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Summary - Regression
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Summary - Logistic Regression

Choose weights to _1gvM K _ _
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Functional RL

State Space
Training Episodes

Neural Network approximates the
Value Function for parts of the State
space outside the sample episodes




Deep RL with Q Functions: High
Level Approach

Run Sample Episodes from the System

¥

Use Monte Carlo, SARSA or Q-Learning to get samples of the mapping
(S, A) 2 Q(S,A). This becomes the Training Data

¥

Update the Neural Network weights
So that Q(S,A) and Q(S,A,W) move closer

We replace Table updates with

e s QSALW)
S=—>» fw( )
\ \ Q(S !AK1W)




Functional Reinforcement
Learning

— Q(S!A] !W)

— Q(S!AKiw)

S ——»

fw is represented using
a multilayer Neural Network

Benefits

@ Reduce memory needed to store (P,R)/V/Q/x
@ Reduce computation needed to compute (P,R)/V/Q/=w
@ Reduce experience needed to find a good P,R/V/Q/7




Functional Reinforcement
Learning

=" Q(S, Action 1)
e
®

—p Q(S, Action N)

Game Screen

Neural Network

Learn Optimal Actions Directly from the Game Screen!
End-to-End Learning

State Space consists of millions of Pixels




Types of Value Function
Approximation

V(s,w) 4(s,a,w)

T T a(sia1T’w) T a(saam7w)
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Pt

S
Approximate State
Value Function

Two ways to approximate
Action Value Function




We are adding a Neural
Network brain to our
Agent!

Observation

Action

The NN brain works by
instinct:
A=mn(S)




Model Free Prediction with Value
Function Approximations
(Policy Known)

p—



Approximating Value Functions:
High Level Approach

Run Sample Episodes from the MDP

¥

Use Monte Carlo or TD Learning to get samples of V(S)

¥

Use these samples to train the Neural Network
(i.e., find the weights W) using Supervised Learning




Training Using Gradient Descent

1
LW) =S [y —t]’

L N
W, =w-1 ow y(j) = z w;x; + b
i Error for jth sample i=1
where
% b
= |y —t|x
an' l

N+1 Parameters




Training Using Gradient Descent

(with RL) 1
LW) =< [V(S, W) —v(S)]?
9L v(S): ‘Correct’ or 2
W<—w-nN——70o Target Value .
W, error Vs, W) = Z wix; + b
where K i=1
oL S = (X1, .,
T = VW) = v($)]x: L

Feature Vector

oL
%— V(S,W) —U(S)

w; < w; —nxi [V (S, W) —v(S)] S

N+1 Parameters




How to get the Target Values?

Monte Carlo based Value Function Approximation

v(S) = G(S)
wj « w; —nx;[V(S,W) — G(S)]

TD Learning based Value Function Approximation

v(S) ~ R +yV(S', W)

w; < w; — nx;[V(S, W) — (R + yV(§',W)]

N

5
X
=
¥

The model needs
to be run twice:
To compute
V(S,W) and
V(S’,W)




Monte Carlo Learning : Tabular
Case

V(S:) « V(S:) + a (G — V(St))
/

Updates made at \
end of an Episode
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Monte Carlo Learning : Functional
Case

e

Update made at \)
end of an Episode

wj <« wj —nx;[V(S, W) — G(S)]

/N ' A /N N

1
/ \ | / \ 1 / N /

TQT O®

Issue: Every update causes ALL the Value Functions
to change




Step1: Run an Episode and Gather
Training Data
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Step 2: Use the Training Data to Optimize the Model

Training Input Data

Generated by Interaction
With the environment

' (51,G1)
(52162)

—

= V(S W) = 6(S)]?

