
Lecture 8
Subir Varma
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Focus was on Value Function Approximations

Policy was generated indirectly by taking the max of the Q functions

Input: State S
Output: Q Function for 

Actions in state S

Policy Function



S

w

𝜋 𝐴!, 𝑆,𝑊 = 𝑃(𝐴!|𝑆,𝑊)

𝜋 𝐴", 𝑆,𝑊 = 𝑃(𝐴"|𝑆,𝑊)

Generate the Optimal Policy Directly without using Q Functions

Input: State S
Output: Probability Distribution for

Actions in state S



Basic Issue:
What Reward Function should we use for the

Policy Network such that it outputs the Optimal Policy



Three Techniques:
• The Reinforce Algorithm (also called Policy Gradients)

• R = G(S)L, where G is the Reward to Go and L is the
Reward Function used in Logistic Regression

• Works only for MDPs with terminating Episodes
• Actor-Critic Algorithms

• R = r + Vw(S) – Vw(S’), where r is the 1-step Reward and
Vw is the NN computed Value Function for the MDP

• Works for non-terminating MDPs
• Deterministic Policy Gradients Algorithm

• R = Qw(S,A), where Qw(S,A) is the NN computed Q function
for the MDP

• Works for continuous Action Spaces

𝐿 𝑊 = $
!"#

$

𝑡! log 𝑦!



MC
SARSA
Q-Learning
DQN

ReinforceDPG



Typically required 10x the number of episodes to converge
compared to DQN



𝑤! ← 𝑤! − 𝜂𝑥#(𝑦 − 𝑡) 𝑤!" ← 𝑤!" − 𝜂𝑥#(𝑦$ − 𝑡$)

𝐿 𝑊 = #
$
∑%&#$ ∑"&#' 𝑡" 𝑗 log 𝑦"(j)Choose weights to

Maximize Reward





S
w

𝜋 𝐴!, 𝑆,𝑊 = 𝑃(𝐴!|𝑆,𝑊)

𝜋 𝐴", 𝑆,𝑊 = 𝑃(𝐴"|𝑆,𝑊)

Problem: We want to find a Neural Network whose output gives the 
Optimal Policy that maximizes the RL Reward R

Find a Reward Function R’ for the Neural Network, such that
the the weights W that maximize R’ also result in the Optimal Policy
for the RL problem

Reward R Reward R’





y = Probability of
moving the paddle UP



y = Probability of
moving the paddle UP

Input           Hidden Layer    Output





Game Screen
Neural Network with a 
single Hidden Layer

Pixels



Training Using
Supervised Learning



𝐿 𝑊 =
1
𝑀*

!"#

$

[𝑡 log 𝑦 + (1 − 𝑡) log	(1 − y)]

Maximize Label Network Output

t = 1, UP
t = 0, DOWN

Labels

Can’t use Supervised Learning



Actions are sampled 
from Network Output

As given by the Neural Network





𝑤! ← 𝑤! + 𝜂𝑥#(1 − 𝑦)

Recall from Lecture 6: We can increase the probability
of Action 1 by changing the weights as per

Assume that Every Action we took was correct!

And we can increase the probability
of Action 0 by changing the weights as per

𝑤! ← 𝑤! − 𝜂𝑥#𝑦

𝑤% ← 𝑤% + 𝜂𝑥%(𝑡 − y)

Increase the probability
of all Green Actions



Assume that Every Action we took was incorrect!

𝑤! ← 𝑤! − 𝜂𝑥#(1 − 𝑦)

Recall from Lecture 6: We can decrease the probability
of Action 1 by changing the weights as per

And we can decrease the probability
of Action 0 by changing the weights as per

𝑤! ← 𝑤! + 𝜂𝑥#𝑦

𝑤% ← 𝑤% + 𝜂𝑥%(𝑡 − y)

Decrease the probability
of all Red Actions



Effectively, we are maximizing
J 𝑊 = 𝐺	[𝑡 log 𝑦 + 1 − 𝑡 log(1 − 𝑦)]= GL

Where

• L is the Cross Entropy function used as a Reward
Function for Logistic Regression

• G is the total Reward for a sample Monte Carlo Episode.
In this example G = +1 or -1. We will show that in general
G= ∑%&#( 𝑅% 

