Function Approximations
in Reinforcement Learning

Lecture 6
Subir Varma

Model Free Monte Carlo Control
Q(S,A) « Q(S,A) +a(G—Q(S,4))

Episode 2: 9§, Episode 1: Policy 1

Policy 2 All of the

Actions
are chosen
according to
Policy

Q0 Q
\\/ N

N

/
L S A /

2,1(32)>0,0(7)>0,0(7) > 0,0(7)~>
2,1 (32) > 0,0

Policy Improvement Update made at
end of an Episode

Model Free On Policy Temporal-
Difference - SARSA

Q(S,A) « Q(S,A) +a (R+7Q(S, A) — Q(S, A)

Actions
are chosen
according to
Policy 71

Actions
are chosen
according to
Improved Policy 7

Policy bing used to generate episode is the same as the policy being learnt

: A special case of
Q Learning
Off Policy Learning

Behavior Agent chooses actions using
The Q values that the Target Agent \

Computes Q(S,A) . Q(S’A) 4+« (R-f—ﬁ' ma;,\x Q(S"a/) _ Q(S,A))

Q Q
H 00 OfF 0 O 0 o O [[F O Fl OO OF O OO0 WO O FE O
) \ /Q %\Q /\ /\ ,\ ,\ Q [l /\ &3 7 O [7 /\ \
Behavior Agent Target Agent
Co_ntrols All Actions Actually Taken Follows Behavior Agent

g epsilon-greedy algo AND In Parallel
Computes Best Possible Action

Two Policies

So Far..

Tabular Reinforcement Learning

S2 Q(S2,A1) Q(S2,A2) Q(S2,A3) Q(S2,A4)
S3 Q(S3,A1) Q(S3,A2) Q(S3,A3) Q(S3,A4)
S4 Q(S4,A1) Q(S4,A2) Q(S4,A3) Q(S4,A4)

This approach does not scale if the number of
states is very large (in the multiple millions)

OR if S or A is continuous

Tabular Reinforcement Learning

(S1,A1,R1,Sy) Monte Carlo

SARSA
=" Q Learning > T(A|S)

Policy

(SnyAnsRnsSe) (Table)

Rollouts €<= Training Set

Objective Function: Total Reward

Machine Learning

A Mathematical Function

l

(input)
X Y, T
| fi(.) |
=> =>

. Gradient _ .

Xn Descent Y, T,
Actual Output '

Input P Desired output

Training Set: (X;,T1),...,(X,, Th)

Objective Function: Distance(Y,T)

RL + ML = Deep RL (Functional
RL)

More Scalable

Monte Carlo
(ShA]!R]’S],) SARSA)
Q Learning

Gradient Descent

Policy

(S, A R..S) fw(.)

Rollouts €<= Training Set

Objective Function: Total Reward

Instead of computing Table Entries, we are now
computing Neural Network weights, but the number
of weights is smaller, and the function generalizes

Deep RL Method 1:
Approximating the Q Function

fw() QA1)
P —= QA0
fw is represented using (Lecture 7)

a multilayer Neural Network

Benefits:
— The number of Parameters W required to define the

function fy Is much less than the size of the state space for S
— The Parameters W can be learnt from the MDP data, using
well known algorithms such as Backprop

Deep RL Method 2:
Approximating Policy Functions

() m(44]S)
-
G s
¥

0 T(Ak|S)

(Lecture 8)

Policy Gradients Algorithms: Estimate Optimal Policy directly without
first estimating the Value Function

Combining RL with DL

Two ways:

1. Use the Neural Network to approximate Q
Functions

DQN: Deep Q Networks

A3C: Asynchronous Methods
2. Use the Neural Network to approximate the
Policy

Policy Gradients Methods

Reinforce Algorithm
3. Use Neural Network to approximate both Q

Function and Policy
o Actor Critic Methods

o

o

o

o

A More Scalable Approach:
Functional Reinforcement Learning

— Q(S!A])

S ——» .

