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Optimization based Congestion Control Algorithms are characterized by the 
fact that their window or rate adaptation rules are not pre-defined, but arise as 
a result of the optimization of an Utility Function.

Some recently proposed optimization based algorithms fall into the following 
classes:

} Offline Optimization: These algorithms use a network model which is used to 
define a Global Utility Function. The set of Congestion Control parameters 
are those that maximize this Utility Function.

} Online Optimization: These algorithms are Model Free. They do define a 
Local Utility Function, whose maximization leads to the window adaptation 
rules.
◦ Deep Reinforcement Learning based algorithms fall into this category



} Global Optimization
◦ Remy: TCP ex Machina: Computer Generated Congestion Control, Winstein 

and Balakrishnan, (2013)
◦ Indigo: Pantheon: The Training Ground for Internet Congestion Control 

Research, Yan et.al. (2018)

} Local Optimization
◦ PCC Allegro: Re-Architecting Congestion Control for Consistent High 

Performance, Dong et.al. (2015)
◦ PCC Vivace: Online Learning Congestion Control, Dong et.al. (2018)

} Deep RL Based Algorithms
◦ TCP Aurora: A Deep RL Perspective on Internet Congestion Control: Jay 

et.al. (2019)
◦ Symbolic Distillation for Learned TCP CC: Sharan et.al. (2022)





If each source performs local optimization by solving the problem

Where Ui(ri) is the utility that the source attains as a result of transmitting at rate ri, and qi 
is price per unit data that it is charged by the network.
Then this procedure also solves the following Global Optimization Problem

For TCP Reno, the Utility Function was derived using its rate control dynamics as

≈

Can we reverse this
procedure, i.e., start from a

Utility Function and then
find the rate control rule

that maximizes it?



} Is it possible for a computer to “discover” the right rules for congestion control in 
heterogeneous and dynamic networks?

} Rather than manually formulate each endpoint’s reaction to congestion signals, as in 
traditional protocols, the protocol designer specifies their prior knowledge or 
assumptions about the network and an objective that the algorithm will try to achieve, 
e.g., high throughput and low queueing delay.

} Remy then produces a distributed algorithm—the control rules for the independent 
endpoints—that tries to achieve this objective.

“TCP ex Machina: Computer-Generated Congestion Control”, Winstein and Balakrishnan



We start by explicitly stating an objective for congestion control for example, given an 
unknown number of users, we may optimize some function of the per-user throughput and 
packet delay, or  summary statistic such as average flow completion time. Then, instead
of writing down rules by hand for the endpoints to follow, we start from the desired 
objective and work backwards in three steps

1. First, model the protocol’s prior assumptions about the network; i.e., the “design 
range” of operation. This model may be different, and have different amounts of 
uncertainty, for a protocol that will be used exclusively within a data center, compared 
with one intended to be used over a wireless link or one for the broader Internet. A 
typical model specifies upper and lower limits on the bottleneck link speeds, non-
queueing delays, queue sizes, and degrees of multiplexing.

2. Second, define a traffic model for the offered load given to endpoints. This may 
characterize typical Web traffic, video conferencing, batch processing, or some mixture 
of these. It may be synthetic or based on empirical measurements.

3. Third, use the modeled network scenarios and traffic to design a congestion-control 
algorithm that can later be executed on endpoints.



} Traffic Model: Remy models the offered load as a stochastic process that switches 
unicast flows between sender-receivers pairs on or off. The sender is “off” for some 
number of seconds, drawn from an exponential distribution. Then it switches on for 
some number of bytes to be transmitted, drawn from an empirical distribution of flow 
sizes or a closed-form distribution (e.g. heavy-tailed Pareto).

} Objective Function: Given a network trace, we calculate the average throughput x of 
each flow, defined as the total number of bytes received divided by the time that the 
sender was “on.” We calculate the average round-trip delay y of the connection.
The flow’s score is then

Where 

the parameters 𝛼	𝑎𝑛𝑑	𝛽 set the tradeoff between fairness and efficiency and and 𝛿 
expresses the relative importance of delay vs. throughput.
 