𝑤# ← 𝑤# + 𝜂𝐺𝑥7(𝑡 − y)



S

w

𝜋 𝐴!, 𝑆,𝑊

𝜋 𝐴", 𝑆,𝑊

Input: State S
Output: Probability Distribution for

Actions in state S

𝑤%& ← 𝑤%& + 𝜂𝐺𝑥%(𝑡& − 𝑦&)

J 𝑊 = 𝐺∑&"#' 𝑡& log 𝜋&Maximize



S
𝜋 𝑎#, 𝑠, 𝑤

𝜋 𝑎$, 𝑠, 𝑤

w← 𝑤 + 𝜂 )*
)+

= 𝑤 + 𝜂𝐺 ()
(*

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2

J 𝑊 = 𝐺∑&"#' 𝑡& log 𝜋&=GL(W)

G= ∑!"#+ 𝑅! : The total reward for the Episode

a1

a2

a3

Use these actions
as labels to train
Policy Network

Choose Weights to
Maximize GL(W)𝑤%& ← 𝑤%& + 𝜂𝐺𝑥%(𝑡& − 𝑦&) 𝑤%& ← 𝑤%& + 𝜂𝐺

𝜕𝐿
𝜕𝑤%&



G ),)
)+

Compute gradient using action at as the Label at time t
Total Reward for

the Episode





S
𝜋 𝑎#, 𝑠, 𝑤

𝜋 𝑎$, 𝑠, 𝑤

w← 𝑤 + 𝜂 )*
)+

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2



S
𝜋 𝑎#, 𝑠, 𝑤

𝜋 𝑎$, 𝑠, 𝑤

w← 𝑤 + 𝜂 )*
)+

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2

What is an appropriate
Reward Function J for the Policy Network?

If we change the parameters w
to optimize J, then the Policy
should improve.



Given	a	history	under	some	policy	𝜋:
(s1,	a1,	r1),	(s2,	a2,	r2),…,(sM,	aM,	rM)

Total	Expected	Reward
𝐽(𝑊) = 𝐸8[∑9:;< 𝑟(𝑆9, 𝐴9)]

This can be split up into episodes:

𝐽(𝑊) = 	H
=:;

>

𝑃8 𝜏=, 𝑤 R(𝜏=)

Probability of generating episode 𝜏, under Policy 𝜋

Total reward for
episode 𝜏, 

R 𝜏, =*
-"#

$

𝑟(𝑆- , 𝐴-)



By splitting the transitions into episodes, the Reward 
Function can be estimated using sample episodes:

𝐽 𝑊 =	6
IJ!

K

𝑃L 𝜏I, 𝑤 R(𝜏I) ≈
1
ℇ
6
IJ!

ℇ

𝑅(𝜏I)

Algorithm:
1. Generate sample episodes using weights w (which results in 

policy 𝜋)
2. Use the data from the sample episodes to tweak the 

weights, so as to increase the Reward Function J
𝑤 ← 𝑤 + 𝜂

𝜕𝐽
𝜕𝑤

This results in a new improved policy 
3. Go back to step 1 and repeat

How do we compute 
this gradient ??



J(W) = 𝐸 R(𝜏,) = ∑,"#ℇ 𝑃/ 𝜏, , 𝑤 R(𝜏,)

𝜕𝐽(𝑊)
𝜕𝑤 	= 	*

,"#

ℇ
𝜕𝑃/ 𝜏, , 𝑤

𝜕𝑤 R(𝜏,)

𝜕𝐽(𝑊)
𝜕𝑤 	= 	*

,"#

ℇ
𝑃/ 𝜏, , 𝑤
𝑃/ 𝜏, , 𝑤

𝜕𝑃/ 𝜏, , 𝑤
𝜕𝑤 R(𝜏,)

𝜕𝐽(𝑊)
𝜕𝑤 	= 	*

,"#

ℇ

𝑃/ 𝜏, , 𝑤
𝜕𝑙𝑜𝑔𝑃/ 𝜏, , 𝑤

𝜕𝑤 R 𝜏,

           = 𝐸 TUVWX! Y",Z
TZ

R 𝜏I

         ≈ !
ℰ
∑IJ!ℰ TUVWX! Y",Z

TZ
R 𝜏I

Implies that the Gradient can be
computed directly

from data generated by sample episodes!!

