Policy Gradient Methods

Lecture 8
Subir Varma

Last Lecture
Output: Q Function for

Input: State S Actions in state S

‘ — Q(SiA] 1W)

~ i S ." o
S §i < ” N
q S 'C

Policy Function

Focus was on Value Function Approximations

Policy was generated indirectly by taking the max of the Q functions

This Lecture

Output: Probability Distribution for

Input: State S Actions in state S
= o — 7T(A1,S, W) = P(A1|S, W)
e o
-

s R g

B> = g

= P . = S -
e N LN TN T

R o o .]

®, S -

" T[(AK,S, W) — P(AK|S, W)

Generate the Optimal Policy Directly without using Q Functions

How to Train the Policy Network?

Output: Q Function for

Input: State S Actions in state S
g QS,ALW)

i : e

S ——» & .

-

—_— Q(S,AK,W)

Policy Function

Basic Issue:
What Reward Function should we use for the
Policy Network such that it outputs the Optimal Policy

Reward Functions

Three Techniques:
« The Reinforce Algorithm (also called Policy Gradients)
« R = G(S)L, where G is the Reward to Go and L is the
Reward Function used in Logistic Regression
« Works only for MDPs with terminating Episodes
« Actor-Critic Algorithms
« R=r+ V) - Vu(S’), where r is the 1-step Reward and
V. is the NN computed Value Function for the MDP
« Works for non-terminating MDPs
« Deterministic Policy Gradients Algorithm
« R =Q,(,A), where Q,(S,A) is the NN computed Q function
for the MDP
« Works for continuous Action Spaces

K

L(W) = z ti logyy

k=1

Value Based and Policy Based RL

m Value Based
m Learnt Value Function
m Implicit policy
(e.g. e-greedy)
m Policy Based
m No Value Function
m Learnt Policy
m Actor-Critic

m Learnt Value Function
m Learnt Policy

B T,

Value Fung¢tion

Value-Based

Policy

Policy-Based

MC

DPG

Reinforce

SARSA
Q-Learning
DQN

Pros and Cons of Policy Based RL

Advantages:
m Better convergence properties
m Effective in high-dimensional or continuous action spaces

m Can learn stochastic policies

Disadvantages:
m [ypically converge to a local rather than global optimum

m Evaluating a policy is typically inefficient and high variance

Typically required 10x the number of episodes to converge
compared to DQN

Logistic Regression

Choose weights to _1gvM K _ _
Maximize Reward LW) = 5 2j=1 Zk=1tx () 108y ()

y=0(a) ="

w; «w; —nx;(y — t) Wi < Wi —1X;(Vk — tk)

The Policy Gradient Algorithm
(Reinforce)

p—

Basic Idea behind Policy
Gradients

& p—) T’:(A]_;S; W) = P(Allsl W)

e (A, S, W) = P(Ax|S, W)

Problem: We want to find a Neural Network whose output gives the
Optimal Policy that maximizes the RL Reward R

Find a Reward Function R’ for the Neural Network, such that
the the weights W that maximize R’ also result in the Optimal Policy
for the RL problem

Reward R Reward R’

Playing Pong using Policy
Gradients

p—

Policy Network for Pong

/I SUE= 1 + exp(—a)

— y=o0(a) >

y = Probability of
moving the paddle UP

height width

[30 x 80]

array of
Pixels

Policy Network for Pong

Input Hidden Layer Output

=’ T
height width
(80 x 80]
array of y = Probability of
Pixels

moving the paddle UP

p—

Policy Network for Pong

height width

[30 x 80]
array

raw pixels hidden layer

‘\\// ® orobability of
lf,'y‘« moving UP
Zav ‘n‘_\.“

SRR —
XX
NGy

E.g. 200 nodes in the hidden network, so:

[(80*80)*200 + 200] + [200*1 + 1] =
Layer 1 Layer 2

Mi—

~1.3M parameters

Policy Network for Pong

Neural Network with a
Game Screen single Hidden Layer

raw pixels hidden layer

height width ‘\\Q’/ probability of
3‘3}@(‘;'/; . moving UP
[80 X 80] ' >/“A‘?AV‘L_ .
array of jgv,zw
Pixels AN S