Adjust Weights
To Reduce L(W)

MC, TD
SlAiR % & . ~ ‘. G
Generated by Neural Net Model
Model
S |——p | V(S,W)
! A -
eyt s (R TT s aas scsl

- Gradient Descent

- Backprop




Training
Algorithm
Using
Stochastic
Gradient
Descent

MC Case

Set up Model

Linear Regression

A 4

Initialize Weights

Feed-in Next Training sample

Compute Gradients
Compute New Weights

y

A 4

Compute Loss
Compute Training Accuracy
Compute Test Accuracy

v

5 =% (D) [V(Spw) = G(S)]
j=12,..,N

»

w; e wy = (DV (S, W) = G(S)]
j=12,..,N

4
M

1
L) = 52 VS, W) = G(SP?
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Monte Carlo Learning with Value
Function Approximation

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function ©: 8 x R¢ -+ R

Initialize value-function weights w as appropriate (e.g., w = 0)
Repeat forever:
Generate an episode Sy, Ag. R;,S5,,A4,,...,Rp, St using 7
Fort=0,1,..., T—-1:

W — W + a[G; — 5(S.;w)] Vi(Se,w)

Since E(G|S; = s) = v,(S;) it follows that the weights W of the Neural
Network converge such that the output V(S, W) converges to v,(S)

Sutton and Barto, p. 202




TD Learning: Tabular Case

V(Se) = V(St) + a(Reg1 + vV (Se+1) — V(S5))

/

Update made at
every step
(S! Al R’ S’)

N



TD Learning: Functional Case

wj < w; —nx;[V(S, W) — (R +yV(S, W))]

/

Update made at
every step
(S’ A’ R’ S’)
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Issuel: Every update causes ALL the Value Functions
to change




TD Learning: Functional Case

/

Update made at
every step
(S! Al R’ S’)

T O O 0O || O

TI&}TT Q0 Q

/N Y I /
/N |/\ | PN

Issue2: The regression target is no longer fixed. It is

also a function of the weight parameters
Chasing a Moving Target!!

O x| O O (7| (v O




TD Learning with Value Function
Approximation

Semi-gradient TD(0) for estimating ¥ ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function @ : 8+ x R? — R such that (terminal,-) =0

Initialize value-function weights w arbitrarily (e.g., w = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode): Policy is given
Choose A~ 7(-|S) «—
Take action A, observe R, S’
w — W + a[R + v5(S',w) — #(S,w)] Vi (S,w)
S« 8
until S’ is terminal




Do these Value Function
Approximation Algorithms Converge?

Algorithm Table Lookup Linear Non-Linear
MC v v v
TD(0) v v X

p—



Model Free Control with Value
Function Approximations

p—



To Go From Policy Evaluation to
Control..

Two changes:
1. Approximate q(S,A) rather than v(S)

2. At each step, improve policy using epsilon
greedy algorithm




Approximating the Optimal
Action-Value Function

e Q(SaA] 1W)

— Q(SyAK!W)




Approximating Q Functions: High
Level Approach

Run Sample Episodes from the MDP

¥

Use Monte Carlo, SARSA or Q Learning to get samples of q(S,A)

¥

Use these samples to train the Neural Network
(i.e., find the weights W) using Supervised Learning

— QS.ALW)
e

s QAW




How to get the Target Values?

Monte Carlo based Q Function Approximation
wite < Wi =1 [Q(S, A, W) — G]
e Greedy policy

SARSA |l earning based Q Function Approximation

Wik < Wik — 1x;[Q(S, A, W) — (R +vQ(S, A", W)]

e Greedy policy e Greedy policy
Q-Learning based Q Function Approximation

wie < wik =% [Q(S, A, W) — (R + y max Q(S', A", W))]

e Greedy policy Optimal policy



Control with Action Value
Function Approximation

Updates Improve
Weights Policy

Starting w Qy = Qs

Policy evaluation Approximate policy evaluation, §(-,-,w) = g,

Policy improvement e-greedy policy improvement




Use the Training Data to Optimize the Model

Generated by Interaction

. MC ' '
Training Input Data . Wlth the environment
QLearning > S1.T1)

(§2,T2)

SlAiR % ;_;.... .... ...‘. 3

— — >

Generated by Neural Net Model | L(w) = %[Q(S,A, W) —T]?

