Model based Planning

Lecture 9
Subir Varma

Last Few Lectures: Model Free

Gather samples
episodes from
unknown MDP

— T

Learn Value Function Learn Policy Function

\/

Find Optimal Policy

p—

This Lecture: Model Based

Gather samples
episodes from
unknown MDP

!

Learn Model

|

Learn Value Function

v

Find Optimal Policy

Policy Iteration
Value Iteration

Monte Carlo
TD
Q Learning

Model Based and Model Free RL
Learning
m Model-Free RL /

m No model
m Learn value function (and/or policy) from experience

/ Planning

m Model-Based RL

m Learn a model from experience
m Plan value function (and/or policy) from model

p—

Model Free RL - Learning

T, il
g X SN Yl
e A S
77 W\ Y /e \ = .
V anan G I s Gl
N A Ny e
state B W AN /,'-5"' action

Model based RL - Planning

action

Model Learning

p—

Model Based RL

value/policy

acting (in the real world)
planning

(using Value Iteration or
Policy Iteration)

(Lecture 3)

model experience

\

model
learning

Pros-Cons of Model Based RL

Advantages:
m Can efficiently learn model by supervised learning methods
m Can reason about model uncertainty

Disadvantages:

m First learn a model, then construct a value function
= two sources of approximation error

p—

What is a Model?

m A model M is a representation of an MDP (S, A, P, R),
parametrized by 7

m We will assume state space S and action space A are known

m So a model M = (P,.R,)) represents state transitions
P, ~ P and rewards R, ~ R

Sei1~ Py(Ser1 | St, Ar)
Res1 = Ry(Ret1 | S, Ad)

Model Learning

m Goal: estimate model M, from experience {51, A1, R2, ..., 5T}

m This is a supervised learning problem

SlaAl — R2:S2
52,A2 = R3, 53

St1-1,Ar—-1 — R7. 57

m Learning s, a — r is a regression problem

m Learning s, a — s’ is a density estimation problem

m Pick loss function, e.g. mean-squared error, KL divergence, ...

m Find parameters 77 that minimise empirical loss

Table Lookup Model

m Model is an explicit MDP, P, R

m Count visits N(s, a) to each state action pair

T
1

:,S’ — N(S, a) tzz: l(stht: 5t+1 = S, 4, S,)
1 T

52 B

M W & 1S A o R

m Alternatively

m At each time-step t, record experience tuple

(Sta Al', Rt—}-l, St+1>
m To sample model, randomly pick tuple matching (s, a, -,)

AB Example

Two states A, B; no discounting; 8 episodes of experience

A,0,B,0

B.,1

B,1

B, 1 r=20
B,1 A 100%
B.1

B.1

B.O

?

We have constructed a table lookup model from the experience

p—

Planning with a Model

m Given a model M, = (P,,R,)

m Solve the MDP (S, A.P,, R,)
m Using favourite planning algorithm

O VaI.ue l.teratl.on } Lecture 3
m Policy iteration

m [ree search
m ...

p—

Today’s Lecture

Sample based Planning

m A simple but powerful approach to planning

m Use the model only to generate samEIes

m Sample experience from model

St+1 ~ Py(St+1 | S, Ar)
Re+1 = Ry(Ret1 | St, Ar)

m Apply model-free RL to samples, e.g.:

m Monte-Carlo control
m Sarsa
m Q-learning

Instead of
Using Dynamic
Programming

m Sample-based planning methods are often more efficient

Tabular Q-Planning

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S”:
Q(S, A) « Q(S, A) + a[R + ymax, Q(S', a) — Q(S, 4)]

Back to AB Example

m Construct a table-lookup model from real experience

m Apply model-free RL to sampled experience

Real experience Sampled experience
AL 0, B, 0 B, 1

B, 1 B, O

B, 1 B, 1

B, 1 A, 0, B, 1
B, 1 B 1

B, 1 A, 0 B, 1
B, 1 B 1

B, 0 B. 0

. Monte-Carlo learning: V(A) =1, V(B) =0.75

Why would we want to do this?