/"'s\"

N

h = np.dot(Wl, x) # compute hidden layer neuron activations

h[h<(0] = 0 # ReLU nonlinearity: threshold at zero

logp = np.dot(W2, h) # compute log probability of going up

p=1.0/ (1.0 + np.exp(=-logp)) # sigmoid function (gives probability of going up)

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(X2’DOWN) Training Using
(X3, U P) Supervised Learning

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

Labels

t=1, UP
t = 0, DOWN
Maximize Label Network Output

1 ¢
Lw) =2 [tlogy + (1~ D) log (1~ y)]
j=1 :

yU)= .
1+exp(—2 w,x,(j)-b)

raw pixels hidden layer

‘\\ : probability of

AT
0‘\\7
VAt

Except, we don’t have labels...

Can’t use Supervised Learning

Let’s just act according to our current policy...
As given by the Neural Network

raw pixels hidden layer

i\\j{ S sobaviityoff ROllOUt the policy
Actions are sampled °V'"g "] and collect an

from Network ' XHREK i
om Network Output ‘V episode
2NH

WIN

Collect many rollouts...

4 rollouts:

. UP >.DOWN DOWND’ UupP >‘ WIN

o Vg 'F LOSE
* .o LOSE

WIN

Assume that Every Action we took was correct!

® UP r® DOWN». UP r® upP '.DOWN* DOWN», DOWN». uUpP »® | WIN
@ 0" -0 -8 LOSE
® -0 e -9 +@ LOSE
@ -® @ WIN

Increase the probability
of all Green Actions

Recall from Lecture 6: We can increase the probability And We can Increase .the probal?ility
of Action 1 by changing the weights as per of Action 0 by changing the weights as per

w; < w; —nX;y

w; < w; +nx;(t—y)

Assume that Every Action we took was incorrect!

DOWN, g DOWN_ o UP o \VIN
@ LOSE

DOWN o WP o | OSE
~® WIN

Decrease the probability
of all Red Actions

And we can decrease the probability
of Action 0 by changing the weights as per

Recall from Lecture 6: We can decrease the probability
of Action 1 by changing the weights as per

Wi < w; + Xy

w; < w; +nx;(t—y)

raw pixels hidden layer

probability of
moving UP

Effectively, we are maximizing
JW) =G [tlogy + (1 —t)log(1 —y)]= GL
Where

« Lis the Cross Entropy function used as a Reward
Function for Logistic Regression

« G is the total Reward for a sample Monte Carlo Episode.
In this example G = +1 or -1. We will show that in general

G= Z};l R]

w; « w; +nGx;(t —y)

With K Actions

Output: Probability Distribution for
Input: State S Actions in state S

_j:._é-';'.; — 7T(A1, S, W)

— 7T(AK, S, W)

S ——»

Maximize JW) = G Xi=q ty logmy

Wik < Wi +nGx;(t, — yi)

Monte Carlo Policy Gradients:
Reinforce

0
Wew+nﬁv=w+nGaa—va

Use these actions
as labels to train Episode 1: Actions
Policy Network are chosen
according to
Policy m1

Episode 2: Actions
O Ol © O O [f] O YO |7 [f] O are chosen

according to

a 43 Improved Policy 72
T Q O [E R O 1] 0 Q
/ \ / N

— m(ag, s,w)
JW) = G YXX_, tp logm, =GL(W) :
r(ak,s,w)
G= 23'1:1 R; © The total reward for the Episode
B oL Choose Weights to

— Vi)