A RemyCC tracks just three state variables, which it updates each time it receives a new 
acknowledgment:
1. An exponentially-weighted moving average (EWMA) of the interarrival time between 

new acknowledgments received (ack_ewma).
2. An exponentially-weighted moving average of the time between TCP sender 

timestamps reflected in those acknowledgments (send_ewma). A weight of 1/8 is given 
to the new sample in both EWMAs.

3. The ratio between the most recent RTT and the minimum RTT seen during the current 
connection (rtt_ratio).

} Note that a RemyCC’s memory does not include the two factors that traditional TCP 
congestion-control schemes use: packet loss and RTT. 

} This omission is intentional: a RemyCC that functions well will see few congestive losses, 
because its objective function will discourage building up queues (bloating buffers will 
decrease a flow’s score). 

} Moreover, avoiding packet loss as a congestion signal allows the protocol to robustly 
handle stochastic (non-congestive) packet losses without adversely reducing 
performance.

} We avoid giving the sender access to the RTT (as opposed to the RTT ratio), because we 
do not want it to learn different behaviors for different RTTs.



1. A multiple m ≥	0 to the current congestion window (cwnd).
2. An increment b to the congestion window (b could be negative).
3. A lower bound r > 0 milliseconds on the time between successive sends.

} Each time a RemyCC sender receives an ACK, it updates its memory and then looks up 
the corresponding action. 

} Remy pre-computes this lookup table during the design phase, by finding the mapping 
f(.) that maximizes the expected value of the objective function, with the expectation 
taken over the network model.

} If the number of outstanding packets is greater than cwnd, the sender will transmit 
segments to close the window, but no faster than one segment every r milliseconds.



- Find the function f(.) that maximizes the 
expected network utility function.

- This  problem falls within  the framework 
of a machine learning model (regression)

- However, we don’t know have the ground
truth data to train the network

Remy Solution: Use simulations

f(x)

x

Remy initializes a RemyCC with only a single rule. Any values
of the three state variables (between 0 and 16,384) are 
mapped to a default action where m = 1, b = 1, r = 0.01.

Simulate the current RemyCC and see which rule in the 
current epoch receives the most use (this is a function of
the network and traffic model)

Focus on this rule and find the best action for it using brute
force search. The modified action is evaluated by substituting 
it into all senders and repeating the simulation in parallel.





} RemyCC did not employ Supervised Learning as a way to learn the Mapping 
Function, even though it seems to be a natural fit to the problem.

} Keith Winstein (the author of Remy) led another team a few years later, which 
came up with a protocol called Indigo that indeed employed Supervised 
Learning.

} Indigo was trained on a network model that was an emulation of real world 
data gathered on a measurement tool called Pantheon.

“Pantheon: the training ground for Internet congestion-control research,” Yan et.al.



} Just like Remy, Indigo does two things: it observes the network state, and it 
adjusts its congestion window every 10 ms, i.e., the allowable number of in-
flight packets. Observations occur each time an ACK is received, and their 
effect is to update Indigo’s internal state.

The State Vector is:
◦ An exponentially-weighted moving average (EWMA) of the queuing delay, measured 

as the difference between the current RTT and the minimum RTT observed during the 
current connection.

◦ An EWMA of the sending rate, defined as the number of bytes sent since the last 
ACK’ed packet was sent, divided by the RTT.

◦ An EWMA of the receiving rate, defined as the number of bytes received since the ACK 
preceding the transmission of the most recently ACK’ed packet, divided by the 
corresponding duration (similar to and inspired by TCP BBR’s delivery rate).

◦ The current congestion window size.
◦ The previous action taken.

“Pantheon: the training ground for Internet congestion-control research,” Yan et.al.

The Actions are the congestion window size



} Indigo stores the mapping from states to actions in a Long Short-Term Memory (LSTM) 
recurrent neural network with 1 layer of 32 hidden units.

} Indigo requires a training phase in which, it learns a mapping from states to actions. Once 
trained and deployed, this mapping is fixed.

