
Lecture 7
Subir Varma

𝑤! ← 𝑤! − 𝜂𝑥!(𝑦 − 𝑡)

𝑥!

𝑥"

𝑥#

y= ∑$%!# 𝑤$𝑥$ + 𝑏

𝑤!" ← 𝑤!" − 𝜂𝑥!(𝑦(− 𝑡()

w1

w2

wN

𝐿 𝑊 =
1

2𝑀𝐾/
&%!

'

/
(%!

)

(𝑡((𝑗) − 𝑦((𝑗))"
Choose weights to

Minimize Error

𝑤! ← 𝑤! − 𝜂𝑥!(𝑦 − 𝑡) 𝑤!" ← 𝑤!" − 𝜂𝑥!(𝑦(− 𝑡()

𝐿 𝑊 = #
$
∑%&#$ ∑"&#' 𝑡" 𝑗 log 𝑦"(j)Choose weights to

Maximize Reward

State Space
Training Episodes

Neural Network approximates the
Value Function for parts of the State
space outside the sample episodes

Functional RL

Run Sample Episodes from the System

Use Monte Carlo, SARSA or Q-Learning to get samples of the mapping
(S, A)  Q(S,A). This becomes the Training Data

Update the Neural Network weights
So that Q(S,A) and Q(S,A,W) move closer

S
Q(S,A1,W)

fW(.)
Q(S,AK,W)

We replace Table updates with
NN Weight updates using

Gradient Descent

fW is represented using
a multilayer Neural Network

Benefits

S

Q(S,A1,W)fW(.)

Q(S,AK,W)

S

Game Screen
Neural Network

Q(S, Action 1)

Q(S, Action N)

Learn Optimal Actions Directly from the Game Screen!

End-to-End Learning

State Space consists of millions of Pixels

Approximate State
Value Function Two ways to approximate

Action Value Function

Environment

ActionObservation

Agent

We are adding a Neural
Network brain to our

Agent!

The NN brain works by
instinct:
 𝐴 = 𝜋(𝑆)

Run Sample Episodes from the MDP

Use Monte Carlo or TD Learning to get samples of V(S)

Use these samples to train the Neural Network
(i.e., find the weights W) using Supervised Learning

S V(S,W)hW(.)

𝜕𝐿
𝜕𝑤/

= 𝑦 − 𝑡 𝑥!

𝑥!

𝑥"

𝑥#

𝑦 =/
$%!

#

𝑤$𝑥$ + 𝑏

𝐿 𝑊 =
1
2 [𝑦 − 𝑡]

"

𝑦(𝑗) =/
$%!

#

𝑤$𝑥$ + 𝑏

𝜕𝐿
𝜕𝑏

= 𝑦 − 𝑡

w1

w2

wN
N+1 Parameters

Error for jth sample

𝑤$ ← 𝑤$ − 𝜂𝑥![𝑦 − 𝑡]

t: Correct Output

𝜕𝐿
𝜕𝑤!

= 𝑉 𝑆,𝑊 − 𝑣(𝑆) 𝑥!

𝑥!

𝑥"

𝑥#

𝑉(𝑆,𝑊) =/
$%!

#

𝑤$𝑥$ + 𝑏

𝐿 𝑊 =
1
2
[𝑉 𝑆,𝑊 − 𝑣 𝑆]"

𝑉(𝑆,𝑊) =/
$%!

#

𝑤$𝑥$ + 𝑏

𝜕𝐿
𝜕𝑏

= 𝑉 𝑆,𝑊 − 𝑣(𝑆)
w1

w2

wN

N+1 Parameters

error

𝑤$ ← 𝑤$ − 𝜂𝑥![𝑉 𝑆,𝑊 − 𝑣(𝑆)]

𝑆 = (𝑥!, … , 𝑥#)

Feature Vector

v(S): ‘Correct’ or
Target Value

S

Monte Carlo based Value Function Approximation

𝑤% ← 𝑤% − 𝜂𝑥A[𝑉 𝑆,𝑊 − 𝐺 𝑆]
𝑣(𝑆) ≈ 𝐺(𝑆)