Types of Planning Algorithms

Planning can be used in two ways:

» Background Planning

- Use Planning to gradually improve a policy or value function
on the basis of simulated experience obtained from a
model

> Planning is not focused on any particular state
> Best known algorithm: Dyna

» Decision Time Planning

> Planning focused on finding the best action for a particular
state

- Algorithm run separately for each new state encountered
> Best known algorithm: Monte Carlo Tree Search (MCTS)

Background Planning:
Dyna Algorithm

p—

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)

S, s P:,S’
R=TR2

Simulated experience Sampled from model (approximate MDP)

S'~P,(S'| S, A)

R=R,(R|S,A)

Real experienc Sampled experience
A, 0 B, 0 B, 1

B, 1 .y B. 0

B, 1 s o 75% B. 1

g' i D120, 5 g (1)' B, 1
B, 1 &% 0 B H
B: ‘4 (] B 1

B 0 B, 0

Dyna Architecture

value/policy

acting
planning direct
RL
model experlence
model

learning

Dyna Assumptions

1. The Environment is deterministic

2. If the model is queried with the State-Action pair
that has been experienced before, it simply
returns the last observed next State and next
Reward as its prediction

3. During planning the Q-planning algorithm
randomly samples only from the State-Action

pairs that have previously been experienced

Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € 8§ and a € A(s)
Do forever:

) S « current (nonterminal) state

b) A « e-greedy(S, Q)

(a

(

(c) Execute action A; observe resultant reward, R, and state, S’
(d) Q(S,A) « Q(S,A) + a| R+ ymax, Q(S,a) — Q(S, A)]

(e) Model(S,A) < R,S’ (assuming deterministic environment)
(

f) Repeat n times:
S < random previously observed state
A + random action previously taken in S
R,S" < Model(S, A)
Q(S,A) « Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]

Dyna-Q on a Simple Maze

800+ .
. S
6004 l‘ H actions

Steps { 0 planning steps

per 400 (direct RL only)
episode ll 5 planning steps

50 planning steps
2004

144

Episodes

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly

as possible.

Dyna-Q on a Simple Maze

WITHOUT PLANNING (72=0) WITH PLANNING (n=50)
| G ==ttt |G

} e R AR

S S mal Al el R B
e

m |-t

e I e 0 R

Figure 8.3: Policies found by planning and nonplanning Dyna-(Q) agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent. |

Decision Time Planning
Monte Carlo Tree Search

p—

Decision Time Planning

» Decision Time Planning focuses on a
particular state

» Agent finds itself in state S

- Agent begins planning, with the objective of
choosing a single best action to take

- The Agent takes the chosen Action, the planning
process stops

» Planning process re-started for each new

state

Instead of computing
a policy 7(S) ahead of
time, DTP makes
decisions in ‘real time’

Observation

Action

Forward Search

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

S,

T Q'r T T T

0N / /A /N \ 7\ N
L /\\: /A :/\ | I\l/

m No need to solve whole MDP, just sub-MDP starting from now

Simulation Based Search

m Forward search paradigm using sample-based planning
m Simulate episodes of experience from now with the model

m Apply model-free RL to simulated episodes

700 0@ 00moVNE R ©

QOFQOFE QREOQEOE 0 Q
LAY \ /N N
"I\ N :/ | N

/ !
/ \ . / \ / \ /

Simulation Based Search (cont)

m Simulate episodes of experience from now with the model

{sf, A RE 1, ... S5 _1 ~ M,

m Apply model-free RL to simulated episodes

m Monte-Carlo control — Monte-Carlo search
m Sarsa — TD search

We also want to make the process of finding the best action as
efficient as possible, since we may have limited time to make a decision

Simple Monte Carlo Search

m Given a model M,, and a simulation policy 7 Also called
m For each action a € A Rollout Policy

m Simulate K episodes from current (real) state s;

k k k k1K
{5t= dy Rt+1a 5t+1> At+1’ “eey ST}k=1 ~ My,

m Evaluate actions by mean return (Monte-Carlo evaluation)

Only the root 1 K p
Is evaluated Q(sz,a) = K Z Gt — qr(st, a)
k=1
m Select current (real) action with maximum value s
al a2

ar = argmax Q(s¢, a)

acA /////

Monte Carlo Tree Search

» Can we do better?

» Main ldea: Evaluate more than just the Root
State (but still not all the states)

Monte Carlo Tree Search (MCTS)

Repeat while time remains

L»Selectlon — Expansion = Simulation =——% Backup ——

¥y

Tree Rollout
Policy Policy

MCTS

» Selection
- Two types of nodes:

1. Those with child nodes whose Q values have been evaluated: For these nodes
selection is done using algorithms such as epsilon greedy, UCB etc

2. Those which have at least one un-evaluated child node
For these nodes, choose one of the un-evaluated Actions and expand using the
Rollout policy.

