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} Introductory Course on Computer Networking



} TCP’s congestion control algorithm has been described as the 
largest man-made feedback controlled system in the world. 

} It enables hundreds of millions of devices, ranging from huge 
servers to the smallest PDA, to coexist together and make 
efficient use of existing bandwidth resources. 

} It does so over link speeds that vary from a few kilobits per 
second to tens of gigabits per second, networks as varied as 
cellular wireless, data center networks and satellite links.

Subject of this Course: How and how well is it able to do this?



} Pre-1987: TCP used a simple static-window controlled algorithm. This 
led to a catastrophic congestion collapse in 1986.

} TCP congestion control went through several important enhancements in 
the years since 1986, starting with Van Jacobsen’s invention of the Slow 
Start and Congestion Avoidance algorithms, described in his seminal 
paper*

} As a result, a congestion control algorithm called TCP Slow Start (also 
sometimes called TCP Tahoe) was put into place in 1987 and 1988, 
which in its current incarnation as TCP Reno, remains one of the 
dominant algorithms used in the Internet today.

} Since then, the Internet has evolved and now features transmissions over 
wireless media, link speeds that are several orders of magnitudes faster, 
widespread transmission of video streams, and the recent rise of 
massive data centers. 

} The congestion control research and development community has 
successfully met the challenge of modifying the original congestion 
control algorithm and has come up with newer algorithms to address 
these new types of networks

https://ee.lbl.gov/papers/congavoid.pdf
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} The problem of congestion control arises whenever multiple 
distributed agents try to make use of shared resources. 

} It arises widely in different scenarios, including traffic control 
on highways or air traffic control. This book focuses on the 
specific case of packet data networks,

} The high-level objective of congestion control is to provide 
good utilization of network resources and at the same time 
provide acceptable performance for the users of the network.
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} If the load is small, the throughput keeps up with the increasing 
load. After the load reaches the network capacity, at the “knee” of 
the curve, the throughput stops increasing. Beyond the knee, as the 
load increases, queues start to build up in the network, thus 
increasing the end-to-end latency without adding to the 
throughput. The network is then said to be in a state of congestion.

} If the traffic load increases even further and gets to the “cliff” part of 
the curve, then the throughput experiences a rather drastic 
reduction. This is because queues within the network have increased 
to the point that packets are being dropped. If the sources choose to 
retransmit to recover from losses, then this adds further to the total 
load, resulting in a positive feedback loop that sends the network 
into congestion collapse.



} To avoid congestion collapse, each data source should try to 
maintain the load it is sending into the network in the 
neighborhood of the knee. 

} An algorithm that accomplishes this objective is known as a 
congestion avoidance algorithm; a congestion control 
algorithm tries to prevent the system from going over the 
cliff. 

} This task is easier said than done and runs into the following 
challenge:
◦ The location of the knee is not known and in fact changes with total 

network load and traffic patterns. 
} Hence, the problem of congestion control is inherently a 

distributed optimization problem in which each source has to 
constantly adapt its traffic load as a function of feedback 
information it is receiving from the network as it tries to stay 
near the knee of the curve.



} The original TCP Tahoe algorithm and its descendants fall 
into the congestion control category because in the absence 
of support from the network nodes, the only way they can 
detect congestion is by filling up the network buffers and 
then detecting the subsequent packet drops as a sign of 
congestion.

} The trend in the last ten years has been to move away from 
buffer filling type algorithms, and towards algorithms that are 
able to detect congestion by looking at other types of 
feedback, such as delay. This is an active area of research.



} How does the network signal to the end points that it is 
congested (or conversely, not congested)?

} What is the best Traffic Rate Increment rule in the absence 
of congestion?

} What is the best Traffic Rate Decrement rule in the 
presence of congestion?

} How can the algorithm ensure fairness among all 
connections sharing a link, and what measure of fairness 
should be used?

} Should the congestion control algorithm prioritize high 
link utilization of low end-to-end latency?

} Should the congestion control be implemented on an end-
to-end or on a hop-by-hop basis?

} Should the traffic control be exercised using a windows-
based mechanism or a rate-based mechanism?



} Consider a network with 2 data sources and define ri(t) to be 
the data rate (i.e., load) of the ith data source. 

} Also assume that the system is operating near the knee of the 
curve so that the network rate allocation to the ith source after 
congestion control is also given by ri(t). 

} We assume that the system operation is synchronized and 
happens in discrete time so that the rate at time (t +1) is a 
function of the rate at time t, and the network feedback 
received at time t. 