How to compute this ?



𝑃L 𝜏I, 𝑤 =>
#J!

\

𝑃(𝑠#]!|𝑠#, 𝑎#)𝜋^(𝑎#|𝑠#)



log 𝑃/ 𝜏, , 𝑤 = log_
%"#

+

𝑃(𝑠%0#|𝑠% , 𝑎%)𝜋1(𝑎%|𝑠%)

= 	*
%"#

+

log 𝑃 𝑠%0# 𝑠% , 𝑎% +*
%"#

+

log 𝜋1(𝑎%|𝑠%)

T cde X!(Y",Z)
TZ

 = ∑#J!\ T cde L#(f$|g$)
TZ

It follows that

Th(^)
TZ  = 𝐸[∑#J!\ T cde L#(f$|g$)

TZ R 𝜏I ]

This step makes the
Policy Gradient Algorithms

Model Free!!

This gradient can potentially 
be evaluated by sampling 
without knowledge of the 

model

𝑃/ 𝜏, , 𝑤 =_
%"#

+

𝑃(𝑠%0#|𝑠% , 𝑎)𝜋1(𝑎%|𝑠%)

𝐿(𝑠% , 𝑎%)

= 𝐸[∑!&#( ),*
)+
𝑅(𝜏-)] ≈

#
ℰ
∑-&#ℇ (∑!&#( ),*

)+
)𝑅(𝜏-)

𝐿 𝑊 = *
&"#

'

𝑡& log 𝜋&

L 𝑊 = [𝑡 𝑗 log 𝑦 𝑗 + 1 − 𝑡 𝑗 log(1 − 𝑦 𝑗 )]



w← 𝑤 + 𝜂𝐺 ),
)+

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2

Th(^)
TZ = !ℰ∑IJ!

ℇ (∑#J!\ Ti$
TZ)𝐺I

Th(^)
TZ

= FG
FH
	𝐺=

Stochastic Gradient DescentFull Gradient Descent



𝜕𝐿!
𝜕𝑤

	𝐺-

How to compute gradients ?



S
𝜋 𝑎#, 𝑠, 𝑤

𝜋 𝑎$, 𝑠, 𝑤

w← 𝑤 + 𝜂 )*
)+

= 𝑤 + 𝜂𝐺 ()
(*

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2

𝐺% = ∑!"#+ 𝑅! : The total reward for the episode

a1

a2

a3

Use these actions
as labels to train
Policy Network

If G for the episode is positive, then increase the
probability of taking all actions in the episode and vice versa



𝑤% ← j𝑤% + 𝜂𝑥% 𝑆 𝐺 𝑆 [1 − 𝑦 𝑆 ], 	 𝑖𝑓	𝐴 = 1
𝑤% − 𝜂𝑥% 𝑆 𝐺 𝑆 𝑦 𝑆 , 	 𝑖𝑓	𝐴 = 0

Where A is the Action that the Agent takes in State S
And G(S) is the Total Reward for Episode

𝜕𝐿
𝜕𝑤	𝐺,



Where A is the Action that the Agent takes in State S
And G(S) is the Total Reward for Episode

𝑤%& ← j𝑤%& + 𝜂𝑥% 𝑆 𝐺 𝑆 [1 − 𝑦& 𝑆 ], 	 𝑖𝑓	𝑘 = 𝐴
𝑤%& − 𝜂𝑥% 𝑆 𝐺 𝑆 𝑦& 𝑆 , 	 𝑖𝑓	𝑘 ≠ 𝐴



Computes L = ∑&"#' 𝑡& log 𝜋& 



Computes L = ∑&"#' 𝑡& log 𝜋& 

Computes L = (∑𝒊"𝟏𝑴 𝒓𝒊)∑&"#' 𝑡& log 𝜋& 



} High Variance
} The algorithm takes a long time to converge
} It is an On-Policy algorithm: Existing training 

data cannot be reused





1. Exploiting Causality: Reward to-go
2. Discounting
3. Baselines
4. Actor-Critic Algorithms



Observation: Action taken at time i can only influence the rewards 
from i onwards

FI(J)
FH

= ∑#J!\ T cde L$
TZ 𝐺#

𝐽(𝑊) = 𝐿(𝑊)*
!"#

+

𝑅!

