
Lecture 1
Subir Varma

“Internet Congestion Control” by Subir Varma,
1rst Edition, Morgan Kaufman (2015).

} Introductory Course on Computer Networking

} TCP’s congestion control algorithm has been described as the
largest man-made feedback controlled system in the world.

} It enables hundreds of millions of devices, ranging from huge
servers to the smallest PDA, to coexist together and make
efficient use of existing bandwidth resources.

} It does so over link speeds that vary from a few kilobits per
second to tens of gigabits per second, networks as varied as
cellular wireless, data center networks and satellite links.

Subject of this Course: How and how well is it able to do this?

} Pre-1987: TCP used a simple static-window controlled algorithm. This
led to a catastrophic congestion collapse in 1986.

} TCP congestion control went through several important enhancements in
the years since 1986, starting with Van Jacobsen’s invention of the Slow
Start and Congestion Avoidance algorithms, described in his seminal
paper*

} As a result, a congestion control algorithm called TCP Slow Start (also
sometimes called TCP Tahoe) was put into place in 1987 and 1988,
which in its current incarnation as TCP Reno, remains one of the
dominant algorithms used in the Internet today.

} Since then, the Internet has evolved and now features transmissions over
wireless media, link speeds that are several orders of magnitudes faster,
widespread transmission of video streams, and the recent rise of
massive data centers.

} The congestion control research and development community has
successfully met the challenge of modifying the original congestion
control algorithm and has come up with newer algorithms to address
these new types of networks

https://ee.lbl.gov/papers/congavoid.pdf

Traffic
Source

Congestion
Control

Traffic
Source

Congestion
Control

Shared
Resource

Feedback

} The problem of congestion control arises whenever multiple
distributed agents try to make use of shared resources.

} It arises widely in different scenarios, including traffic control
on highways or air traffic control. This book focuses on the
specific case of packet data networks,

} The high-level objective of congestion control is to provide
good utilization of network resources and at the same time
provide acceptable performance for the users of the network.

Throughput

Traffic Load

Knee Cliff

Throughput vs Load

Congestion
Collapse

} If the load is small, the throughput keeps up with the increasing
load. After the load reaches the network capacity, at the “knee” of
the curve, the throughput stops increasing. Beyond the knee, as the
load increases, queues start to build up in the network, thus
increasing the end-to-end latency without adding to the
throughput. The network is then said to be in a state of congestion.

} If the traffic load increases even further and gets to the “cliff” part of
the curve, then the throughput experiences a rather drastic
reduction. This is because queues within the network have increased
to the point that packets are being dropped. If the sources choose to
retransmit to recover from losses, then this adds further to the total
load, resulting in a positive feedback loop that sends the network
into congestion collapse.

} To avoid congestion collapse, each data source should try to
maintain the load it is sending into the network in the
neighborhood of the knee.

} An algorithm that accomplishes this objective is known as a
congestion avoidance algorithm; a congestion control
algorithm tries to prevent the system from going over the
cliff.

} This task is easier said than done and runs into the following
challenge:
◦ The location of the knee is not known and in fact changes with total

network load and traffic patterns.
} Hence, the problem of congestion control is inherently a

distributed optimization problem in which each source has to
constantly adapt its traffic load as a function of feedback
information it is receiving from the network as it tries to stay
near the knee of the curve.

} The original TCP Tahoe algorithm and its descendants fall
into the congestion control category because in the absence
of support from the network nodes, the only way they can
detect congestion is by filling up the network buffers and
then detecting the subsequent packet drops as a sign of
congestion.

} The trend in the last ten years has been to move away from
buffer filling type algorithms, and towards algorithms that are
able to detect congestion by looking at other types of
feedback, such as delay. This is an active area of research.

} How does the network signal to the end points that it is
congested (or conversely, not congested)?

} What is the best Traffic Rate Increment rule in the absence
of congestion?

} What is the best Traffic Rate Decrement rule in the
presence of congestion?

} How can the algorithm ensure fairness among all
connections sharing a link, and what measure of fairness
should be used?

} Should the congestion control algorithm prioritize high
link utilization of low end-to-end latency?

} Should the congestion control be implemented on an end-
to-end or on a hop-by-hop basis?

} Should the traffic control be exercised using a windows-
based mechanism or a rate-based mechanism?

} Consider a network with 2 data sources and define ri(t) to be
the data rate (i.e., load) of the ith data source.

} Also assume that the system is operating near the knee of the
curve so that the network rate allocation to the ith source after
congestion control is also given by ri(t).

} We assume that the system operation is synchronized and
happens in discrete time so that the rate at time (t +1) is a
function of the rate at time t, and the network feedback
received at time t.

} We will also assume that the network congestion feedback is
received at the sources instantaneously without any delay.