} We will also assume that the network congestion feedback is 
received at the sources instantaneously without any delay.

Chiu DM, Jain R. Analysis of increase and decrease algorithms for congestion avoidance in computer
networks. Comput Netw ISDN Syst 1989;17(1).
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Any rate allocation (r1,r2) can be 
represented by a point in a
two-dimensional space. 
The objective of the optimal 
congestion control algorithm is 
to bring the system close to the 
optimal point (C/2, C/2) 
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• aI=aD=0, bI>1 and 0<bD<1 corresponds to multiplicative increase/multiplicative 
decrease (MIMD) controls.
• bI=bD=1 corresponds to additive increase/additive decrease (AIAD) controls.
• bI=1, aD=0 and 0<bD<1 corresponds to AIMD controls.
• aI=0, bD=1 corresponds to multiplicative increase/additive decrease (MIAD) controls.

• The AIMD Rule converges towards the optimal point on the equifairness line
• The AIAD and MIMD Rules oscillate at non-optimal parts of the graph
• The MIAD Rule is not stable





1   2   3  4    5  6   7   8   9  10 11 12 13 14 15 16

1   2   3  4    5  6   7   8   9  10 11 12 13 14 15 16

1   2   3  4    5  6   7   8   9  10 11 12 13 14 15 16

Tx Window

Tx Window

Tx Window

Not Yet Sent

Sent but not ACK’d

Sent and ACK’d

Transmit Window Operation



} Assume that the packets are numbered sequentially from 1 and 
up. When a packet gets to the destination, an ACK is generated 
and sent back to the source. The ACK carries the sequence 
number (SN) of packet that it is acknowledging.

} The source maintains two counters, Ack’d and Sent. Whenever a 
packet is transmitted, the Sent counter is incremented by 1, and 
when an ACK arrives from the destination, the Ack’d counter is 
incremented by 1. Because the window size is N packets, the 
difference un_ack = (Sent - Ack’d) is not allowed to exceed N. 
When unAck’d = N, then the source stops transmitting and waits 
for more ACKs to arrive.

} ACKs can be of two types: An ACK can either acknowledge 
individual packets, which is known as Selective Repeat ARQ, or it 
can carry a single SN that acknowledges multiple packets with 
lower SNs. The latter strategy is called Go Back N.
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• If a node is congested, then the rate at which ACKs are sent back is precisely 
equal to the rate at which the congested node is able to serve the packets in its queue. 

• As a result, the source sending rate gets autoregulated to the rate at which the bottleneck 
node can serve the packets from that source. 

• This is also known as the “self-clocking” property and is one of the benefits of 
the window-based congestion control over the rate-based schemes.



1. When the algorithm is started, there is no mechanism to regulate the rate at 
which the source sends packets into the network. Indeed, the source may 
send a whole window full of packets back to back, thus overwhelming nodes 
along the route and leading to lost packets. When the ACKs start to flow 
back, the sending rate settles down to the self-clocked rate.

2. Given a window size of W and a round trip time of T, the average 
throughput R is given by the formula R = W/T in steady state. If the network 
is congested at a node, then the only way to clear it is by having the sources 
traversing that node reduce their sending rate. However, there is no way this 
can be done without reducing the corresponding window sizes. If we do 
introduce a mechanism to reduce window sizes in response to congestion, 
then we also need to introduce a complementary mechanism to increase 
window sizes after the congestion goes away.

3. If the source were to vary its window size in response to congestion, then 
there needs to be a mechanism by which the network can signal the 
presence of congestion back to the source.



} Instead of using a window to regulate the rate at which the 
source is sending packets into the network, the congestion 
control algorithm may alternatively release packets using a 
packet rate control mechanism. 

} This can be implemented by using a timer to time the 
interpacket intervals.

} Examples of rate based mechanisms:
◦ Asynchronous Transfer Mode (ATM) Forum Available Bit Rate (ABR) traffic 

management scheme
◦ Some proposed alternatives to TCP Reno, such as TCP FAST, BBR etc
◦ The IEEE802.1Qau algorithm, also known as Quantum Congestion 

Notification (QCN)



} Window-based schemes have a built-in choke-off mechanism 
in the presence of extreme congestion when the ACKs stop 
coming back. However, in rate-based schemes, there is no 
such cut-off, and the source can potentially keep pumping 
data into the network.

} Rate-based schemes require a more complex implementation 
at both the end nodes and in the network nodes. For 
example, at the end node, the system requires a fine-grained 
timer mechanism to control the rates.