TD Learning based Value Function Approximation

𝑤A ← 𝑤A − 𝜂𝑥A[𝑉 𝑆,𝑊 − (𝑅 + 𝛾V(𝑆′,𝑊)]
𝑣 𝑆 ≈ 𝑅 + 𝛾𝑉(𝑆B,𝑊)

S V(S,W)hW(.)
S’ V(S’,W)

The model needs
to be run twice:
To compute
V(S,W) and
V(S’,W)

Updates made at
end of an Episode

Gt: Latest estimate for V(St)

Update made at
end of an Episode

𝑤% ← 𝑤% − 𝜂𝑥A[𝑉 𝑆,𝑊 − 𝐺(𝑆)]

Issue: Every update causes ALL the Value Functions
to change

(S1,G1)
(S2,G2)
.
.
.

Generated by Interaction
With the environment

Generated by Neural Net Model

S,A,R

S V(S,W)

𝐿 𝑊 =
1
2 [𝑉 𝑆,𝑊 − 𝐺(𝑆)]"

G

Training Input Data

MC
TD

Adjust Weights
To Reduce L(W)

(S1,G1)
(S2,G2)
.
.
.

MC, TD

Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
M training samples

Feed-in Next Training sample
Compute Gradients

Compute New Weights

Compute Loss
Compute Training Accuracy

Compute Test Accuracy

𝜕𝐿
𝜕𝑤!

= 𝑥&(𝑖)	[𝑉 𝑆$, 𝑤 − 𝐺(𝑆$)]

𝑤% ← 𝑤% − 𝜂𝑥&(𝑖)[𝑉 𝑆$,𝑊 − 𝐺(𝑆$)]

Linear Regression

𝐿 𝑊 =
1
2𝑀

+
&'(

)

[𝑉 𝑆&,𝑊 − 𝐺(𝑆&)]*

Training
Algorithm

Using
Stochastic
Gradient
Descent

MC Case

V(𝑆$,𝑊) = ∑&%!# 𝑤&𝑥&(𝑖) + 𝑏

𝑖 = 1,2, … ,𝑀

𝑗 = 1,2, … ,𝑁

𝑗 = 1,2, … ,𝑁

Since 𝐸 𝐺* 𝑆* = 𝑠 = 𝑣+ 𝑆* it follows that the weights W of the Neural
Network converge such that the	output	𝑉 𝑆,𝑊 converges to 𝑣+ 𝑆

Sutton and Barto, p. 202

Update made at
every step
(S, A, R, S’)

Update made at
every step
(S, A, R, S’)

𝑤A ← 𝑤A − 𝜂𝑥A[𝑉 𝑆,𝑊 − (𝑅 + 𝛾V(𝑆′,𝑊))]

Issue1: Every update causes ALL the Value Functions
to change

Update made at
every step
(S, A, R, S’)

𝑤A ← 𝑤A − 𝜂𝑥A[𝑉 𝑆,𝑊 − (𝑅 + 𝛾V(𝑆′,𝑊)]

Issue2: The regression target is no longer fixed. It is
also a function of the weight parameters

Chasing a Moving Target!!

Two changes:
1. Approximate q(S,A) rather than v(S)
2. At each step, improve policy using epsilon

greedy algorithm

S

Q(S,A1,W)fW(.)

Q(S,AK,W)

Run Sample Episodes from the MDP

Use Monte Carlo, SARSA or Q Learning to get samples of q(S,A)

Use these samples to train the Neural Network
(i.e., find the weights W) using Supervised Learning

S
Q(S,A1,W)fW(.)