𝐽(𝑊) = 𝐿(𝑊)*
!"%

+

𝑅!



S
𝜋 𝑎#, 𝑠, 𝑤

𝜋 𝑎$, 𝑠, 𝑤

w← 𝑤 + 𝜂 )*
)+

= 𝑤 + 𝜂𝐺 ()
(*

Episode 1: Actions
are chosen 

according to 
Policy 𝜋1

Episode 2: Actions
are chosen 

according to 
Improved Policy 𝜋2

𝐺% = ∑!"%+ 𝑅! : The total reward from step i onwards

a1

a2

a3

Use these actions
as labels to train
Policy Network

If Gi for action ai is positive, then increase the
probability of taking that action and vice versa



𝐺, =*
!"#

+

𝛽!𝑅!

Give more weight to Actions that occur near Reward



FI(J)
FH

=E(∑7:;K FG!
FH
(𝐺7−𝑏))

We are only interested in how good the reward is compared to its average value,
not its absolute value.

𝑏 =
1
𝑀
N
!&#

(ℰ

𝐺!

Is Baselining allowed?

FI(J)
FH

=E(∑!"#$ %&!
%'
𝐺! )Instead of

Do this



𝜕𝐽(𝑊)
𝜕𝑤

	= 𝐸
𝜕𝑙𝑜𝑔𝑃L 𝜏I, 𝑤

𝜕𝑤
(R 𝜏I − 𝑏)

𝐸
𝜕𝑙𝑜𝑔𝑃L 𝜏I, 𝑤

𝜕𝑤
𝑏 = I𝑃L 𝜏I, 𝑤

𝜕𝑙𝑜𝑔𝑃L 𝜏I, 𝑤
𝜕𝑤

𝑏

= ∫ TX! Y",Z
TZ

b = b !
!" ∫𝑃

# 𝜏$ , 𝑤 = 𝑏 !(&)
!"

=0

i.e.  23(5)
27

	= 𝐸 289:;5 <6,7
27

(R 𝜏= − 𝑏) = 𝐸 %&'()! *",,
%,

R 𝜏-



Th(^)
TZ  = 𝐸 ∑#J!s T cde L	(f$|t$)

TZ (𝐺# − 𝑏 𝑆# )

𝑏 =
1
𝑀,

!&#

(ℰ

𝐺!1)

2)

(a constant)

Baseline can be a function of S
in general

Th(^)
TZ

 = 𝐸 ∑#J!s T cde L	(f$|t$)
TZ

(𝐺# − 𝑣L 𝑆# )





1. Monte Carlo Policy Gradients work only for 
systems with terminating episodes.
◦ What about systems in which the episodes do not 

terminate?
2. How can we further reduce the variance 

)*(1)
)+

= #
ℰ
∑-&#ℰ ∑!&#( ) 345 6+ 𝑎! 𝑠!

)+
(𝑅!(𝑠!, 𝑎!) + 𝑅!7#(𝑠!7#, 𝑎!7#) + ⋯+ 𝑅((𝑠(, 𝑎())

Variance is high due to the sum of the rewards. 

!5(6)
!"

= &
ℰ
∑$8&ℰ ∑98&: ! ;<= #" 𝑎9 𝑠9

!"
	𝑞#(𝑠9 , 𝑎9)

Replace with Average Value!



!5(6)
!"

= &
ℰ
∑$8&ℰ ∑98&: ! ;<= #" 𝑎9 𝑠9

!"
	𝑞#(𝑠9 , 𝑎9)

Monte Carlo evaluation
of 𝑄/(𝑠% , 𝑎%)



Th(^)
TZ = !ℰ∑IJ!

ℰ ∑#J!\ T cde L# 𝑎# 𝑠#
TZ 	[𝑞L 𝑠#, 𝑎# − 𝑣L 𝑠# ]

Recall Bellman Expectation Equation:

𝑣6 𝑠! =,
%&#

'

𝜋 𝑎% 𝑠! 𝑞6(𝑠!, 𝑎%)
Answers the question:
If in state si I take action ai,
then how much better is this
reward compared to the average
reward over all actions?