Model !
Q(S,A,W)

Adjust Weights = gragient Descent
To Reduce L(W) |~ °PacKProp




K-ary Linear Networks

oL

Jjk jk n aij

where

K
1
LOV) = 2 ) (Qu(S A, W) = T)?
k=1

N
Q(S,Ak, W) = Z W]kx] + bk

j=1

oL

6ij

= x; [Q(S, A, W) —T]

Wik < Wji — NXj [Q (S,Ak, W) —T]




Monte Carlo Control: Tabular Case
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Policy Improvement Update made at end of each Episode




Monte Carlo Control: Functional Case

Wi < Wi —nx;[Q(S, A, W) — G]
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. Weight Updates made at end of each Episode




SARSA Control: Tabular Case

Q(S,A) « Q(S, A) +a (R+7Q(S', A) — Q(S, A))

Actions
are chosen
according to
Policy 71

Actions
are chosen
according to
Improved Policy 7

\

7\
/ \

/
/

Policy Improvement Update made after
each step




SARSA Control: Functional Case

/ € Greedy Policy
Wik < Wi — 1% [Q(S, A, W) — (R +yQ(S, A", W)]

Actions
are chosen
according to
Policy 71

Actions
are chosen
according to
Improved Policy 7

Weight Updates made at each Step




SARSA with Action-Value
Function Approximation

Episodic Semi-gradient Sarsa for Estimating ¢ ~ g,

Input: a differentiable function G: 8 x A x R4 5 R

Initialize value-function weights w € R? arbitrarily (e.g., w=0)
Repeat (for each episode):
S, A + initial state and action of episode (e.g., =-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S” is terminal:
w — w+a[R— §(S,A,w)|V4§(S,A,w)
Go to next episode
Choose A’ as a function of §(5’,-, w) (e.g., e-greedy)
w+— w+a[R+v4(S", A, w) — §(S, A, w)|V§(S, A, w)
S« S

A A




Q Learning: Tabular Case

QS.A) QS A)+a R+ max Q(S', ) - Q(5. )

The Q value updates
made at each step according

to ‘optimal’ policy
(by Target Agent)

T O O 0O || O

/
/

\

\

S, o
9 () S 60 +1 e Behavior Policy w1
t (by Behavior Agent)

Actions chosen
according to

®
Actions chosen
according to improvec
Behavior Policy n2
(by Behavior Agent)
()
I\

/



Q Learning: Functional Case

ij < ij - T]x] [Q (S, Ak} W) - (R + 14 n}la,x Q(S’, A’; W))]

Actions
are chosen
according to
Behavior Policy w1

Actions are
chosen
according to
Improved
Behavior Policy n2

Weight Updates made at each Step




Issues with All These Functional
Control Algorithms

Issuel: Every update causes ALL the Value Functions
to change

Issue2: In Functional SARSA and Q-Learning,
the regression target is no longer fixed. It is
also a function of the weight parameters
Chasing a Moving Target!!




Issue 3: Correlated Samples

Supervised Learning
only works with

iid samples
9 o
T O O T O
) O [T ) Q)
\ | / \\
\

The state sequence S1,S2,.. is not iid
It is a function of the agent’s actions




Do these Functional Control
Algorithms Converge?

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v (V) X
Sarsa v (V) X
Q-learning v X X

(v') = chatters around near-optimal value function

In Practice: Any problem with a large number of states diverges




How to Stabilize Functional
Control Algorithms?

Stabilization of Functional Q Learning
» DQN (Deep Q Networks): DeepMind, 2012

Stabilization of SARSA

» A3C (Asynchronous Advantage Actor Critic):
DeepMind, 2016




Deep Q Networks (DQN)

p—



Deep Q Networks

» High Level Idea: Make Deep Q Learning look
like Supervised Learning

» Two Main ldeas:

|. Experience Re-Play: Decorrelates successive
samples

2. Use of Target Network: Stabilizes the Target value




Q Learning with Experience Reuse

Q(S.A) ¢ Q(S.A)+a R+ mgx Q(S'#) — Q(S.4))

(S1,A1,R1,S17)
(52,A2,R2,S2’)

(S3,A3,R3,S3’)

(S4,A4,R4,54’)

A Collection of
1-Step Transitions




Experience Replay

Replay Buffer

(S1,A1,R1,S1)

, A Collection of
(52,A2,R2,52) 1-Step Transitions

(S3,A3,R3,S3’)

Choose a Transition
(S4,A4,R4,54") at Random and Compute

ij N ij - 77x] [Qk(sl Ak; W) - (R + 14 n}qa,x Q(S,r A,r W))]

Samples are no longer correlated!