Other Names: 7 e ¢
Deep RL - = — = => Q(S,AK)

Approximate DP

Reinforcement Learning: How to make Optimal Decisions in an
unknown environment

I
Deep Learning: How to solve complex problems in very large
state spaces, especially with sensory data

Deep Reinforcement Learning: How to make Optimal Decisions
for complex problems in large state spaces

Deep RL with Q Function
Approximation: High Level Approach

Run Sample Episodes from the System

¥

Use Monte Carlo, SARSA or Q-Learning to get samples of the mapping
(S,A,R,S’) 2 Q(S,A). This becomes the Training Data

¥

Update the Neural Network weights
So that Q(S,A) and Q(S,A,W) move closer

Actual Desired

We replace Table updates with Output Output
NN Weight updates using fur() Q(S,.A1 W) Q(§,A1)
WA\ -

Gradient Descent
S g

0 - ¢
0 - o
Q(S1AK1W) Q(S’AK)

Regression Problem

State Space
Training Episodes

Neural Network approximates the
Value Function for parts of the State
space outside the sample episodes

Deep RL with Policy Functions:
High Level Approach

Run Sample Episodes from the System

¥

After each episode: Modify the Neural Network to increase the
probability of actions that lead to higher rewards, and decrease the
probability of actions that lead to lower rewards.

fy() e T(4415)

b T(Ag|S)

NOOSOOON
AL
RN, 1’,;‘

Function Approximations Using
Deep Learning Architectures

p—

Choices for the function fy,
1 Linear Networks—— We will focus on these

Dense Feed Forward Networks
Convolutional Neural Networks

Used by the Atari
Game Playing RL
System

/

A~ W N

Recurrent Neural Networks
5. Transformers

Linear Systems

Notation: X is an input vector |

X = (xl,xz, ,xN) ::

\ Components of the
input vector

==» Q(S,A,W)

Linear System with K-ary Output

X1 Wi y n I
Y1 = ZWuxi by
i=1
W21
@] NK+K
] parameters
. Wik
-
- Wh1 Wi
n >
X Yk = ZWKX + bk
n Whi i=1

Q(S,A;,W)

=’ Q(S1AK1W)

What about Non-Linear
Functions?

S => B Q(S’A] 1W)
S3 => => Q(S’AK1W)

Two Solutions:

(1) Explicitly introduce non-linear inputs into a linear system
- Feature Selection

(2) Let the Training Process discover the non-linear function
- Deep Learning

A Dense Feed Forward Network

ZW(Z) @) 4 p®

a §1) . W(l)
(1)
w11 |
(x) L,
:;r N
Y WMl
L
\\ \\\\\\
\\
\\ //,/,,,,,,
//ﬂ/’ \\ \\\\\\
| \\ /
ﬂ/ﬂ \
nout
Layer Hidden Layer

Activations

Output
Layer -Logits

Discovers Non-Linear Functions during the

Training Process

= Y w®,® 1 p®

@, | @

What if the Input State is an Image?
Convolutional Neural Networks

Input

Image g%
([RGB) -
Max

" pooling
Stride | 96

3 Conv 1

Input
Image

Conv 2

FC1 FC2 FC3

13 13
3 o P
L. r
1 13 3\ 13
384
Max
pooling
Conv 3

| - . » _—
1 13

Conv 4

dense dense

13 — =

dense

256 1000
Max - i

Conv 5

=0 Q(5,A;,W)

=0 QS,AW)

What if the State is a Correlated Sequence
(Video/Audio/Language)?
Recurrent Neural Networks/LSTMs/Transformers

Logit +
Classifier

il N > QG,ALW)

Frame n ==p Q(S,A(,W)

!

Training Neural Networks

There is a single algorithm that is used to train
all types of Neural Networks!!

