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Why would we want to do this?



Planning can be used in two ways:
} Background Planning
◦ Use Planning to gradually improve a policy or value function 

on the basis of simulated experience obtained from a 
model
◦ Planning is not focused on any particular state
◦ Best known algorithm: Dyna

} Decision Time Planning
◦ Planning focused on finding the best action for a particular 

state
◦ Algorithm run separately for each new state encountered
◦ Best known algorithm: Monte Carlo Tree Search (MCTS)









1. The Environment is deterministic
2. If the model is queried with the State-Action pair 

that has been experienced before, it simply 
returns the last observed next State and next 
Reward as its prediction

3. During planning the Q-planning algorithm 
randomly samples only from the State-Action 
pairs that have previously been experienced 











} Decision Time Planning focuses on a 
particular state

} Agent finds itself in state S
◦ Agent begins planning, with the objective of 

choosing a single best action to take
◦ The Agent takes the chosen Action, the planning 

process stops
} Planning process re-started for each new 

state
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ActionObservation

Agent

Tree Based Planner

Reward

Instead of computing
a policy 𝜋(𝑆) ahead of

time, DTP makes
decisions in ‘real time’







We also want to make the process of finding the best action as
efficient as possible, since we may have limited time to make a decision



Only the root
Is evaluated

s
a1 a2

Also called
Rollout Policy



} Can we do better?
} Main Idea: Evaluate more than just the Root 

State (but still not all the states)





} Selection
◦ Two types of nodes:

1. Those with child nodes whose Q values have been evaluated: For these nodes 
selection is done using algorithms such as epsilon greedy, UCB etc

2. Those which have at least one un-evaluated child node
For these nodes, choose one of the un-evaluated Actions and expand using the 
Rollout policy.

} Expansion
◦ Proceed down the tree using the Selection rule, until you come across a node that has 

at lease one un-evaluated Action. Choose one of the un-evaluated Actions and 
expand using the Rollout Policy.

} Simulation 
◦ This is the Rollout process. Proceed down the tree using the Rollout Policy 

until you hit the terminal state.
} Backup
◦ Use the Backup Formula to compute the Q values for all the (S,A)

pairs along the path
𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴 )



Can potentially re-use the Q values for the next run of the
tree search 





Alpha Go Zero Algorithm







} Older methods that worked well for games such as Chess did 
not work well for Go

} Search Space for Go is significantly larger than that for Chess
◦ Go Legal Moves per Position approx. 250 vs 35 for Chess
◦ Number of moves in a Go game approx. 150 vs 80 for Chess

} Exhaustive Search is infeasible
} Difficulty in defining an adequate Position Evaluation Function



19 X 19 Board
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The Agent’s brain is now a
combination of a Neural Network

and MCTS!

NN MCTS



p 𝑎!, 𝑠, 𝑤

𝑝 𝑎"#$, 𝑠, 𝑤

𝜈

• ‘Two-Headed’ Neural Network with two outputs: 
- Output 1: The Move (Action) Probabilities for State S, 
- Output 2: The Value Function for State S, which is the probability
of winning the game starting from State S

Probabilities for
next move

Probability that state S will
result in a Win

S

41 Convolutional Layers



• Input S: 19 x19 x17 Image Stack consisting of 17 binary feature planes.
- First 8 Feature Planes are raw representations of the board position for
Player 1 + 7 previous board positions
- Next 8 Feature planes similarly code the positions for Player 2
- The final Feature Plane has a constant value indicating the color of the
    current play

p 𝑎!, 𝑠, 𝑤

𝑝 𝑎"#$, 𝑠, 𝑤

𝜈

Probabilities for
next move

Probability that state S will
result in a Win

S



} Recall the Policy Gradient Algorithm
} We were not able to train the Neural Network using plain 

Logistic Regression since we didn’t know the optimal Action 
for state S

S
w

p(𝐴.|𝑆,𝑊)

p(𝐴/|𝑆,𝑊)

𝜋 𝐴!, 𝑆,𝑊

𝜋 𝐴" , 𝑆,𝑊

What if we knew the Optimal Action?

Then we can simply use the Logistic Regression Reward Function L
to optimize the Neural Network!

𝐿 𝑊 = 3
#$!

"

𝜋# log 𝑝#



1. For a given state S, use the Neural Network to do MCTS using the Move 
probabilities p(S) and Value v(S). 

2. Use the results of MCTS to find better Move Probabilities 𝜋(𝑆) for state S
3. Proceed in this manner until the game ends, resulting in a win (z = +1) or 

a loss (z = -1)
4. Use (𝜋 𝑆 , 𝑧) values as a training label for the Neural Network, and run 

Gradient Descent on the network using the Loss Function l given by

5. Go back to Step 1

Mean Square Error Cross Entropy Loss between Label 𝜋 and
Network Output p 

(See Lecture 8 p. 53)

Regularization Term to
prevent Overfitting



1) Do MCTS

2) Estimate better move probabilities

3) Make a move by sampling 𝜋

4) Game Result, Win or Loss

Generate a Game 
Episode using Self Play

Use the results of the
Episode to train the

Neural Network

Use the new Neural
Network parameters

in the next episode of
self play

4.9 million games of self-play used!
Took about 3 days



2. Traverse the tree by selecting the edge with
maximum value of
Q(s,a) + U(s,a), where

𝑈 𝑠, 𝑎 ∝
𝑃(𝑠, 𝑎)

1 + 𝑁(𝑠, 𝑎)
Until a Leaf Node s’ is encountered

1. Each edge (s,a) in the tree stores a Prior
Probability P(s,a), a Visit Count N(s,a) and
an Action Value Q(s,a) 

3. This leaf node is evaluated using the Neural
Network to compute both (P(s’,a), V(s’))

4. Each edge traversed in the tree is updated to
increment its visit count N(s,a) and Action Value
Q(s,a) using 

𝑄 𝑠, 𝑎 =
1

𝑁(𝑠, 𝑎) 3
%!|(%,))→%,

𝑉(𝑠,)

5. Once the search is complete, move 
probabilities 𝜋	are returned, proportional 
to 𝑁 ⁄" # where N is the Visit Count of each
move from the Root State and 𝜏 is a
temperature parameter

MCTS run for 1600 iterations



Evaluation Policy for
State S, using

neural Network

Improve Policy for State S
using MCTS

Policy Improvement by Rollout (MCTS)
vs

Policy Improvement by Minimization





} Model Learning and Background Planning: 
Chapter 8, Sections 8.1-8.2

} Decision Time Planning and Monte Carlo Tree 
Search: Chapter 8, Sections 8.8-8.11

} Playing Go: Chapter 16, Section 16.6