Wik < Wix +1G

Wik Wik + nle(tk Maximize GL(W)

an'k

The Reinforce Algorithm

REINFORCE:
Initialize policy parameters ¢ arbitrarily
for each episode {s1,a1,m, - ,sT_1,ar_1,r7} ~ 79 doO

fort=1to T - do
060+ a gt
endfor A aw\
endfor >

return ¢

Compute gradient using action a; as the Label at time t
Total Reward for

the Episode

Derivation of Likelihood Ratio
Formula

p—

Monte Carlo: Policy Gradients

J

W<—W+77%

Episode 1: Actions
are chosen
according to
Policy m1

Episode 2: Actions

T 1 O are ch_osen
according to

Improved Policy 72

Monte Carlo: Policy Gradients

J
(_ —
Wew + 1 I

S, —

pisode 1: Actions
are chosen
according to
Policy m1

Episode 2: Actions

T T T T It are chosen
according to

Improved Policy 72

-

T T T T
) \ | / \ C? /N b I\ ’ 7\ ;N
! \ / \ / \ | / \ 1 / \l
What is an appropriate
Reward Function J for the Policy Network? m(ay, s,w)

If we change the parameters w F0 %
to optimize J, then the Policy n(ag, s, w)
should improve.

Reward Function for Policy
Network

Given a history under some policy «:
(S1, a1, 1), (Sp @ T), - (Swy Amy Tm)

Total Expected Reward
— M M
](W) B ETL' [2t=1 T(St’ At)] R(t,) = Zr(strAt)

t=1

This can be split up into episodes:

Total reward for

E
J(W) = z P”(TAe, w) R(Te)' episode 7,
e=1

Probability of generating episode 7, under Policy ©

Reward Function for Policy
Network

By splitting the transitions into episodes, the Reward
Function can be estimated using sample episodes:

€ €
1
JW) =) Pt wIR(re) = 5) R(z.)
e=1 e=1

Algorithm:
1. Generate sample episodes using weights w (which results in

policy)
2. Use the data from the sample episodes to tweak the

weights, so as to increase the Reward Function]
weew+ ,
OV How do we compute

This results in a new improved policy this gradient 7?
3. Go back to step 1 and repeat

Estimating the Reward Gradient from
Sample Episodes

JW) = E[R(z,)] = X5-1 P™ (1., w) R(7,)

YW) _ iapﬂ(re,w)

aW] aW R(Te)
£
W) _ N P"(e,w) 0P™ (7, w) RCz,)
aW - 1P7T(Te w) ow €
£
agWw) T dlogP™(t,,w)
W o ezlp (Te; W) ow R(Te)
dl P” I
_F [0g (Te w) R(Te)] How to compute this ?

~ lzg 6logP”(1'e,W) R(Te)

ow

Implies that the Gradient can be
computed directly
from data generated by sample episodes!!

Probability of Generating an Episode

-
O
-
\\
-
-
-

P(siy1ls; ap)my (ails;)

Reward Gradient can be Estimated

Model Free

T
P™(to,w) = np(5i+1|5i» a)my (a;|s;)
i=1

log P (1o, W) = lognp(5i+1|5i» a;)my (a;|s;)
i=1 LW) = [t(Dlogy() + (1 — (D)) log(1 — y())]
T

T
= Z lOgP(Si+1|Si; ai) + Z log T[W(ailsi)
i=1 i=1

d log P (t,,wW)

ow

ZT d log my, (a;ls;) .

ow

This step makes the
Policy Gradient Algorithms

Model Free!!
It follows that L(s;, a;)
y This gradient can potentially

oJj(wW 0 log Tus(a:ls be evaluated by sampling

a(w) [ZT : aM‘;(5 R(7e)] without knowledge of the

model
JOL; 1 oL;
— E[ZZ 1 aWR(Te)] ~ g §=1(ZT 1 aw)R(Te) .

L(W) = z Ly 10g %

k=1

Monte Carlo Policy Gradients:
Reinforce

oL
W<—W+77Gm

t Episode 1: Actions

are chosen

according to
Policy m1

Episode 2: Actions
are chosen
according to
Improved Policy 72

-|—e@
-
-

T Q T
|
A

da] (W)

Z

(ST 5396,

Full Gradient Descent

aJ(W) _

oL

ow

ow

Ge

Stochastic Gradient Descent

The Reinforce Algorithm

REINFORCE:
Initialize policy parameters ¢ arbitrarily
for each episode {s1,a1,m, - ,sT_1,ar_1,r7} ~ 79 doO

fort=1to T - do
0 — 0+« aLiG

endfor ow ¢

endfor
return ¢

How to compute gradients ?