Chiu DM, Jain R. Analysis of increase and decrease algorithms for congestion avoidance in computer
networks. Comput Netw ISDN Syst 1989;17(1).

Us
er

 2
 R

at
e,

 r 2

User 1 Rate, r1

R0

R1

R2

R3

Fairness
Line

Efficiency
Line

Overloaded
System

Underloaded
System

Optimal Operating
Point (C/2,C/2)

(C,0)

(0,C)

Any rate allocation (r1,r2) can be
represented by a point in a
two-dimensional space.
The objective of the optimal
congestion control algorithm is
to bring the system close to the
optimal point (C/2, C/2)
irrespective of the starting position.

Efficiency: r1+r2 should be close to C

𝐹 = ("!#"")"

%("!"#""")
 should be close to 1Fairness:

• aI=aD=0, bI>1 and 0<bD<1 corresponds to multiplicative increase/multiplicative
decrease (MIMD) controls.
• bI=bD=1 corresponds to additive increase/additive decrease (AIAD) controls.
• bI=1, aD=0 and 0<bD<1 corresponds to AIMD controls.
• aI=0, bD=1 corresponds to multiplicative increase/additive decrease (MIAD) controls.

• The AIMD Rule converges towards the optimal point on the equifairness line
• The AIAD and MIMD Rules oscillate at non-optimal parts of the graph
• The MIAD Rule is not stable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tx Window

Tx Window

Tx Window

Not Yet Sent

Sent but not ACK’d

Sent and ACK’d

Transmit Window Operation

} Assume that the packets are numbered sequentially from 1 and
up. When a packet gets to the destination, an ACK is generated
and sent back to the source. The ACK carries the sequence
number (SN) of packet that it is acknowledging.

} The source maintains two counters, Ack’d and Sent. Whenever a
packet is transmitted, the Sent counter is incremented by 1, and
when an ACK arrives from the destination, the Ack’d counter is
incremented by 1. Because the window size is N packets, the
difference un_ack = (Sent - Ack’d) is not allowed to exceed N.
When unAck’d = N, then the source stops transmitting and waits
for more ACKs to arrive.

} ACKs can be of two types: An ACK can either acknowledge
individual packets, which is known as Selective Repeat ARQ, or it
can carry a single SN that acknowledges multiple packets with
lower SNs. The latter strategy is called Go Back N.

Data

ACKs

• If a node is congested, then the rate at which ACKs are sent back is precisely
equal to the rate at which the congested node is able to serve the packets in its queue.

• As a result, the source sending rate gets autoregulated to the rate at which the bottleneck
node can serve the packets from that source.

• This is also known as the “self-clocking” property and is one of the benefits of
the window-based congestion control over the rate-based schemes.

1. When the algorithm is started, there is no mechanism to regulate the rate at
which the source sends packets into the network. Indeed, the source may
send a whole window full of packets back to back, thus overwhelming nodes
along the route and leading to lost packets. When the ACKs start to flow
back, the sending rate settles down to the self-clocked rate.

2. Given a window size of W and a round trip time of T, the average
throughput R is given by the formula R = W/T in steady state. If the network
is congested at a node, then the only way to clear it is by having the sources
traversing that node reduce their sending rate. However, there is no way this
can be done without reducing the corresponding window sizes. If we do
introduce a mechanism to reduce window sizes in response to congestion,
then we also need to introduce a complementary mechanism to increase
window sizes after the congestion goes away.

3. If the source were to vary its window size in response to congestion, then
there needs to be a mechanism by which the network can signal the
presence of congestion back to the source.

} Instead of using a window to regulate the rate at which the
source is sending packets into the network, the congestion
control algorithm may alternatively release packets using a
packet rate control mechanism.

} This can be implemented by using a timer to time the
interpacket intervals.

} Examples of rate based mechanisms:
◦ Asynchronous Transfer Mode (ATM) Forum Available Bit Rate (ABR) traffic

management scheme
◦ Some proposed alternatives to TCP Reno, such as TCP FAST, BBR etc
◦ The IEEE802.1Qau algorithm, also known as Quantum Congestion

Notification (QCN)

} Window-based schemes have a built-in choke-off mechanism
in the presence of extreme congestion when the ACKs stop
coming back. However, in rate-based schemes, there is no
such cut-off, and the source can potentially keep pumping
data into the network.

} Rate-based schemes require a more complex implementation
at both the end nodes and in the network nodes. For
example, at the end node, the system requires a fine-grained
timer mechanism to control the rates.

} Hop-by-hop congestion control typically uses a window-based
congestion control scheme at each hop and operates as follows: If the
congestion occurs at the nth node along the route and its buffers fill up,
then that node stops sending ACKs to the (n-1)rst node. Because the (n-
1)rst node can no longer transmit, its buffers will start to fill up and
consequently will stop sending ACKs to the (n-2)nd node. This process
continues until the backpressure signal reaches the source node.