Q(S,AK,W)

Monte Carlo based Q Function Approximation

𝑤%" ← 𝑤%" − 𝜂𝑥A[𝑄 𝑆, 𝐴(,𝑊 − 𝐺]

SARSA Learning based Q Function Approximation

𝑤A(← 𝑤A(− 𝜂𝑥A[𝑄 𝑆, 𝐴(,𝑊 − (𝑅 + 𝛾𝑄(𝑆′, 𝐴B,𝑊)]

Q-Learning based Q Function Approximation

𝑤%" ← 𝑤%" − 𝜂𝑥A	[𝑄 𝑆, 𝐴(,𝑊 − (𝑅 + 𝛾max
NB

𝑄(𝑆′,	 𝐴B,𝑊))]

𝜖 Greedy policy

𝜖 Greedy policy 𝜖 Greedy policy

𝜖 Greedy policy 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 policy

Updates
Weights

Improve
Policy

Generated by Interaction
With the environment

Generated by Neural Net Model

S,A,R

S,A Q(S,A,W)

𝐿 𝑊 =
1
2 [𝑄 𝑆, 𝐴,𝑊 − 𝑇]"

T

Training Input Data MC
SARSA
QLearning

Adjust Weights
To Reduce L(W)

(S1,T1)
(S2,T2)
.
.
.

𝜕𝐿
𝜕𝑤A(

= 𝑥&[𝑄 𝑆, 𝐴(,𝑊 − 𝑇]

𝑄(𝑆, 𝐴(,𝑊) =/
&%!

#

𝑤&(𝑥& + 𝑏(

𝐿 𝑊 =
1
𝐾
+
+'(

,

(𝑄+(𝑆, 𝐴+,𝑊) − 𝑇)*

𝑥!

𝑥"

𝑥#
𝑄(𝑆, 𝐴) ,𝑊) =/

&%!

#

𝑤&)𝑥& + 𝑏)

𝑄(𝑆, 𝐴!,𝑊) =/
&%!

#

𝑤&!𝑥& + 𝑏!

𝑤&(← 𝑤&(− 𝜂
𝜕𝐿
𝜕𝑤&(

𝑤&(← 𝑤&(− 𝜂𝑥%[𝑄 𝑆, 𝐴",𝑊 − 𝑇]

Policy Improvement Update made at end of each Episode

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴)

𝑤A(← 𝑤A(− 𝜂𝑥A[𝑄 𝑆, 𝐴(,𝑊 − 𝐺]

Weight Updates made at end of each Episode

Actions
are chosen

according to
Policy 𝜋1

Policy Improvement Update made after
each step

Actions
are chosen

according to
Improved Policy 𝜋2

Actions
are chosen

according to
Policy 𝜋1

Actions
are chosen

according to
Improved Policy 𝜋2

𝑤A(← 𝑤A(− 𝜂𝑥A[𝑄 𝑆, 𝐴(,𝑊 − (𝑅 + 𝛾𝑄(𝑆′, 𝐴B,𝑊)]

Weight Updates made at each Step

𝜖	𝐺𝑟𝑒𝑒𝑑𝑦	𝑃𝑜𝑙𝑖𝑐𝑦

Actions chosen
according to

Behavior Policy 𝜋1
(by Behavior Agent)

Actions chosen
according to improved

Behavior Policy 𝜋2
(by Behavior Agent)

The Q value updates
made at each step according

to ‘optimal’ policy
(by Target Agent)

Actions
are chosen

according to
Behavior Policy 𝜋1

Actions are
chosen

according to
Improved

Behavior Policy 𝜋2

𝑤&(← 𝑤&(− 𝜂𝑥%[𝑄 𝑆, 𝐴",𝑊 − (𝑅 + 𝛾max
(/

𝑄(𝑆′,	 𝐴),𝑊))]

Weight Updates made at each Step

Issue1: Every update causes ALL the Value Functions
to change

Issue2: In Functional SARSA and Q-Learning,
the regression target is no longer fixed. It is

also a function of the weight parameters
Chasing a Moving Target!!