Monte Carlo Policy Gradients:

a] oL
We w4+ n——=w+n6—
T ow i ow
Use these actions
Sl' / as labels to train EpiSOde 1: Actions
Policy Network are chosen
according to
Policy 71
Q ()

Episode 2: Actions

O Ol © O O [f] O YO |7 [f] O are chosen
according to

a 43 Improved Policy 72
T Q O [E R O 1] 0 Q
AN SN A | { \

m(aq, s, w)

\

G = 3-;1 R; © The total reward for the episode g =

n(ag,s,w)

If G for the episode is positive, then increase the
probability of taking all actions in the episode and vice versa

The case of K = 2

(/ xq N Wi
TN\ W, 4 N \
(\ﬁxvz /# ‘N o= Z wix; + b']é y = o(a) ="
l=‘1—' //
oL G
. ow ¢
{Wi +1x,(S)GS)[1 ~ y()], if A=1
W; < ;
w; —nx(S)G(S)y(S), if A=0

Where A is the Action that the Agent takes in State S
And G(S) is the Total Reward for Episode

The case of K > 2

>y, = exp(ay)
! 2:IIS=1 ag

K_ZIIS=1ak
e A Wi T 0 (S)GS)[1 = (5], if k=A
T Wi = 1x:(S)G ()i (5), ifk+ A

Where A is the Action that the Agent takes in State S
And G(S) is the Total Reward for Episode

Gradient Computation in

Supervised Learning

Maximum likelihood:

Given:

actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states

—

Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax_cross_entropy with logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative likelihoods) ¥
gradients = loss.gradients(loss, variables)

Computes L = Yx_, t; logmy

Gradient Computation in Policy
Gradients

Policy gradient:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

q values — (N*T) x 1 tensor of estimated state-action values
i

Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax_cross_entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative_ likelihoods, q_values) o
loss = tf.reduce mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

Computes L = Y X_, t; logm,

Computes L = (XL 1) Xk=1 tic logmy

Issues

» High Variance

» The algorithm takes a long time to converge

» It is an On-Policy algorithm: Existing training
data cannot be reused

Variance Reduction

p—

Techniques for Variance
Reduction

Exploiting Causality: Reward to-go
Discounting

Baselines

Actor-Critic Algorithms

1.
2.
3.
4.

Exploiting Causality: Reward
To-Go

Jw) =1LW)) R,
=1

Observation: Action taken at time i can only influence the rewards
from i onwards

Jw) =1LW)) R,

5](W) ZT alogan

Monte Carlo Policy Gradients:
Reinforce

0
Wew+n$=w+nG§—va

Use these actions
St / as labels to train Episode 1: Actions
Policy Network are chosen
according to
Policy m1

Episode 2: Actions

O Ol © O O [f] O YO |7 [f] O are chosen
according to

é 43 Improved Policy 72
LiFeNeNiiNe O 0 Q
l‘ // \\ : // \\ : // \\ : 7 N

m(aq, s, w)

\

G; = }1:1- R; © The total reward from step i onwards S =0

n(ag,s,w)

If G; for action a, is positive, then increase the
probability of taking that action and vice versa

Discounting

s mm s mm s mm s Em s Em Em s Em s Em s Em s Em:Em:Em:EmsEmsEm o=

discounted reward

episode start ball gets past our paddle -1 reward

Give more weight to Actions that occur near Reward

Baselines

Instead of . 6](W) E(ZT aLl
=1 aw

pothis .~ YW _per i py)

ow 1=1 5y

We are only interested in how good the reward is compared to its average value,
not its absolute value.