Q-Learning with Replay Buffer

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
K =1 is common, though

ﬁﬁ 2. sample a batch (s;,a;, s, r;) from B larger K more efficient
L5 3 wew—nx [Q(S, A W) — (R +ymgxQ(S', A, W))]

Behavior Policy -  Poli
arget Policy

~ dataset of transitions
(“replay buffer”)

off-policy

I ‘\.\. Q-learning

)

w(als) (e.g., e-greedy

evict old data



Solving Problem 2: Moving Target

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s.,r;)} using some policy, add it to B

ﬁj 2. sample a batch (s;,a;.s:. r;) from B
x ! 4
L 3. Wew-—nx [Q(S,A,W)—(R+Vrr33XQ(S,A,W))]

one gradient step, moving target

Q-learning is not gradient descent!

wew—x [Q(S, A, W) — (R +7max Q(S', A, W))] This is still a
problem!

no gradient through target value




Solving Problem 2: Target

Networks

ij < ij — T’x] [Qk(Si Ak} W) _ (R + 14 n}f}X Q(S’, A’; W,))]

Use Two Neural Networks!

Q(S, A, W)
S—» w —_—

Behavior DQN

Runs the main
training loop

Weights updated at
every Step

Q(s, A, W)
S—>» v —

Target DQN

Computes targets for
the Behavior DQN

Weights updated
less frequently




Q-Learning with Target Networks

(Q-learning with replay buffer and target network:
& 1. save target network parameters: W' « W

X

zﬂx o 3. sample a batch (s;,a;,s},r;) from B

targets don’t change in inner loop!

Q(S, 4, W)
S—>» w —_—

Behavior DQN

Runs the main
training loop

> 2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

b b g, Wwew—nx [Q(S,Q,W)—(R+y max Q(S', A, W]

uoissaidal pasiniadns

S—»

Q(S, 4, W)
W’ =>

Target DQN

Computes targets for
the Online DQN




Overall View for DQN

Q-learning with replay buffer and target network:
1. save target network parameters: W eWw

2. collect M datapoints {(s;.a;,s;,r;)} using some policy, add them to B
N x @ 3. sample a batch (s;,a;, s, r;) from B
X
4. wew—nx [Q(S, A4, W) — (R +ymaxQ(S', A, W")]

i t
process 1: data collection curren
parameters
(s,a,s8',7) W
dataset of transitions
k (“replay buffer”) ‘_’_’)

I [N

x _///

w(als) (e.g., e-greedy)

process 2
target update

target
w )

evict old data




Playing Atari

with Deep Q

Networks (201 3)

LETTER

doi:10.1038/nature 14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavuke
Martin Riedmiller', Andreas K. Fi

oglu'*, David Silver', Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
land', Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik', loannis Antonoglou’,

Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

Thetheoryofreinforcement learning providesa normative account’,
deeplyrooted in psychological® and neuroscientific’ perspectives on
anlmalbeluvionr of how agents may optimize thdr cnutmlofan

g real-world 1 hmver.
witha difficult task: they ‘must derive efficient mprenenhdomoflhc
enrimnmem from highdhmmimal sensory inputs, and use these

Ut Rcm:hhly. hnm.ms

8 P tonew
d 1

agent is to select actions in afashion that maximizes cumulative future
ma‘ard. More formally, we use adeep convolutional neural network to

app the optimal acti lue function
O (sa)= rx?x]:][r,+,'nu+‘, fa+ .. |s=sa=a x]v
whichisthe sum of rewards r, di dby yateachtime-

step t, achievable by a behaviour palicy = = P(als), after making an
observanon (s) and taking an action (a) (see Methods)'”.

tosolve thisp g

learning is known to be unstable or even to diverge

8 ypro-
cessing lymn'uu t.he inmur tﬂdemrdhyawnllh of neural data
the phasic signal

when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function™. This

nthep ign dopa bility has several causes: the correlations present in the sequence

ninerg) 'f‘::“‘“‘d P e o ren lu)rnlng fob ¢ thzmcnhaxsnnllupdausmgmayngnmmndychang
' 4 theirapplicabil e pr the policy and therefore change thedata distribution,and the !

between the action-vall d the target val d).

be:nllmh:dtotbmdminwhid:nuﬁﬂhlmcubehndmﬁd. petween the action 'f.'f[bg];';n arget valuesr + ymax O wh?c]h
or to domains with fully ob I state spaces. e - =

Here weuse recent advances in Ininlngdeep neural networks™ "' to
develop a novel artificial agent, termed a deep Q-network, thatcan
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games®. We demon-
stratethat thedeep Q-network agent, receiving only the pixels and
thegame scoreas inputs, was able to surpass the performance of all
plvvimu algwhhnund achieve alevel comparableto thatofa pro-

asetof 49 games, usingthe same
mwurk hi and hy This work
brldges the divide between high—dlmmslonal sensory inputs and
actions, resulting inthe firstartificialagent that is capable of learn-
ing to excel at a diverse array of challenging tasks.