» Expansion

> Proceed down the tree using the Selection rule, until you come across a node that has
at lease one un-evaluated Action. Choose one of the un-evaluated Actions and
expand using the Rollout Policy.

» Simulation

> This is the Rollout process. Proceed down the tree using the Rollout Policy
until you hit the terminal state.

» Backup

- Use the Backup Formula to compute the Q values for all the (S,A)
pairs along the path

Advantages of MC Tree Search

m Highly selective best-first search

m Evaluates states dynamically (unlike e.g. DP)

m Uses sampling to break curse of dimensionality

m Works for “black-box” models (only requires samples)

m Computationally efficient, anytime, parallelisable

Can potentially re-use the Q values for the next run of the
tree search

p—

Playing GO with MCTS and Deep
Reinforcement Learning

p—

Alpha Go Zero Algorithm

Mastering the Game of Go without Human Knowledge
David Silver*, Julian Schrittwieser*, Karen Simonyan*, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Huberl, Lucas Buker, Matthew Lai, Adrian Bolon, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, Demis Hassabis.

DeepMind, 5 New Street Square, London EC4A 3TW.

THE INTERMATIDNAL WELKLY JOURNAL OF SCIERCE

*These authors contributed equally to this work.

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, su-
perhuman proficiency in challenging domains. Recently, AlphaGo became the first program
to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated posi-
tions and selected moves using deep neural networks. These neural networks were trained
by supervised learning from human expert moves, and by reinforcement learning from self-
play. Here, we introduce an algorithm based solely on reinforcement learning, without hu-
man data, guidance, or domain knowledge beyond game rules. AlphaGo becomes its own
teacher: a neural network is trained to predict AlphaGo’s own move selections and also the
winner of AlphaGo’s games. This neural network improves the strength of tree search, re-
sulting in higher quality move selection and stronger self-play in the next iteration. Starting
tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning

At last — a computer program that 100-0 against the previously published, champion-defeating AlphaGo.
can beat a champion Go player PAGE 484

Much progress towards artificial intelligence has been made using supervised learning sys-

A L L SYS TE Ms G 0 tems that are trained to replicate the decisions of human experts ' . However, expert data is often
- expensive, unreliable, or simply unavailable. Even when reliable data is available it may impose a

/ ceiling on the performance of systems trained in this manner °. In contrast, reinforcement learn-

ing systems are trained from their own experience, in principle allowing them to exceed human

CONSERVATION RESEARCA ETHICS POPULAR SCIENSE 2 NATUUUASS COM

SONGBIRDS EC NG : e capabilities, and to operate in domains where human expertise is lacking. Recently, there has been
‘ rapid progress towards this goal, using deep neural networks trained by reinforcement learning.
These systems have outperformed humans in computer games such as Atari ®7 and 3D virtual en-

vironments *'°. However, the most challenging domains in terms of human intellect — such as the

Game of Go

m [he ancient oriental game of
Go is 2500 years old

m Considered to be the hardest
classic board game

m Considered a grand

challenge task for Al
(John McCarthy)

m [raditional game-tree search
has failed in Go

Rules of Go

m Usually played on 19x19, also 13x13 or 9x9 board
m Simple rules, complex strategy

m Black and white place down stones alternately

m Surrounded stones are captured and removed

m [he player with more territory wins the game

Challenges in Playing Go

» Older methods that worked well for games such as Chess did
not work well for Go

» Search Space for Go is significantly larger than that for Chess
> Go Legal Moves per Position approx. 250 vs 35 for Chess
> Number of moves in a Go game approx. 150 vs 80 for Chess

» Exhaustive Search is infeasible
» Difficulty in defining an adequate Position Evaluation Function

The Game of GO

19 X 19 Board

000000000

000000000 |
® 000000100
000000000
000000000
000000000
000000000
. 000000000

s (state) (e.g. we can represent the board into a matrix-like form)

Computer Aided GO

d =1 d =2
® O®
Computer Go
Artificial w— QS
Intelligence
s (state) .
a (action)

Givens, pick the best a

The Agent’s brain is now a
combination of a Neural Network
and MCTS!