} Indigo uses an imitation learning to train its neural network, called DAgger.
◦ Generate one or more congestion-control oracles, idealized algorithms that perfectly map 

states to correct actions, corresponding to links on which Indigo is to be trained. 
◦ Then apply a standard imitation learning algorithm that use these oracles to generate 

training data.
◦ The best congestion window is usually given by a link’s bandwidth delay product per flow.
◦ The best window for a given state was obtained by experimenting with an emulator with 

various window sizes. Start from the BDP and then search near this value to find the best 
window.

} Dagger operation:
◦ First, it allows the neural network to make a sequence of congestion-control decisions on the training link’s emulator, 

recording the state vector that led to each decision.
◦ Next, it uses the congestion-control oracle to label the correct action corresponding to each recorded state vector.
◦ Finally, it updates the neural network by using the resulting state-action mapping as training data. This process is 

repeated until further training does not change the neural network.
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New Idea: The window size is now a function of the history
of the states vs the current state only.







} Existing rate control algorithms do what is referred to as hardwired mapping: certain 
predefined packet-level events are hardwired to certain predefined control responses.

} A hardwired mapping has to make assumptions about the network.

} It is fundamentally hard to formulate an “always optimal” hardwired mapping in a 
complex real-world network because the actual optimal response to an event like a loss 
(i.e. decrease rate or increase? by how much?) is sensitive to network conditions.

} Moreover if the hardwired control actions are indeed harming performance, the 
performance of the protocols can potentially “jump off the cliff”, because they do not 
notice the control action’s actual effect on performance.

} Modern networks have an immense diversity of conditions that add complexity far 
beyond what can be summarized by the relatively simplistic assumptions embedded in a 
hardwired mapping.

“PCC: Re-architecting Congestion Control for Consistent High Performance”, Dong et.al

Example: Reno makes the assumption that a packet loss is due to congestion rather than
link error OR
BBR makes the assumption that a packet loss is due to link error not congestion

Congestion Control Algo does not monitor its own performance and take action based on that



} PCC’s goal is to understand what rate control actions improve performance 
based on live experimental evidence, avoiding TCP’s assumptions about the 
network.

} PCC sends at a rate r for a short period of time, and observes the results (e.g. 
SACKs indicating delivery, loss, and latency of each packet).

} It aggregates these packet-level events into a utility function that describes 
an objective like “high throughput and low loss rate”. The result is a single 
numerical performance utility u.

} At this point, PCC has run a single “micro-experiment” that showed sending 
at rate r produced utility u. 

Rate based control



} To make a rate control decision, PCC runs multiple such micro-experiments: 
it tries sending at two different rates, and moves in the direction that 
empirically results in greater performance utility.

} This is effectively A/B testing for rate control and is the core of PCC’s 
decisions. PCC runs these micro-experiments continuously (on every byte of 
data, not on occasional probes), driven by an online learning algorithm that 
tracks the empirically-optimal sending rate.

} Thus, rather than making assumptions about the potentially-complex 
network, PCC adopts the actions that empirically achieve consistent high 
performance.

This process has some similarities to choosing the parameters
of a Neural Network, with the utility u serving as the Loss Function
for the network. However note that each sender is separately
optimizing its own rate.



} PCC’s rate control is selfish in nature, but competing PCC senders provably 
converge to a fair equilibrium (with a single bottleneck link).

} Experiments show PCC achieves similar convergence time to TCP with 
significantly smaller rate variance. 

} The ability to express different objectives via choice of the utility function 
(e.g. throughput or latency) provides a flexibility.



} PCC divides time into continuous time periods, called monitor intervals (MIs), 
whose length is normally one to two RTTs.

} In each MI, PCC tests an action: it picks a sending rate, say r, and sends data 
at rate r through the interval.

} After about an RTT, the sender will see selective ACKs (SACK) from the 
receiver, just like TCP. However, it does not trigger any predefined control 
response. Instead, PCC aggregates these SACKs into meaningful performance 
metrics including throughput, loss rate and latency.

} These performance metrics are combined to a numerical utility value u.

} It changes its rate in the direction that has higher utility

} It continues in this direction as long as the utility continues increasing.

} If utility falls, it returns to a decision making state where it again tests both 
higher and and lower rates to find which produces higher utility.