‘We set out to create a single algorithm that would heahle to develop
awide range of iesona varied range of chall g tasks—a
central goal of general artificial intelligence" that has eluded previous
efforts"*“**. To achieve this, we developed a novel agent,a deep Q-network
(DQN), which is ableto combine reinforcement learning with a class
of artificial neural network' known asdeep neural networks. Notably,
recent advances in deep neural networks™"", in which several layers of

uses two key ideas First, we used a biologically inspired mechanism

termed expen:nu replay™ = that randomizes over the dm !heteby
ionsinthe observati and

changcs in the datadistribution (see below tor details). Second, we \md

an iterative update that adjusts the action-values (Q) towards target

values that areonly periodically updated, thereby reducingcorrelations

with the target.

While other stable methods exist for training neural networks in the
reinforcement leaming setting, such as neuralfitted Q-iteration™, these
methodsinvolve the repeated training of networks denow on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function O(s,a;0;) using the deep
convolutional neural network shown in Fig. 1, in which 6, are theparam-
eters (that is, weights) of the Q-network at iteration i To perform
experience replay we store the agent’s experiences & = (su@ufSi+1)
at each time-step t in a data set D, = ley,....a1}. During leaming, we
apply Q-learning updates, on samples (or minibatches) of experience
(s.a,rs") ~ U(D),drawn uniformly at random from the poal of stored
samples. The Q-learning update at iteration i uses the following loss
function:




Atari Network Architecture:
An Application of the DQN Algorithm

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Output is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

it 1st hidden  2nd hidden 3rd hidden R
v layer layer layer ok i

| ‘ Q( s, 0")
T
", Fully : flly Q| 8. %)

connected  connected
Ax8x4 Fheor " - .

trice 4 ' uanat ter . :
o ot r‘o} ;‘-Q.‘/Q

84x84x4 20x20x16 9x9x32 256 4~18

Convolutional Neural Network (CNN)




Deep Reinforcement Learning

Convglution Convglution Fully cgnnected Fully cgnnected

AN AN

A\
U\Dﬁ]

Game
Joystick

Screen
Shot

efviyg> g
MR E NN AMBE
@] (@] (@) g

arI=x]e
©) (@) (©) (¢)] (©

+

3

CNN Layers Actions

Deep Models allows RL algorithms to solve Complex Decision Making
Problems End-to-End




DQN Algorithm [ aemas ™

Target Network

N

Algorithm 1: deep Q-learning with experience replay.
[nitialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function 0 with weights 8~ = 6
For episode = 1, M do
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select @, = argmax_ O(¢(s;),a: 0)
Execute action a, in emulator and observe reward r, and image x,  ,
Set §;41 =S$¢,@r,X; 41 and preprocess @, ; =P (s¢+1)
Store transition (¢,.a;.r.¢,4,) in D
Sample random minibatch of transitions (¢-,aj,rj,¢j " 1) from D

rj if episode terminates at step j+ 1
Setyj o= rj+7 maxy Q(¢j+ 1 a 0_) otherwise

Perform a gradient descent step on < yi—Q ((f)-,a_,-; 0) ) ’ with respect to the
network parameters (J
Every C steps reset 0=0

End For

End For




DQN Algorithm

Algorithm 1: deep Q-leamih_g with experie;ice replay. = '
[nitialize replay memory D to capacity N <+—— Initialize replay memory, Q-network
Initialize action-value function Q with random weights 0

Initialize target action-value function O with weights 6~ =0 «— Initialize Target network

For episode = 1, M do <«+——  Play M episodes (full games)
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;) «—— |nitialize state
For t= 1,T do (starting game
With probability ¢ select a random action a, screen pixels) at the
otherwise select a; =argmax, Q(¢(s;),a; 0) beginning of each
episode