Stochastic Gradient Descent

Backprop: An efficient implementation of
Stochastic Gradient Descent

p—

Training Data - Supervised Learning

S,A,R, S Q(S,A)
X1 t,
X, G

=2 Ground Truth =————>» T-

Input vector X=(Xy,...,Xy) is associated with
Output ‘desired’ vector T = (t;, t,, ..., tx)

™

Also called Label

X(1) > T(1) ‘ |
X(2) > T(2) Or ‘Ground Truth

Training Dataset

X(M) > T(M)

The Supervised Learning Problem

Problem: Find a model for the System, such that it is able to
Predict “suitably good” values of T, for new or un-seen values of X.

Training, Validation and Test Sets

Validation

Training Set Set Test Set
Used to tune Don’t touch this
the model data!
Epoch 1 Epoch 2 Epoch 3

Bl B2 'V B Bl B2 "V B Bl B2 WV rest

Linear Regression

p—

Linear Regression

Model

Output Labels
X Y1 :;
L s
XN -YK tK

Application of the input vector X = (X5, X5, ..., Xy) to the Model

Results in the output vector Y = (y;, Y2, ..., Yx) While the desired
outputs are (t;, t, ...,tx)

Training: Adjust the weights W, so that the “distance” between the
Model Output y and the Label t is minimized

Testing: The model gives good results even for inputs
that are not part of the Training Set

Distance Measure: Loss Function

Label

k / Network Output
LW) = KMz Z(tkm Y ()’

j=1k=1

Mean Square Error

Given the Training Data Set {X(j), T()},j = 1,...,M,
The best parameters W are the ones that
minimize the Mean Square Error

p—

Solution to Classification Problem

(0) Collect Labeled Data (X(s),T(s))
(1) Choose Model h (X,W)

Ground Truth
or (ty,ty, vy ty)

—p Label
X(s) ‘l (3) Compute Loss

1 K
LW) = 2 > (6() = Y (G))?

PDF \ ‘
(J’1rJ’2r "'ryK)

(2) Compute
Model Prediction

q b
G -
¢ -
¢ .
¢ 5

5

(4) Change W to make the Loss smaller

X(S) =—p

Solution to Regression Problem: Using

Gradient Descent

X2 Ground Truth

=——) System ,=%

=< I

1
LOW) = 2 (t()) = Y()?
k=1

=

Search for the
Optimal Parameters

- Gradient Descent
- Backprop

Linear Models (Linear Regression)

Model Parameters have Linear Dependence
h, (XD)=W'XO+b="Y wx +b
i=1

How to Find the Weights?

Given training samples
X(),TG), j=1,...,M
Find Weights that minimize the Loss Function

M
1
LW) = 52> () — ¢())?
j=1

Gradient Descent: An lterative
Algorithm to find the Minimum

(finding this point x is the
goal of gradient descent)

L(w)

increasin

dL
W<Ww-nN——0H
I I aw’

Function Minimization by Iteration

Minimization Using Stochastic

Gradient Descent

1
LW) =5 (7 =)

N
y() =) wixi +b
i=1

oL
W<—w-1N—0
I I aw’
where
dL
an - [y_ t]xl
dL
ob "

N+1 Parameters

Weight
Updates
Using
Stochastic
Gradient
Descent

Set up Model Linear Regr'QSSion

A 4

Initialize Weights

A single epoch
-

VI\training samples

i =% () = t()]

Feed-in jt Training sample
Compute Gradients
Compute New Weights

wi < wi —nx; (DI () — ()]

y

A 4

Compute Loss
Compute Training Accuracy
Compute Test Accuracy

4

v

M
1
LW) = 522> 0 () — ¢ (D)’

With K Outputs

oL
Wik < Wik =150 N
l .
vie(j) = Z Wik X; + by
where i=1
oL : |
— —t X
awlk yk k i
oL

Wi < Wi — X[Vi — til

NK+K Parameters

Weight
Updates
Using
Stochastic
Gradient
Descent

Set up Model

Linear Regression

A 4

Initialize Weights

VI\training samples

A 4

Feed-in jt Training sample
Compute Gradients
Compute New Weights

y

A 4

Compute Loss
Compute Training Accuracy
Compute Test Accuracy

v

oL = [y — 6, (D]x,G
awki_ yk] _tk] xi(])

wie < wic X (D [yie() = tie (D]

4

M K
1
L) = 52>) () = ¥’

1=1 k=1

Logistic Regression

p—

Logistic Regression: Using the Neural

Network for Estimating Probabilities

Classification
Problem

Application of the input vector X = (x5, X», ..