} Benefits:
◦ Hop-by-hop schemes can do congestion control without letting the congestion deteriorate

to the extent that packets are being dropped.
◦ Individual connections can be controlled using hop-by-hop schemes because the window

scheme described earlier operated on a connection-by-connection basis. Hence, only the
connections that are causing congestion need be controlled, as opposed to all the
connections originating at the source node or traversing a congested link.

◦ Hop-by-Hop reacts to congestion much faster than end-to-end schemes, which typically
take a round trip of latency or longer

} Issues: The benefits require that the hop-by-hop window be controlled
on a per-connection basis. This can lead to greater complexity of the
routing nodes within the network

} The source can either implicitly infer the existence of network
congestion, or the network can send it explicit signals that it
is congested. Both of these mechanisms are used in the
Internet.

} Regular TCP is an example of a protocol that implicitly infers
network congestion by using the information contained in the
ACKs coming back from the destination

} TCP Explicit Congestion Notification (ECN) is an example of a
protocol in which the network nodes explicitly signal
congestion

} TCP congestion control can be classified as a window-based
algorithm that operates on an end-to-end basis and uses
implicit feedback from the network to detect congestion.

} The sender maintains two counters:
◦ Transmit Sequence Number (TSN) is the SN of the next byte to be

transmitted.
◦ Ack’d Sequence Number (ASN) is the SN of the next byte that the receiver

is expecting.
◦ To maintain the window operation, the sender enforces the following rule:

 (𝑆𝑁 − 𝐴𝑆𝑁) ≤ 𝑊
} The receiver maintains a single counter:
◦ This is the SN of the next byte that the receiver is expecting.

} The receiver inserts the NSN value into the ACK field of the
next packet that is being sent back.

} Note that ACKs are cumulative, so that if one of them is lost,
then the next ACK makes up for it. Also, an ACK is always
generated even if SN of a received packet does not match the
NSN.

} In this case, the ACK field will be set to the old NSN again.
This is a so-called Duplicate ACK

} The presence of Duplicate ACKs can be used by the
transmitter as an indicator of lost packets, and indirectly,
network congestion.

16

17

18

19

20

21

22

ACK 16

ACK 16

ACK 16

ACK16

ACK 16

ACK 16

17

3 Duplicate
ACKs

X

• On detection of Duplicate
ACKs, set ssthresh  W/2,
W  W+3MSS
and transmit next 3 packets

• On detection of every
Duplicate ACK thereafter
increase W  W +1
and transmit additional
packets

• When the first lost packet is
finally ACK’d them set
W  ssthresh

Effect of Fast Recovery:
- If multiple packets are lost
then avoids Duplicate ACKs for
each one of them
- Avoids burst transmission
of A window full of packet
when the first lost packet
is finally ACK’d

} Sophistication of algorithm constrained by the processing
power available in the switch or router, and also the link
speed.

} Passive Queue Management: Tail Drop
} Issues with Tail Drop:
◦ Can lead to excess latencies across the network if the bottleneck node

happens to have a large buffer size. Note that the buffer need not be full
for the session to attain full link capacity; hence, the excess packets
queued at the node add to the latency without improving the throughput

◦ If multiple TCP sessions are sharing the buffer at the bottleneck node,
then the algorithm can cause synchronized packet drops across sessions.
This causes all the affected sessions to reduce their throughput, which
leads to a periodic pattern, resulting in underutilization of the link
capacity.

Floyd S, Jacobsen V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans
Netw 1993;1:397-413.

minth maxth

maxp

1.0

avg queue size

pb

Packet Discard Probability in RED

} RED is not an ideal AQM scheme because there are issues
with its responsiveness and ability to suppress queue size
oscillations as the link capacity or the end-to-end latency
increases.

} Choosing a set of RED parameters that work well across a
wide range of network conditions is also a nontrivial problem,
which has led to proposals that adapt the parameters as
network conditions change.

} More recent variations on RED
◦ ECN (Explicit Congestion Notification): Instead of dropping a packet, the

switch marks the ECN bit instead. When it reaches the Source via the ACK,
it activates congestion control and reduces window size.

◦ Data Center Congestion Control Protocol (DCTCP, Lecture 8: Keeps the
threshold K fixed and keeps track of the number of packets that encounter
a queue size greater than K)

} TCP Vegas estimates the level of congestion in the network by calculating the difference
in the expected and actual data rates, which it then uses to adjust the TCP window size.
Assuming a window size of W and a minimum round trip latency of T seconds, the
source computes an expected throughput RE once per round trip delay, by

𝑅! =
𝑊
𝑇

} The source also estimates the current throughput R by using the actual round trip time
Ts according to

𝑅 =
𝑊
𝑇"

} The source then computes the quantity Diff given by
𝐷𝑖𝑓𝑓 = 𝑇 𝑅! − 𝑅 = 𝑅 𝑇" − 𝑇

} By Little’s law, R(Ts-T) equals the number of packets belonging to the connection that
are queued in the network and hence serves as a measure of congestion.