Execute action a, in emulator and observe reward r, and image x, ; ,
Set s;41 =S$¢,ar,X; 4+ and preprocess ¢, . | =P (s¢+1)
Store transition (¢,.a.r.¢,,,) in D

Sample random minibatch of transitions (d)j,a,-,rj,qﬁj 4 1) from D

rj if episode terminates at step j+ 1
i ri+7 maxy Q((ﬁj PO - 0") otherwise

Perform a gradient descent step on (yj = Q(dz 4 0) ) ’ with respect to the
network parameters (J
Every C steps reset 0=0

End For

End For




DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0
Initialize target action-value function  with weights 6~ = 6
For episode = 1, M do

(Behavior Agent)
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;)

For t=1,T do <«+——— For each timestep t
With probability ¢ select a random action a, of the game
otherwise select a; =argmax, Q(¢(s;),a: 0) <—— With small probability,
Execute action a, in emulator and observe reward r, and image x, select a random
Set 5,41 =$;.@;,X; 41 and preprocess =d(s action (explore),
S s ) FIeE D¢H1 ¢( 'H) otherwise select
tore transition (¢,.ar.¢,, ) in greedy action from
Sample random minibatch of transitions (dJJ,a,,r,,@ + 1) from D current policy
rj if episode terminates at step j+ 1
Set ~ s .
Ji ri+7 maxy Q(¢j PR 8 1 ) otherwise

Perform a gradient descent step on (yj = Q(dz 4 0) ) ’ with respect to the
network parameters (J
Every C steps reset 0=0

End For

End For




DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0

Initialize target action-value function  with weights 6~ = 6

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s))
For t=1,T do

With probability ¢ select a random action a,

otherwise select a; =argmax, Q(¢(s;),a; 0)

Execute action a, in emulator and observe reward r, and image x, ; §

Set s;41 =S$¢,ar,X; 4+ and preprocess ¢, . | =P (s¢+1)

Store transition (¢,.ds,re.¢,4,) in D

Sample random minibatch of transitions (dJJ,a,,r,,@ + 1) from D

rj if episode terminates at step j+ 1
Sety)= ri+7 maxy Q((ﬁj PO - 0") otherwise

(Behavior Agent)

<+— Take the action (a),

and observe the
reward r and next
state s,,,

‘ Store transition in
replay memory

2
Perform a gradient descent step on (yj = Q(dz 4 0) ) with respect to the

network parameters (J
Every C steps reset Q= Q
End For

End For




DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
[nitialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a; = argmax, Q(¢(s;),a; 0)
Execute action a, in emulator and observe reward r, and image x,  ,
Set s;41 =5;,a;,X; 4+ and preprocess ¢, ; =¢P(s;+1)
Store transition (¢,.a.r.¢,,,) in D

Sample random minibatch of transitions (¢~,a,-,rj,¢j+ 1) from D (Target Agent)
rj if episode terminates at step j+ 1 Experience Replay:
Sety;= > g s . <———— Sample a random
rj+7 maxy Q(¢j+lsa ;0 ) otherwise minibatch of transitions
2 from replay memory
Perform a gradient descent step on ( yi— Q(¢j,a_,-; 0)) with respect to the and perform a gradient
network parameters ) descent step
Every C steps reset Q= Q
End For

End For




DON on Atari

Pong Enduro Beamrider

49 ATARI 2600 games.

From pixels to actions.

The change in score is the reward.

+ Same algorithm.

+ Same function approximator, w/ 3M free parameters.

+ Same hyperparameters.

* Roughly human-level performance on 29 out of 49 games.




Stability Techniques

P — With replay, With replay, Without replay, Without replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0




Atari Results

By

278%

Atlantis _{[ETIE T, 51
Crazy Climber | [0 I, 1%

Boxing

Breakout

Star Gunner

Robotank |3, sos%

\ideo Pinball |~
Name This Game

The performance of DQN is normalized with respect to a professional human games tester (that is,
100% level) and random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 x (DQN score — random play score)/(human

score — random play score). It can be seen that DQN outperforms competing methods (also see
Extended Data Table 2) in almost all the games, and performs at a level that is broadly comparable

with or superior to a professional human games tester (that is, operationalized as a level of 75% or
above) in the majority of games. Audio output was disabled for both human players and agents. Error
barsindicate s.d. across the 30 evaluation episodes, starting with different initial conditions.
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Abstract