TE
: *Dj
=370, G

=1

Is Baselining allowed? B

Proof

ow

aJ(W) _F dlogP™(t,,w)
ow [

(R(7e) — b)]

dlogP™(t,, w dlogP™(t,, w
- |9Log (Te)b =fpn(Te:W) gP™(z,)b
ow ow

— fapn(re’W)b b—fP”(Te,W) =D 6(1) =0

ow

9jw)

e, T — | (R(z.) = b)|= £ [M2 e g ()

m

alogP”(Te w)

Baseline Choices

6w

Baseline can be a function of S
in general

1
1) b= MZ: G; (a constant)

2) State-dependent expected return:
b(St) =E[re+ri+1+re42+ ... +ra—1] =V7(s¢)

-2 Increase logprob of action proportionally to how much its returns are
better than the expected return under the current policy

a](W) — F le d log 1 (a;|S;) (Gl . UTL'(SL'))]

ow ow

Actor-Critic Algorithms

p—

What Problem Are We Solving?

1. Monte Carlo Policy Gradients work only for
systems with terminating episodes.

- What about systems in which the episodes do not
terminate?

>. How can we further reduce the variance

BJ(W) Z T d log my (a;
=1 Z ow

S
50 (Ry(s5,01) + Risa (Sias, i) + - + Re(sp ap)

Variance is high due to the sum of the rewards.

a](W) 1 ZT d log ﬂw(al|Sl)
ow

A= (Si) ;)

Replace with Average Value!

(Re) Introducing the Q Function!

aJj(w d log a;|S
(- 2 Z 1ZT w(]S1) qr(Si, ;)

ow

Monte Carlo evaluation
of Q(s;, a;)

What about the Baseline

oT(W 01 a;|lS
U _ Lye T, LEm@GI) 1 (s, a) — vg(s)

Recall Bellman Expectation Equation:
K

Answers the question:

v (s;) = En(aﬂsl’) qr(si, a;) If in state s; | take action a;,
j=1

then how much better is this

reward compared to the average
reward over all actions?

The Advantage Function
Define the Advantage Function as
Ar(si, ;) = qr(si, ;) — v (S;)

—a](W) 2 1 e alogngvéaASl)An(Si,ai)

The better this estimate, the lower
the variance

Estimating the Advantage

Function

Note that
An-(S,Cl) — qTL’(SIa) _ vTL’(S)

Since

From this equation it would seem
that we need to estimate both

g, and v, to estimate A4,.
However ...

qn'(S; a):R(S, Cl) + ZS’P(Sllsi a)vTL'(S’)

Approximately (along the sample path s,a,r,s’)

qr(s,a) = R(s,a) + vg(s")

So that

A (s,a) = R(s,a) + v;(s")-v,(s)

The Advantage Function can be estimated

through just the Value Function

Estimating the Value Function with
Neural Networks

—> V(S W)

Two Techniques to train the Neural Network model:
- Monte Carlo
- Temporal Difference

Value Function Estimation using
Monte Carlo

wj < w; —nx;[V(S;, W) — G(S))]
/

Update made at S
end of an Episode

100 0@EMOOOmMOoOAEE ©

SYPATIN Y-
A \ A
v ;o\ : S VA i

.

Value Function Estimation using
Temporal Difference

Update made at
every step
(S! Al R’ S’)

Overall System: Online Actor
Critic

il

In state S
Run Actor to Generate next Action A

=

Take a step in the environment

S+ ,
to generate reward R and next state S

'

target =R+ V_ (S’ W) Use (S,A,R,S’) to update the Critic’s
Neural Network parameters.

A.(S,a) =R+ V (S,W) =V (SW) 1

Use V.(S,W') to update the Actor’s
neural Network Parameters
SetS’ € S

ajw) dlogm, (S, a)

ow ow A5, W)

Online Actor-Critic Algorithm

online actor-critic algorithm:

@) 1. take action a ~ mg(als), get (s a,s’,r)

2. update V7r using target r + ')V”(")

3. evaluate A"(s a) = r(s,a) + /V"() — V”()
4. V4J(6) ~ Vo logmo(als) A" (s.)