PCC runs these micro-experiments continuously



∆𝑡
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• Send data at rate r during the monitor interval
• Monitor the resulting delivery rate x
• Monitor the fraction L of packets that were

lost
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} We assume n PCC senders 1, . . . ,n send traffic across a bottleneck link of 
capacity C > 0. 

} Each sender i chooses its sending rate xi to optimize its utility function ui. 
} We choose a utility function expressing the common application-level goal of 

“high throughput and low loss”:

0.05 Li

Fraction of lost
data rate

𝑥!:	Sender i’s sending rate
𝐿!:	Observed data loss rate
𝑇! = 𝑥! 1 − 𝐿! :	Sender i’s throughput
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#$%!"
 for some 𝛼 > 0

• What about end-to-end latency?
• This is a matter of just changing the utility function.
• Different sources can have different utility functions

and co-exist in the same network.



• The sigmoid function makes the utility < 0 for Li > 0.05, thus preventing the rate xi
from increasing further.

• This prevents a congestion collapse when the losses are due to buffer overflows.
• If the losses are due to random link related events, then as long as they are under 5% 

The protocol does not react to them. 
• If > 5% then it clamps down on the data rate.

Potential Issues:
- Buffferbloat is still happening
- Leads to high packet loss upon convergence
- Un-Fairness with Loss Based Variants
- ui does not take delay into account



} The network might be changing over time for reasons unrelated to the 
sender’s action. This adds noise to the decision process.

} To  improve PCC’s decisions use multiple randomized controlled trials 
(RCTs): 
Rather than running two tests (one each at 100 and 105 Mbps), we conduct 
four in randomized order—e.g. perhaps (100,105,105,100). PCC only picks a 
particular rate as the winner if utility is higher in both trials with that rate.

} If results are inconclusive, so each rate “wins” in one test, then PCC maintains 
its current rate, and may have reached a local optimum



} Both are rate based protocols.
} Both BBR and PCC Allegro carry out experiments to probe for more bandwidth. 

BBR changes its rate directly, while PCC Allegro uses its utility function to make 
this decision.

} BBR reduces its rate based on its current measurement of delivery rate, while PCC 
Allegro uses its micro-experiments where it explicitly reduces sending rate and 
then uses uses the resulting utility function to decide whether to reduce rate.

} BBR does not react to packet losses, while PCC Allegro uses this information to set 
its sending rate.

} BBR tries to limit the queueing in the network, while PCC Allegro does not have a 
mechanism for doing so. Allegro keeps increasing its sending rate until 
congestion losses exceed 5% and then it clamps down.

} They both use MIMD rate control. PCC Allegro researchers claim that Allegro does 
not suffer from unfairness inspite of this, since the senders make independent 
rate change decisions (vs loss based systems where the the window control gets 
synchronized).

} Unlike BBR, PCC Allegro does not incorporate a window to limit the in-flight data.



} What about end-to-end latency?
◦ Bufferbloat is still a problem

} What about fairness in the presence of loss based protocols?
◦ The utility function 

ignores losses below 5%, and hence is not fair to loss based protocols.
◦ However other utility functions may be able to do this.

} Allegro causes high packet loss rate. If the available bandwidth decreases, 
since the source keeps transmitting at the higher rate, there is danger of 
overwhelming the network. In loss based protocols such as Reno, this issue 
is controlled by means of its window (also used in BBR).

} Intra-protocol RTT fairness
◦ PCC Allegro shows a high degree of fairness for flows with differing RTTs.



Does not do very well
with fluctuating

bandwidth





} Vivace also uses the PCC framework, but tries to solve the problems with PCC 
Allegro, with the following changes
◦ Vivace has a utility function framework to replace the adhoc function in 

Allegro. The new utility function Incorporates latency awareness, thus 
mitigating the bufferbloat problem and the resulting packet loss and 
latency inflation.

◦ Vivace incorporates a learning rate-control algorithm. This provides faster, 
more stable convergence, and reacts more quickly upon changes to 
network conditions.

◦ The Vivace framework extends to heterogeneous senders with different 
utility functions, enabling flexible network-resource allocation.