We propose a conceptually simple and
lightweight framework for deep reinforce-
ment leaming that uses asynchronous gradient
descent for optimization of deep neural network
controllers. We present asynchronous variants of
four standard reinforcement learning algorithms
and show that parallel actor-leamers have a
stabilizing effect on training allowing all four
methods to successfully train neural network
controllers. The best performing method, an
asynchronous variant of actor-critic, surpasses
the current state-of-the-art on the Atari domain
while training for half the time on a single
multi-core CPU instead of a GPU. Furthermore,
we show that asynchronous actor-critic succeeds
on a wide variety of continuous motor control
problems as well as on a new task of navigating
random 3D mazes using a visual input.

1. Introduction

Deep neural networks provide rich representations that can
enable reinforcement learning (RL) algorithms to perform
effectively. However, it was previously thought that the
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line RL updates are strongly comrelated. By storing the
agent’s data in an experience replay memory, the data can
be batched (Riedmiller, 2005; Schulman et al., 2015a) or
randomly sampled (Mnih et al., 2013; 2015; Van Hasselt
et al, 2015) from different time-steps. Aggregating over
memory in this way reduces non-stationarity and decorre-
lates updates, but at the same time limits the methods to
off-policy reinforcement leaming algorithms.

Deep RL algorithms based on experience replay have
achieved unprecedented success in challenging domains
such as Atari 2600. However, experience replay has several
drawbacks: it uses more memory and computation per real
interaction; and it requires off-policy learning algorithms
that can update from data generated by an older policy.

In this paper we provide a very different paradigm for deep
reinforcement learning. Instead of experience replay, we
asynchronously execute multiple agents in paraliel, on mul-
tiple instances of the environment. This parallelism also
decorrelates the agents’ data into a more stationary process,
since at any given time-step the parallel agents will be ex-
periencing a variety of different states. This simple idea
enables a much larger spectrum of fundamental on-policy
RL algorithms, such as Sarsa, n-step methods, and actor-
critic methods, as well as off-policy RL algorithms such
as Q-learning, to be applied robustly and effectively using

T T




What Problem Are We Solving?

» We found out how to stabilize Deep Q-
Learning by using the DQN algorithm

- But this was based on exploiting the off-line nature
of the Q-Learning algorithm

» How can we stabilize Deep On-Line

algorithms, such as the deep version of
SARSA?




Asynchronous Reinforcement
Learning

Exploits multithreading of standard CPU
Execute many instances of agent in parallel

Network parameters shared between threads

v v . v Y

Parallelism decorrelates data
» Viable alternative to experience replay

p—



A3C High Level Architecture

Global Network

- Diagram of A3C high-level architecture.



Training Workflow for Each
Worker

5. Worker q
updates global 1. Worker reset

network with to global
gradients network
4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
calculates

value and
policy loss




A3C Algorithm

» There is a single global network

» There are multiple agents, each of which has its own set of
neural network parameters

» Each of these agents interacts with its copy of the
environment in parallel with the other agents that are doing
the same

- The experience of each agent is independent of the others since they use
their own exploration policies

» The effect of multiple workers applying online updates in

parallel is less correlated than a single agent applying online
updates

» Each Agent may be exploring a different portion of the
environment




A3C Algorithm

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

/# Assume global shared 6, 8~ , and counter T' = (.
Initialize thread step counter ¢t « 0

Initialize target network weights 6= « 6

Initialize network gradients df + 0

Get initial state s

repeat Worker Task accumulates
Take action a with e-greedy policy based on Q(s, a; #) gradients
Receive new state s’ and reward r _
o for terminal s’ /
Y= r+~vymax. Q(s',a’;67) for non-terminal s’
.02

Accumulate gradients wrt 8: df + df + O(V_Qé;"’"’))

/
S=3S8
T+«—T+1landt+—t+1

if " mod Itargct == () then
Update the target network 8~ « 6

end if

ift mod I 4 ynctpdate == 00r s is terminal then
Perform asynchronous update of # using dé.
Clear gradients d# + 0.

end if

until 7" > Thnax




Further Reading

» All the Journal papers referred to in the

lecture, in particular:

“Human Level Control with Deep Reinforcement Learning”
“Playing Atari with Deep Reinforcement Learning

» Sutton and Barto: Sections 9.1-9.3, 9.7
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