} Hop-by-hop congestion control typically uses a window-based 
congestion control scheme at each hop and operates as follows: If the 
congestion occurs at the nth node along the route and its buffers fill up, 
then that node stops sending ACKs to the (n-1)rst node. Because the (n-
1)rst node can no longer transmit, its buffers will start to fill up and 
consequently will stop sending ACKs to the (n-2)nd node. This process 
continues until the backpressure signal reaches the source node.

} Benefits:
◦ Hop-by-hop schemes can do congestion control without letting the congestion deteriorate 

to the extent that packets are being dropped.
◦ Individual connections can be controlled using hop-by-hop schemes because the window 

scheme described earlier operated on a connection-by-connection basis. Hence, only the 
connections that are causing congestion need be controlled, as opposed to all the 
connections originating at the source node or traversing a congested link.

◦ Hop-by-Hop reacts to congestion much faster than end-to-end schemes, which typically 
take a round trip of latency or longer

} Issues: The benefits require that the hop-by-hop window be controlled 
on a per-connection basis. This can lead to greater complexity of the 
routing nodes within the network



} The source can either implicitly infer the existence of network 
congestion, or the network can send it explicit signals that it 
is congested. Both of these mechanisms are used in the 
Internet. 

} Regular TCP is an example of a protocol that implicitly infers 
network congestion by using the information contained in the 
ACKs coming back from the destination

} TCP Explicit Congestion Notification (ECN) is an example of a 
protocol in which the network nodes explicitly signal 
congestion





} TCP congestion control can be classified as a window-based 
algorithm that operates on an end-to-end basis and uses 
implicit feedback from the network to detect congestion.

} The sender maintains two counters:
◦ Transmit Sequence Number (TSN) is the SN of the next byte to be 

transmitted.
◦ Ack’d Sequence Number (ASN) is the SN of the next byte that the receiver 

is expecting.
◦ To maintain the window operation, the sender enforces the following rule:

   (𝑆𝑁 − 𝐴𝑆𝑁) ≤ 𝑊
} The receiver maintains a single counter:
◦ This is the SN of the next byte that the receiver is expecting.



} The receiver inserts the NSN value into the ACK field of the 
next packet that is being sent back. 

} Note that ACKs are cumulative, so that if one of them is lost, 
then the next ACK makes up for it. Also, an ACK is always 
generated even if SN of a received packet does not match the 
NSN.

} In this case, the ACK field will be set to the old NSN again. 
This is a so-called Duplicate ACK

} The presence of Duplicate ACKs can be used by the 
transmitter as an indicator of lost packets, and indirectly, 
network congestion.
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• On detection of Duplicate
ACKs, set  ssthresh  W/2,
W  W+3MSS
and transmit next 3 packets

• On detection of every
Duplicate ACK thereafter
increase W  W +1
and transmit additional
packets

• When the first lost packet is
finally ACK’d them set
W  ssthresh

Effect of Fast Recovery:
- If multiple packets are lost
then avoids Duplicate ACKs for
each one of them
- Avoids burst transmission
of A window full of packet
when the first lost packet
is finally ACK’d



} Sophistication of algorithm constrained by the processing 
power available in the switch or router, and also the link 
speed.

} Passive Queue Management: Tail Drop
} Issues with Tail Drop:
◦ Can lead to excess latencies across the network if the bottleneck node 

happens to have a large buffer size. Note that the buffer need not be full 
for the session to attain full link capacity; hence, the excess packets 
queued at the node add to the latency without improving the throughput

◦ If multiple TCP sessions are sharing the buffer at the bottleneck node, 
then the algorithm can cause synchronized packet drops across sessions. 
This causes all the affected sessions to reduce their throughput, which 
leads to a periodic pattern, resulting in underutilization of the link 
capacity.



Floyd S, Jacobsen V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans
Netw 1993;1:397-413.
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} RED is not an ideal AQM scheme because there are issues 
with its responsiveness and ability to suppress queue size 
oscillations as the link capacity or the end-to-end latency 
increases.

} Choosing a set of RED parameters that work well across a 
wide range of network conditions is also a nontrivial problem, 
which has led to proposals that adapt the parameters as 
network conditions change.

} More recent variations on RED
◦ ECN (Explicit Congestion Notification): Instead of dropping a packet, the 

switch marks the ECN bit instead. When it reaches the Source via the ACK, 
it activates congestion control and reduces window size.