Brakmo LS, Peterson LL. End-to-end congestion avoidance on a global Internet. IEEE JSAC
1995;13:1465-80.

Benefits:

} TCP Vegas tries to maintain the “right” amount of queued data in the
network. Too much queued data will cause congestion, and too little queued
data will prevent the connection from rapidly taking advantage of transient
increases in available network bandwidth. Note that this mechanism also
eliminates the oscillatory behavior of TCP Reno while reducing the end-to-
end latency and jitter because each connection tends to keep only a few
packets in the network.

Issues:

} When TCP Vegas and Reno compete for bandwidth on the same link, then
Reno ends with a greater share because it is more aggressive in grabbing
buffers, but Vegas is conservative and tries to occupy as little space as it can.

} Problems with latency estimates: How can the system ensure that the
minimum latency estimate is accurate? How to differentiate the ‘standing
queue’ from transient bursts?

Because of these reasons, Vegas is not widely deployed despite its desirable
properties. Recent protocols such as BBR and Copa were designed with the
objective of solving these problems.

Loss
Based
Feedback

Delay
Based
Feedback

Both Loss
and Delay

Based

Tahoe
Reno
HSTCP
BIC
Cubic

Vegas
FAST
TIMELY

Compound TCP
PCC Vivace

Rate Based
Feedback

BBR
COPA

Explicit Feedback
XCP
RCP

Handcrafted
Rules based CC

Optimization
based CC

Remy
PCC Allegro
PCC Vivace
Deep Reinforcement
 Learning based CC

Tahoe
Reno
Cubic
Vegas

- Carry out actions that increase
 Utility
- Shows influence of Machine
 Learning on CC Algorithms

Wireless/Cellular
Networks

High Speed
Networks

Data Center
Networks

Satellite
Networks

Random Loss
Variable BW

High Delay BW
product

Low Latency
High BW
Multiple paths

Very High
Latency

} Lecture 1 – Introduction to TCP Congestion Control: Objectives of Congestion Control,
Types of CC Algorithms, TCP Reno, Network Feedback, TCP Vegas.

} Lecture 2 – Congestion Control Models Part 1: TCP Throughput Analysis, Effect of
Buffer Size, Window Size and Link Error Rate on throughput, Fluid Flow Model for CC,
Throughput analysis for more general models.

} Lecture 3 – Congestion Control Models Part 2: Network wide models of CC using
Optimization Theory, Stability Analysis of TCP using Classical Control Theory, The
Proportional and Proportional + Integral Controllers, The Averaging Principle.

} Lecture 4 – Congestion Control in Broadband Wireless Systems: Split Connection TCP,
Congestion Control over Lossy Links, TCP Westwood, Link Level Error Correction, the
Bufferbloat Problem, CoDel Active Queue Management.

} Lecture 5 – Congestion Control in High Speed Networks: Design Issues in High Speed
Networks, Analysis using Response Functions, RTT Fairness, High Speed TCP (HSTCP),
TCP BIC

} Lecture 6 – Congestion Control in High Speed Networks: TCP Cubic, Compound TCP,
Yeah TCP, Compatibility with TCP Reno, Throughput analysis

} Lecture 7 – Congestion Control in High Speed Networks: TCP BBR (Bottleneck BW and
Rate Control), BDP Estimates, RTT Probing, Multiple flows case, Interaction with loss
based protocols, XCP (Express Control Protocol), RCP (Rate Control Protocol)

} Lecture 8 – Congestion Control in Data Center Networks: Data Center Network
Architecture and Traffic Patterns, Data Center TCP, Deadline Aware Congestion Control,
Multipath TCP, the Incast Problem.

} Lecture 9 – Delay Bounding Congestion Control Algorithms: TCP Vegas, TCP FAST, TCP
COPA, TIMELY, Bounds on performance of delay bounding algorithms.

} Lectures 10 – Optimization based Congestion Control Algorithms: Global Optimization
based algorithms, Remy and Indigo Congestion Control, Local Optimization based
algorithms, Performance Oriented Congestion Control (PCC), PCC Allegro, PCC Vivace,
Deep Reinforcement Learning based algorithms

} Lecture 11 – Video Delivery over TCP: Video traffic characteristics, Adaptive Streaming,
Video Rate Control, The DASH framework, Adaptive Bit Rate (ABR) Algorithms, Rate
based and Buffer size based algorithms, ABR/TCP interaction.

} Chapter 1 of Internet Congestion Control
} Chapters 20 and 21 of “TCP/IP Illustrated, Vol 1” by

Fall and Stevens