X
X2

XN

Model
hy(X)

Y1
Y2

Yk

leg=1 Vi = 1

., Xy) to the Model

Results in the output vector Y = (y;, Y2, ..., Yx) While the desired

outputs are (t;, t, ...,tx)

Training: Adjust the weights W, so that the “distance” between the
Model Output y and the Label t is minimized

Testing: The model gives good results even for inputs
that are not part of the Training Set

Probabilistic Classification

Label =T € {1,2,...,K}

=.> P(T=1[X)=y, = (X, W)
X ———p h(X, W) °

l Ly,

%’ P(T=K|X)= yx= hg(X,W) | Outputis a Discrete

Probability Density

Function
Vi = b (X, W) = P(Y = k[X)
K
_ In the context of Reinforcement Learning
Vi =1 _ _
e Vi = P(Ax = 1|X)

Gives the Distribution of Actions given
an input State

Performance Measure for Probability
Estimation: Reward Function

LW) = L, Tk 6 () log v ()

Cross Entropy

Given the Training Data Set {X(j), T()},j = 1,...,M,
The best parameters W are the ones that
Maximize the Cross Entropy

Example: K = 2 (Binary Cross
Entropy)

h(X, W) Single output
=» PT=1|X)=y

Single Label: t
(1,0) and (0,1)

L=[tlogy+(1—1t)log(1-y)]

Q
Q
{=]
L J
o |
(=}
o
<
o
N {
o
=
o
T 2 T T ’ !
10 085 00 05 0 15 20
X

The Cross Entropy for (K =2)

Exact Match Complete Mismatch
Yq _ _
Yq = Yq =
L=0 = —00

- L=[tlogy+(1—-t)log(1—y)]

Solution to Classification Problem

(0) Collect Labeled Data (X(s),T(s))
(1) Choose Model h (X,W)

1-Hot Labels
Ground Truth /
or (t1,ty, o, ty)

—P Label
X(s) ‘I (3) Compute Loss

L(W) =— 3N, 3K, t (s) log ye(s)

PDF
Model \
(J’1rJ’2r "'ryK)

(2) Compute
Model Prediction

|

(4) Change W to make the L bigger

Linear Models for Probability
Estimation: Logistic Regression

How to get probabilities?

p—

Convert Scores to Probabilities
via the Sigmoid Function

y=ola)= 1+ exp(—a)

—p Y =o0(a) />

sigmoid function

||||||||
44444444444

How to Find the Weights?

Given training samples
X0, TG, j=1,....M
Find Weights that minimize the Loss Function

M
1
LW) =2 [¢() logy() + (1 = t() log (1 = y))
=

1

1+exp(—i wx (j)-b)

y(Jj)=

No Closed Form solution
Will have to use Gradient Descent

Gradient Computation

1

y(Jj)=

1+ exp(—i w.x,(j)-b)

i=1

L(W)=tlogy+ (1 —1t)log(1—1y)

dL

aWi

(t —y)x;

How did we get this?

Gradient Computation using
Chain Rule of Differentiation

L= [tlogy+ (1 —t)log(1—y)]

1
Y= 11 e-a’ a=ZWixi+b

n
1=1

dL 0L dy Oa
dw; 0dy da ow;

Use Chain Rule:

y(l _y) Y(1<_ Y) xi

oL
aWi

= (t —y)x;

Training
Algorithm:
Exactly the
same as for
Regression!

