit rates occupy the 
bottleneck link longer, and as a result, they have a greater chance of experiencing time 
intervals during which they have access to the entire link capacity.

Even with just 2 connections sharing a bottleneck
link, the average TCP throughput over estimates
the amount of bandwidth actually available

Correct Estimate



If the link utilization is less than 100%, then the measured
throughput is much higher than the fair bandwidth 
allocation (about three times the fair-share
bandwidth in this example). This causes ABR to increase 
the video bit rate allocations. As a result
of this, the link subscription soon rises above 100%, 
which causes the TCP throughput to fall precipitously,
and the cycle repeats.



}  To reduce the effect of BW unfairness between multiple connections, randomize the 
start of the chunk download times; that is, instead of downloading a chunk strictly at 
intervals of τ seconds (or equivalently when the buffer size reaches a target value), move 
it randomly either backward or forward by a time equal to the length of download.

} Connections with higher bit rate tend to see a higher estimate of their chunk’s TCP 
throughput. This is because the chunks of connections with higher bit rates occupy the 
bottleneck link longer, and as a result, they have a greater chance of experiencing time 
intervals during which they have access to the entire link capacity.
To solve this problem, the rate of increase of the bit rate for a connection should not be 
linear but should decrease as the bit rate increases (another instance of the averaging 
principle!). This policy can be implemented as follows: If the bit rate is at level k, then 
increase it to level k+1 only after k chunks have been received. This will lead to a faster 
convergence between bit rates of two connections that are initially separated from each 
other.

} Simple averaging of the TCP throughput estimates is biased by outliers if one chunk 
sees a very high or very low throughput. To avoid this, use a harmonic mean estimate of 
the last 20 throughput samples, which is less sensitive to outliers.

Also see PANDA algorithm to avoid video bitrate oscillation 





} Buffer size based ABR algorithms use receive buffer size as their primary input, although 
most of them also use the TCP throughput estimate to do fine tuning.

} It has been recently shown that buffer size based algorithms outperform those based on 
rate estimates using Quality of Experience as a performance measure

Mapping of bitrate to perceived video quality





A nice feature of the TBB algorithm is that it enables the designer to explicitly control the
trade-off between variation in buffer occupancy and fluctuations in video bit rate in response to
varying TCP throughput. This is done by controlling the thresholds Bhigh and Blow, such that a large
value of the difference (Bhigh - Blow) will reduce video bit rate changes.



Sample path of the algorithm for 
the case when Bhigh=50 sec, Blow=20 sec 
(so that Bopt=30 sec), and Bmin=10 sec, 
with a single video stream passing over 
a network bottleneck link whose capacity is varied.





} Formal Control Theory can be used to design ABR Algorithms. These require 
that the performance measure to be optimized be explicitly defined, in 
addition to a model for the system under consideration.

} We will look at two types of algorithms:
◦ Model based systems: These require an explicit model for parts of the 

system that evolve randomly, in this case it is the TCP throughput for the 
network. Model Predictive Control (MPC) is an example of this type of 
system

◦ Model Free Control: These are based on Reinforcement Learning (RL). 
Model Free versions of RL can be used for Optimal Control of systems for 
which sample paths for the random evolution of the system state are 
available.





Problem with this algo: At time tk when the ABR algorithm is invoked to
choose Uk, only the past throughputs {Ri; i<k} are known; the future throughputs {Ri; i>=k} are
not known.  

Source of Randomness



} Bandwidth predictors can be used to obtain predictions defined as {𝑅$ ≥ 𝑘}. 
} Several bandwidth predictors using filtering techniques such as AR (autoregressive), 

ARMA (autoregressive moving average), autoregressive integrated moving average 
(ARIMA), fractional ARIMA (FARIMA), and so on are known, which are all combinations of 
moving average and autoregressive filtering.

} Based on this, the ABR algorithm selects bit rate of the next chunk k as:



} Issue with MPC: It relies heavily on accurate throughput estimates that are not always 
available. When these predictions are incorrect, MPC’s performance can degrade 
significantly.

} Pensieve is a system that learns ABR algorithms automatically, without using any pre-
programmed control rules or explicit assumptions about the operating environment.

} It learns a control policy for bitrate adaptation purely through experience. During 
training, Pensieve starts knowing nothing about the task at hand. It then gradually 
learns to make better ABR decisions through reinforcement, in the form of reward 
signals that reflect video QoE for past decisions.

“Neural Adaptive Video Streaming with Pensieve”, Mao et.al.



• Pensieve represents its control policy as a neural network that maps “raw” observations 
(e.g., throughput samples, playback buffer occupancy, video chunk sizes) to the bitrate 
decision for the next chunk.

• The resulting QoE is then observed and passed back to the ABR agent as a reward. The agent 
uses the reward information to train and improve its neural network model.

• The neural network provides an expressive and scalable way to incorporate a rich variety 
of observations into the control policy.

• Pensieve trains this neural network using A3C, a state-of-the-art actor-critic RL algorithm.
• To train its models, Pensieve uses simulations over a large corpus of network traces.



Updating the Actor Network parameters

Updating critic network parameters





Mapping of bitrate to perceived video quality
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} Chapter 6 of Internet Congestion Control