◦ Vivace induces more friendly behavior towards TCP, and thus is better 
suited for real-world deployment.

“PCC Vivace: Online-Learning Congestion Control”, Dong et.al.



} As in Allegro, Vivace divides time into consecutive Monitor Intervals (MIs). At the end of 
each MI, sender i applies the following utility function to transform the performance 
statistics gathered at that MI to a numerical utility value

where 0<a <1, b ≥ 0, c>0, are constants, xi is sender i’s sending rate and Li is its 
observed loss rate.

} The term !(#$$!)!&   is the observed “RTT gradient” during this MI, i.e., the increase in latency 
experienced within this MI. 
This term is proportional to the rate at which the buffer size is increasing, and allows
the sender to detect build-up of congestion before the absolute buffer size estimate. 
This is similar to the TIMELY protocol from Lecture 9 (and the P+I protocol in Lecture 3).

} Utility functions of the above form reward increase in throughput (via 𝑥!&), and penalize 
increase in both latency and loss.

𝑢 = 𝑥!" − 𝑏𝑥!
#(%&&')
#(

− 𝑐𝑥!𝐿!



} When a  ≤ 1, the family of utility functions  falls into the category of 
“socially-concave” in game theory. 

} A utility function within this category, when coupled with a theoretical model 
of Vivace’s online learning rate-control scheme, guarantees high 
performance from the individual sender’s perspective and ensures quick 
convergence to a global rate configuration.

} Let C denote the capacity of the bottleneck link. If  

𝑏 ≥ 𝑎𝑛()&𝐶&)#  

where n is the number of flows sharing the bottleneck link, then the latency 
in equilibrium is the base RTT.



} Suppose the current sending rate is r. Then, in the next two MIs, the sender 
will test the rates r(1+𝜖) and r(1- 𝜀), compute the corresponding numerical 
utility values, u1 and u2, respectively, and estimate the gradient of the utility 
function to be 

𝛾 =
𝑢( − 𝑢#
2𝜖𝑟

} Change in rate is given by
𝑟 ← 𝑟 + 𝜃*𝛾

where 𝜃* is the learning rate.

This allows Vivace to vary the step-size used while making
rate changes. For example:
• At rate r1 use a small step-size
• At rate r2 use a large step size.

Optimization of u using
Gradient Ascent



} Vivace varies the learning rate by using a “confidence multiplier” 𝑚(𝜏), so that

𝑟 ← 𝑟 + 𝑚(𝜏)𝜃*𝛾

After a sender makes 𝜏 consecutive decisions to change the rate in the same 
direction, 𝜃 is set to 𝑚(𝜏)𝜃*.

} When the direction at which rate is adapted is reversed (increase to decrease 
or vice-versa), 𝜏 is set back to 0 (and the above process starts anew).

} The confidence amplifier is a monotonically nondecreasing function that 
assigns a real value 𝑚(𝜏) to any integer 𝜏 ≥ 0.



} Sampled utility-gradient can be excessively high due to unreliable 
measurements or large changes to network conditions between MIs.

} To prevent a huge sudden change in rates, the following mechanism is used: 
◦ Whenever the computed rate change Δ+ exceeds 𝜔𝑟, the effective rate 

change is capped at 𝜔𝑟.
◦ The value of 𝜔 is itself varied according to the rule. 𝜔 is updated 

according to the rule

following k consecutive rate adjustments in which the gradient-based 
rate-change Δ+ exceeded the dynamic change boundary, for a 
predetermined constant 𝛿 >0.

◦ Whenever Δ+ ≤ 𝑟𝜔, Vivace recalibrates the value of k in the formula 𝜔 =
𝜔, + 𝑘𝛿 to be the smallest value for which Δ+ ≤  𝑟𝜔. 

◦ k is reset to 0 when the direction of rate adjustment changes (e.g., from 
increase to decrease).



} The RTT gradient -(/00#)
-0

	 in MI could be estimated by quantifying the RTT 
experienced by the first packet and the last packet sent in that MI.  To 
estimate the RTT gradient more accurately, Vivace utilizes linear regression. 