Set up Model

A 4

Initialize Weights

Training Using
Stochastic Gradient Descent
Logistic Regression

VI\training samples

A 4

Feed-in j" Training sample
Compute Gradients
Compute New Weights

= =x())[e() — y ()]

y

A 4

Compute Loss
Compute Training Accuracy
Compute Test Accuracy

v

»owp cwi+nx(D[EG) — y ()]

4

LW) = 223 [6) gy () + (1 ~ £ log (1 ~ y)
=

Logistic Regression with K Outputs:
The Softmax Function

x W_I 1 y _ eXp(al)
1 a = z Wi1X b1 ! Zlk(:l eXp(ak)
=1
W7
Q .
.
.
. Wik
.
. Wi Wak
exp(ag)

. > yg =
P Ag = Z WigXi|+ bK Zlk(:l eXp(ak)
Whk =1

Training Equation

Wik < Wi + 1x;(t — Vi)

What Does Training Do?

Assume that q*" output y, in a training sample corresponds to the

Ground Truth, i.e., the Label is given by
T =(0,0,..,1,..0)

gth position
Then the Training Equation becomes

Wig < Wig 11 (,)?M—Liq: wiqg +nx;(1 —y,) fork = q and for all i

Wi « Wix — NXiVk, for k # q and for all i

This equation shows that if the gt" action is the correct one
for input X, then its synapse weight is increased, while
the synapse weights of the other actions are reduced

Training Equation

Wik < Wi + 1x;(t — Vi)

Issues in Running Gradient
Descent Algorithms

» Weight Initialization

» Choosing the Learning Rate parameter n
» Deciding when to stop the training

» Improving Generalization Error

These are called Hyper-Parameters

p—

Summary - Regression

Choose weights to
Minimize Error

10 =55 S) -9

[y
x‘
[

J

w; < w; —nx;(y — t) Wik < Wie = 1X; (Ve — L)

p—

Summary - Logistic Regression

Choose weights to _1gvM K _ _
Maximize Reward LW) = 5 2j=1 Zk=1tx () 108y ()

exp(a;)

" R exp(ay)

y=0(a) ="

w; «w; —nx;(y — t) Wi < Wi —1X;(Vk — tk)

A General Training Algorithm

p—

Using Backprop

» Backprop requires only TWO passes to compute ALL the
derivatives, irrespective of the size of the network!

FORWARD PASS
Compute the Node
Activations z

BACKWARD PASS
Compute the Node
Gradients §

S Model
A Ge ne ral (Define Cc?rtnbrl)ztat?oﬁal Graph)
Training :
Algorith m Initialize Weights
(Backprop)

<
<

v

Backprop Forward Pass
Compute z’s

A 4
v \
Feed-in Next Training Sample Backprop Backward Pass
Compute Gradients Compute §'s
Update Weights i
v Compute Gradients
| oL
y — =120
Compute Loss ow
Compute Training Accuracy v
Compute Test Accuracy Update Weights
4 oL
Wij < Wij —n ow; ;

Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 /
24

CONV, CONV, CONYV,
Rel U RelLU RelLU
e.g.6 e.g. 10
5%5x3 5x5x6 /
32 , 28 filters |l 24
filters 10
3 §)

Input Layer Hidden Layer 1 Hidden Layer 2

CNNs Summary

32 height

A
=0

|

5x5x3 filter

L/

I| Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

(a)

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

()

activation map

y

p-

28

=\

3

N

w|

N\

N\

w|

V
0

32

— 32x32x3 image

5x5x3 filter w

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

(b)

activation maps

28

Convolution Layer

(d)

Transformers:

Next word

Loss

Softmax over
Vocabulary

Linear Layer

Transformer
Block

Input
Embeddings

LLMs

long and thanks for all

| 1 l | l
108 Yiong | 108 Yand] [“logvmmia] 108 Yror | 108 Yau |
o) Ceb) (Gab) Geb) (o)
—y v wv wv wuw

and

thanks

for

Further Reading

“Introduction to Deep Learning” by Varma and
Das: https://subirvarma.github.io/GeneralCognitics/Books.html

Chapter 1: Introduction

Chapter 2: Pattern Recognition
Chapter 3: Supervised Learning
Chapter 4: Linear Neural Networks

https://srdas.github.io/DLBook2/
https://subirvarma.github.io/GeneralCognitics/Books.html