T \

MCTS

Observation Action

AlphaGo Zero Neural Network

é’ ,D(al,S, W)

Probabilities for
next move

=> p(a362; S, W)

Probability that state S will
F} 1%
result in a Win

41 Convolutional Layers

« ‘Two-Headed’ Neural Network with two outputs:
— Output 1: The Move (Action) Probabilities for State S,
— Output 2: The Value Function for State S, which is the probability
of winning the game starting from State S

AlphaGo Zero State

% p(al,s, W)

Probabilities for
next move

—y p(asez, s, w)

— v Probability that state S will
result in a Win

* InputS: 19 x19 x17 Image Stack consisting of 17 binary feature planes.
— First 8 Feature Planes are raw representations of the board position for
Player 1 + 7 previous board positions
— Next 8 Feature planes similarly code the positions for Player 2
— The final Feature Plane has a constant value indicating the color of the

current play

How Does AlphaGo Zero fit
within the RL Framework?

» Recall the Policy Gradient Algorithm

» We were not able to train the Neural Network using plain

Logistic Regression since we didn’t know the optimal Action
for state S

> p(A41|S, W) m(A, S, W)

® (]
S ———» . .
o, o o P

W > P(Ag|S, W) n(4y, s W)

7

What if we knew the Optimal Action?

Then we can simply use the Logistic Regression Reward Function L
to optimize the Neural Network!
K

L(W) = Z T log py

k=1

AlphaGo Zero Algorithm

1. For a given state S, use the Neural Network to do MCTS using the Move
probabilities p(S) and Value v(S).

2. Use the results of MCTS to find better Move Probabilities n(S) for state S
3. Proceed in this manner until the game ends, resulting in a win (z = +1) or
aloss (z=-1)

4. Use (m(S),z) values as a training label for the Neural Network, and run
Gradient Descent on the network using the Loss Function | given by

I=(z—v)*— =" logp+ (|0« Regularization Term to
(

/ \Orevent Overfitting

Mean Square Error Cross Entropy Loss between Label = and
Network Output p

(9]

(See Lecture 8 p. 53)

AlphaGo Zero Training Algorithm

3) Make a move by sampling ©

a Self-play s, / s,

a, ~mn, ! a, ~m,
_b o — ﬁ"“"’ % Generate a Game

Episode using Self Play
1) Do MCTS /\ /\

A/\A /\/\f#\/\i\ AAA AAA A/\A -~ ~ n\ Y ~N A -f\ ﬁﬁﬁﬁﬁ
4) Game Result, Win or Loss
I . -
2) Estimate better move probabilities e 3 z

b Neural network training

Use the results of the
Episode to train the
Neural Network

Use the new Neural
Network parameters
in the next episode of
self play

n 1 n

(p.v)=f,(s) and 1=(z—v)*— =" logp+ ||0|?

4.9 million games of self-play used!
Took about 3 days

AlphaGo Zero MCTS

1. Each edge (s,a) in the tree stores a Prior
Probability P(s,a), a Visit Count N(s,a) and
an Action Value Q(s,a)

2. Traverse the tree by selecting the edge with
maximum value of
Q(s,a) + U(s,a), where
P(s,a)
Us,a) 14+ N(s,a)
Until a Leaf Node s’ is encountered

3. This leaf node is evaluated using the Neural
Network to compute both (P(s’,a), V(s’))

4. Each edge traversed in the tree is updated to
increment its visit count N(s,a) and Action Value

Q(s,a) using
1 4
~ N(s,a) Z VEs)

s’|(s,a)-s!

5. Once the search is complete, move
MCTS run for 1600 iterations probabilities w are returned, proportional
“ to N'/= where N is the Visit Count of each

move from the Root State and 7 is a
\ temperature parameter

Alpha Go Zero

Improve Policy for State S
using MCTS

Evaluation Policy for
State S, using
neural Network

A

Policy Improvement by Rollout (MCTS)
VS
Policy Improvement by Minimization

Results

b Elo rating system
3,500+

3,000+
2,500+
2,000+
1,500+
1,000+

500-

0..
Rollouts @ e o o
Value network @ e o o

Policynetwork @ e @ ®
Performance with different combinations of AlphaGo components

Further Reading

» Model Learning and Background Planning:
Chapter 8, Sections 8.1-8.2

» Decision Time Planning and Monte Carlo Tree
Search: Chapter 8, Sections 8.8-8.11

» Playing Go: Chapter 16, Section 16.6