S 5. 0+ 0+ aVeJ(0)

Continuous Action Spaces:
Deterministic Policy Gradients

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT
LEARNING

Timothy P. Lillicrap! Jonathan J. Hunt! Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver & Daan Wierstra
Google Deepmind
London, UK
{countzero, jjhunt, apritzel, heess,
etom, tassa, davidsilver, wierstta} @ google.com

ABSTRACT

We adapt the ideas underlying the success of Deep Q-Learning to the continuous
action domain. We present an actor-critic, model-free algorithm based on the de-
terministic policy gradient that can operate over continuous action spaces. Using
the same leaming algorithm, network architecture and hyper-parameters, our al-
gorithm robustly solves more than 20 simulated physics tasks, including classic
problems such as cartpole swing-up, dexterous manipulation, legged locomotion
and car driving. Our algorithm is able to find policies whose performance is com-
petitive with those found by a planning algorithm with full access to the dynamics
of the domain and its derivatives. We further demonstrate that for many of the
tasks the algorithm can leam policies “end-to-end™: directly from raw pixel in-
puts.

1 INTRODUCTION

One of the primary goals of the field of artificial intelligence is to solve complex tasks from unpro-
cessed, high-dimensional, sensory input. Recently, significant progress has been made by combin-
ing advances in deep learning for sensory processing (Krizhevsky et al., 2012) with reinforcement
learning, resulting in the “Deep Q Network™ (DQN) algorithm (Mnih et al., 2015) that is capable of
human level performance on many Atari video games using unprocessed pixels for input. To do so,
deep neural network function approximators were used to estimate the action-value function.

09.02971v5 [cs.LG] 29 Feb 2016

5

However, while DQN solves problems with high-dimensional observation spaces, it can only handle
discrete and low-dimensional action spaces. Many tasks of interest, most notably physical control
tasks, have continuous (real valued) and high dimensional action spaces. DQN cannot be straight-
forwardly applied to continuous domains since it relies on a finding the action that maximizes the
action-value function, which in the continuous valued case requires an iterative optimization process
at every step.

ArXiv: |

‘
C

An obvious approach to adapting deep reinforcement learning methods such as DQN to continuous
domains is to to simply discretize the action space. However, this has many limitations, most no-

I et e et

Continuous Action Spaces

Instead of generating the Optimal Policy

;e (A1, S, W)

> 7(Ag, S, W)

Generate the Optimal Action directly!

A

Continuous Action Spaces

Generate the Optimal Action directly!

A

How to train the Policy Network for continuous Actions?
Hint: The Optimal Action is the one that maximizes the Q Function

Idea: Use the Q Function as the Reward to train the Policy Network

Optimal

/\Acuon

Q(S,A)

DPG Algorithm

> k
Critic Network 1 (5. A W)
g W]
A
Actor S,Q Network 2 > A(S’,WZ)
W> Choose the Action that

/

"maximizes Q(S,A,W,)

Use Q(S,A,W;) as the Reward Function for Network 2
0Q(S, A, W)

Wy« W;+n

ow,

0Q(SAW) _ 9Q(SAW)) dA(SLW,)

ow,

J0A

ow,

DPG Algorithm

@ 6,

. take some action a; and observe

0033, de(J)dQ (sj,a)

Network 2

1. Choose Action A using 2. Take a step in the env and

obtain the (S5,A,R,S’) values

iy S

— Yj)

da

update ¢" and ' (e.g., Polyak averaging)

, ri), add it to B
. sample mini-batch {s;,a;,s’,r;} from B umformlv

. compute y; = 7 + 7 mMaXq/ Qo (s , Jlor (s -)) using target nets Qs and pgr

O d—a)y, dQ (5 aJ)(Qw(SJ*aJ

3. Choose the next Action
A’ using Network 2

4. Improve the Q Value by

5. Improve the Action by
improving Network 2
(Policy Improvement Step)

improving Network 1