𝐴# 𝑠9 , 𝑎9 = 𝑞# 𝑠9 , 𝑎9 − 𝑣# 𝑠9

Define the Advantage Function as

Th(^)
TZ = !ℰ∑IJ!

ℰ ∑#J!\ T cde L# 𝑎# 𝑠#
TZ 𝐴L 𝑠#, 𝑎#

The better this estimate, the lower
the variance



Note that
𝐴L 𝑠, 𝑎	 = 𝑞L 𝑠, 𝑎	 − 𝑣L 𝑠

Since
𝑞L 𝑠, 𝑎	 =R 𝑠, 𝑎 + ∑gv𝑃(𝑠v|𝑠, 𝑎)𝑣L(𝑠v)

Approximately (along the sample path s,a,r,s’)
𝑞6 𝑠, 𝑎	 ≈ 𝑅 𝑠, 𝑎 + 𝑣6(𝑠8)

So that
𝐴L 𝑠, 𝑎	 ≈ 𝑅 𝑠, 𝑎 + 𝑣L(𝑠v)-𝑣L(𝑠)

The Advantage Function can be estimated
through just the Value Function

From this equation it would seem
that we need to estimate both
𝑞/ and 𝑣/ to estimate 𝐴/.
However …



s 𝑉L 𝑆,𝑊′

Two Techniques to train the Neural Network model:
- Monte Carlo
- Temporal Difference



Update made at
end of an Episode

𝑤% ← 𝑤% − 𝜂𝑥y[𝑉 𝑆#,𝑊 − 𝐺 𝑆# ]



Update made at
every step
(S, A, R, S’)

𝑤y ← 𝑤y − 𝜂𝑥y[𝑉 𝑆,𝑊 − (𝑅 + 𝛾𝑉(𝑆′,𝑊)]



s 𝑣L 𝑆,𝑊′
Critic

S

Actor 𝜋 𝑎#, 𝑆,𝑊

𝜋 𝑎$, 𝑆,𝑊

In state S
Run Actor to Generate next Action A 

Take a step in the environment
to generate reward R and next state S’ 

Use (S,A,R,S’) to update the Critic’s 
Neural Network parameters.

Use 𝑉/ 𝑆,𝑊7 	to update the Actor’s
neural Network Parameters

Set S’  S

𝒕𝒂𝒓𝒈𝒆𝒕 = 𝑹 + 𝑽𝝅(𝑺8,𝑾8)

𝑨𝝅 𝑺, 𝒂 = 𝑹 + 𝑽𝝅 𝑺7,𝑾′ − 𝑽𝝅(𝑺,𝑾7)

𝝏𝑱(𝑾)
𝝏𝑾 =

𝝏 𝐥𝐨𝐠𝝅𝒘 𝑺, 𝒂
𝝏𝑾 𝑨𝝅(𝑺,𝑾7)







Instead of generating the Optimal Policy

Generate the Optimal Action directly!

S A



Generate the Optimal Action directly!

S A

How to train the Policy Network for continuous Actions?

Hint: The Optimal Action is the one that maximizes the Q Function

Idea: Use the Q Function as the Reward to train the Policy Network

Q(S,A)

A*

Optimal 
Action



Network 1
W1

S

A
Q(S,A,W1)

Network 2
W2

S’ A(S’,W2)Actor

Critic

Use Q(S,A,W1) as the Reward Function for Network 2

𝑊2 ← 𝑊2+ 𝜂
𝜕𝑄(𝑆, 𝐴,𝑊1)

𝜕𝑊2

T�(t,�,^#)
T^,

 = T�(t,�,^#)
T�

T�(tv,^,)
T^,

Choose the Action that
maximizes Q(S,A,W1)



3. Choose the next Action
A’ using Network 2

5. Improve the Action by
improving Network 2

(Policy Improvement Step)

2. Take a step in the env and
obtain the (S,A,R,S’) values

4. Improve the Q Value by
improving Network 1

1. Choose Action A using 
Network 2