The state sequence S1,S2,.. is not iid
It is a function of the agent’s actions

Supervised Learning
only works with
iid samples

In Practice: Any problem with a large number of states diverges

Stabilization of Functional Q Learning
} DQN (Deep Q Networks): DeepMind, 2012

Stabilization of SARSA
} A3C (Asynchronous Advantage Actor Critic):

DeepMind, 2016

} High Level Idea: Make Deep Q Learning look
like Supervised Learning

} Two Main Ideas:
1. Experience Re-Play: Decorrelates successive

samples
2. Use of Target Network: Stabilizes the Target value

(S1,A1,R1,S1’)

(S2,A2,R2,S2’)

(S3,A3,R3,S3’)

(S4,A4,R4,S4’)

A Collection of
1-Step Transitions

(S1,A1,R1,S1’)

(S2,A2,R2,S2’)

(S3,A3,R3,S3’)

(S4,A4,R4,S4’)

A Collection of
1-Step Transitions

Choose a Transition
at Random and Compute

𝑤&(← 𝑤&(− 𝜂𝑥%[𝑄" 𝑆, 𝐴",𝑊 − (𝑅 + 𝛾max
(/

𝑄(𝑆′,	 𝐴),𝑊))]

Replay Buffer

Samples are no longer correlated!

w← 𝑤 − 𝜂𝑥	[𝑄 𝑆, 𝐴,𝑊 − (𝑅 + 𝛾max
0!

𝑄(𝑆′,	 𝐴′,𝑊))]

Behavior Policy
Target Policy

w← 𝑤 − 𝜂𝑥	[𝑄 𝑆, 𝐴,𝑊 − (𝑅 + 𝛾max
0!

𝑄(𝑆′,	 𝐴′,𝑊))]

w← 𝑤 − 𝜂𝑥	[𝑄 𝑆, 𝐴,𝑊 − (𝑅 + 𝛾max
1!

𝑄(𝑆′,	 𝐴′,𝑊))]

𝑤&(← 𝑤&(− 𝜂𝑥%[𝑄" 𝑆, 𝐴",𝑊 − (𝑅 + 𝛾max
(/

𝑄(𝑆′,	 𝐴),𝑊′))]

S S𝑤 𝑤′
Q(𝑆, 𝐴,𝑊) Q(𝑆, 𝐴,𝑊′)

Behavior DQN Target DQN

Runs the main
training loop

Weights updated at
every Step

Computes targets for
the Behavior DQN

Weights updated
less frequently

Use Two Neural Networks!

S S𝑤 𝑤′
Q(𝑆, 𝐴,𝑊) Q(𝑆, 𝐴,𝑊′)

Behavior DQN Target DQN

Runs the main
training loop

Computes targets for
the Online DQN

w← 𝑤 − 𝜂𝑥	[𝑄 𝑆, 𝑄,𝑊 − (𝑅 + 𝛾max
02

𝑄(𝑆′,	 𝐴′,𝑊′))]

𝑊′ ← 𝑊

w← 𝑤 − 𝜂𝑥	[𝑄 𝑆, 𝐴,𝑊 − (𝑅 + 𝛾max
12

𝑄(𝑆′,	 𝐴′,𝑊′))]

𝑊′ ← 𝑊

W W’

Convolutional Neural Network (CNN)

Deep Models allows RL algorithms to solve Complex Decision Making
Problems End-to-End

CNN Layers

Screen
Shot

Game
Joystick

Actions

Functional Q Learning with
Experience Replay and
Target Network

Initialize Target network

(Behavior Agent)

(Behavior Agent)

(Target Agent)

} We found out how to stabilize Deep Q-
Learning by using the DQN algorithm
◦ But this was based on exploiting the off-line nature

of the Q-Learning algorithm
} How can we stabilize Deep On-Line

algorithms, such as the deep version of
SARSA?

} There is a single global network
} There are multiple agents, each of which has its own set of

neural network parameters
} Each of these agents interacts with its copy of the

environment in parallel with the other agents that are doing
the same
◦ The experience of each agent is independent of the others since they use

their own exploration policies
} The effect of multiple workers applying online updates in

parallel is less correlated than a single agent applying online
updates

} Each Agent may be exploring a different portion of the
environment

Worker Task accumulates
gradients

} All the Journal papers referred to in the
lecture, in particular:
“Human Level Control with Deep Reinforcement Learning”
“Playing Atari with Deep Reinforcement Learning

} Sutton and Barto: Sections 9.1-9.3, 9.7