} It assembles the 2-dimensional data set of (sampled packet RTT, time of 
sampling) for the packets in a MI, and uses the linear-regression-generated 
slope as the RTT gradient.



} We say a rate-control protocol is p-loss-resilient if that protocol does not 
decrease its sending rate under random loss rate of at most p.

} For Vivace to be p-loss-resilient, we need to set c in the its utility function 
framework to be

𝑐 =
𝑎𝐶&)#

𝑝
} There is an interesting trade-off involved in having a larger value for p.

In a system with n sources that are experiencing a congestion related loss L, 
the value of L increases with p.

𝑢 = 𝑥!" − 𝑏𝑥!
#(%&&')
#(
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} How can Vivace be both latency sensitive and also avoid being over-
whelmed by loss based algorithms such as CUBIC

} Consider the scenario that a Vivace sender is the only sender on a 
certain link. It tries out two rates that exceed the link’s bandwidth, and 
the buffer for that link is not yet full. 
◦ Vivace’s utility function will assign a higher value to the lower of these 

rates, since the achieved goodput and loss rate are identical to those 
attained when sending at the higher rate, but the latency gradient is lower.

◦ Thus, in this context, the Vivace sender behaves in a latency-sensitive 
manner and reduces its transmission rate.

} Now, consider the scenario that the Vivace sender is sharing a link that 
is already heavily utilized by many loss-based protocols like TCP CUBIC 
and the buffer is, consequently, almost always full. 
◦ When testing different rates, the Vivace sender will constantly perceive the 

latency gradient as roughly 0, and thus disregard latency and compete 
against the TCP senders over the link capacity, effectively transforming 
into a loss-based protocol.

𝑢 = 𝑥!" − 𝑏𝑥!
#(%&&')
#(
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} Objective: To provide a fully-automated mechanism to train a DRL agent by interacting 
with a real-world network environment, and to avoid hand-tuned heuristics as much as 
possible.

} A DRL agent uses both the states observed from the environment and a scalar reward to 
train its deep neural network model, which is the agent’s strategy that it uses to produce 
an action, called its policy.

} In the context of congestion control, the action to be taken by the DRL agent may be an 
increase in the sending rate or the size of the congestion window.

} The objective of the DRL agent is to train a policy that maximizes the expected 
cumulative reward.

} Can a well-designed reward function and a curated set of states be used to train the DRL 
agent effectively by learning from the actual network environment, more so than 
handtuned heuristics?



Agent

Environment
Agent has no control over the

Environment’s response

State: Summary of the past observations
that the Agent uses to choose the
next Action



Agent

Environment

Action
• Rate or Window Control

decisions

Environment:
• The network

Observation:
• Packet Loss,

Latency, Delivery
Rate etc



Instead of a Model, we now have
sample episodes from the MDP

Update made at
end of an Episode

Model Free
Sample Sweep
Sample Backup
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} Framework: Aurora adopts the notion of monitor intervals (MIs) from PCC. Time is 
divided into consecutive intervals. In the beginning of each MI t, the sender can adjust 
its sending rate xt, which then remains fixed throughout the MI.

} Actions
◦ Actions are expressed as changes to the current rate

Dense Feedforward Neural Network
with 2 Hidden Layers (32 and 16 neurons respectively)

Model trained using the
PPO Algorithm

Model trained using a
network simulator. Testing
done on an actual network



} State: Aurora collects the following Statistics Vectors:
◦ Latency Gradient (as in PCC Vivace), the derivative of latency with respect to time;  

latency ratio (as in Remy), 
◦ The ratio of the current MI’s mean latency to minimum observed mean latency of any 

MI in the connection’s history; and 
◦ Sending ratio, the ratio of packets sent to packets acknowledged by the receiver.
◦ The State is a function of a fixed-length history of the above statistics vectors 

collected from packet acknowledgements sent by the receiver. It is defined as

for a predetermined constant k > 0 and a small number d representing the delay 
between choosing a sending rate and gathering results.

} Rewards: Chosen as

where throughput is measured in packets per second, latency in seconds, and loss is the 
proportion of all packets sent but not acknowledged. The scale of each factor was 
chosen to force models to balance throughput and latency for the chosen training 
parameters 