◦ Data Center Congestion Control Protocol (DCTCP, Lecture 8: Keeps the 
threshold K fixed and keeps track of the number of packets that encounter 
a queue size greater than K)





} TCP Vegas estimates the level of congestion in the network by calculating the difference 
in the expected and actual data rates, which it then uses to adjust the TCP window size. 
Assuming a window size of W and a minimum round trip latency of T seconds, the 
source computes an expected throughput RE once per round trip delay, by

𝑅! =
𝑊
𝑇

} The source also estimates the current throughput R by using the actual round trip time 
Ts according to

𝑅 =
𝑊
𝑇"

} The source then computes the quantity Diff given by
𝐷𝑖𝑓𝑓 = 𝑇 𝑅! − 𝑅 = 𝑅 𝑇" − 𝑇

} By Little’s law, R(Ts-T) equals the number of packets belonging to the connection that 
are queued in the network and hence serves as a measure of congestion.

Brakmo LS, Peterson LL. End-to-end congestion avoidance on a global Internet. IEEE JSAC
1995;13:1465-80.



Benefits:

} TCP Vegas tries to maintain the “right” amount of queued data in the 
network. Too much queued data will cause congestion, and too little queued 
data will prevent the connection from rapidly taking advantage of transient 
increases in available network bandwidth. Note that this mechanism also 
eliminates the oscillatory behavior of TCP Reno while reducing the end-to-
end latency and jitter because each connection tends to keep only a few 
packets in the network.

Issues:

} When TCP Vegas and Reno compete for bandwidth on the same link, then 
Reno ends with a greater share because it is more aggressive in grabbing 
buffers, but Vegas is conservative and tries to occupy as little space as it can. 

} Problems with latency estimates: How can the system ensure that the 
minimum latency estimate is accurate? How to differentiate the ‘standing 
queue’ from transient bursts?

Because of these reasons, Vegas is not widely deployed despite its desirable 
properties. Recent protocols such as BBR and Copa were designed with the 
objective of solving these problems.
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} Lecture 1 – Introduction to TCP Congestion Control: Objectives of Congestion Control, 
Types of CC Algorithms, TCP Reno, Network Feedback, TCP Vegas.

} Lecture 2 – Congestion Control Models Part 1: TCP Throughput Analysis, Effect of 
Buffer Size, Window Size and Link Error Rate on throughput, Fluid Flow Model for CC, 
Throughput analysis for more general models.

} Lecture 3 – Congestion Control Models Part 2: Network wide models of CC using 
Optimization Theory, Stability Analysis of TCP using Classical Control Theory, The 
Proportional and Proportional + Integral Controllers, The Averaging Principle.

} Lecture 4 – Congestion Control in Broadband Wireless Systems: Split Connection TCP, 
Congestion Control over Lossy Links, TCP Westwood, Link Level Error Correction, the 
Bufferbloat Problem, CoDel Active Queue Management.

} Lecture 5 – Congestion Control in High Speed Networks: Design Issues in High Speed 
Networks, Analysis using Response Functions, RTT Fairness, High Speed TCP (HSTCP), 
TCP BIC 

} Lecture 6 – Congestion Control in High Speed Networks: TCP Cubic, Compound TCP, 
Yeah TCP, Compatibility with TCP Reno, Throughput analysis



} Lecture 7 – Congestion Control in High Speed Networks: TCP BBR (Bottleneck BW and 
Rate Control), BDP Estimates, RTT Probing, Multiple flows case, Interaction with loss 
based protocols, XCP (Express Control Protocol), RCP (Rate Control Protocol)

} Lecture 8 – Congestion Control in Data Center Networks: Data Center Network 
Architecture and Traffic Patterns, Data Center TCP, Deadline Aware Congestion Control, 
Multipath TCP, the Incast Problem.

} Lecture 9 – Delay Bounding Congestion Control Algorithms: TCP Vegas, TCP FAST, TCP 
COPA, TIMELY, Bounds on performance of delay bounding algorithms.

} Lectures 10 – Optimization based Congestion Control Algorithms: Global Optimization 
based algorithms, Remy and Indigo Congestion Control, Local Optimization based 
algorithms, Performance Oriented Congestion Control (PCC), PCC Allegro, PCC Vivace, 
Deep Reinforcement Learning based algorithms

} Lecture 11 – Video Delivery over TCP: Video traffic characteristics, Adaptive Streaming, 
Video Rate Control, The DASH framework, Adaptive Bit Rate (ABR) Algorithms, Rate 
based and Buffer size based algorithms, ABR/TCP interaction.



} Chapter 1 of Internet Congestion Control
} Chapters 20 and 21 of “TCP/IP Illustrated, Vol 1” by 

Fall and Stevens


