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Policy Improvement Update made at
end of an Episode

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴 )

All of the 
Actions

are chosen 
according to 

Policy 𝜋

0,0  1,2 (-50)  2,1 (32)  0,0 (7)  0,0 (7)  0,0 (7)  
0,0  1,2 (-50)  2,1 (32)  0,0

Episode

Episode 1: Policy 1Episode 2:
Policy 2



Actions
are chosen 

according to 
Policy 𝜋1

Actions
are chosen 

according to 
Improved Policy 𝜋2

Policy being used to generate episode is the same as the policy being learnt



Behavior Agent Target Agent
Follows Behavior Agent
AND In Parallel
Computes Best Possible Action

Behavior Agent chooses actions using
The Q values that the Target Agent
computes

Controls All Actions Actually Taken
Using epsilon-greedy algo

A special case of
Model Free 
Off Policy Learning

Two Policies



Tabular Reinforcement Learning

This approach does not scale if the number of 
states is very large (in the multiple millions)
OR if S or A is continuous

A1 A2 A3 A4
S1 Q(S1,A1) Q(S1,A2) Q(S1,A3) Q(S1,A4)

S2 Q(S2,A1) Q(S2,A2) Q(S2,A3) Q(S2,A4)

S3 Q(S3,A1) Q(S3,A2) Q(S3,A3) Q(S3,A4)

S4 Q(S4,A1) Q(S4,A2) Q(S4,A3) Q(S4,A4)



𝜋(𝐴|𝑆)

Monte Carlo
SARSA
Q Learning

(S1,A1,R1,S1’)
.
.
.
(Sn,An,Rn,Sn’)

Rollouts  Training Set

Policy

Objective Function: Total Reward

(Table)



fW(.)
X1
.
.
.
Xn

Input

Gradient
Descent

(input)

Y1
.
.
.
Yn

Actual Output

Objective Function: Distance(Y,T)

T1
.
.
.
Tn

Desired output

A Mathematical Function

Training Set: (X1,T1),…,(Xn,Tn)



𝜋(𝐴|𝑆)

Monte Carlo
SARSA
Q Learning
+
Gradient Descent

Rollouts  Training Set

Policy

Objective Function: Total Reward

fW(.)

More Scalable

(S1,A1,R1,S1’)
.
.
.
(Sn,An,Rn,Sn’)

Instead of computing Table Entries, we are now
computing Neural Network weights, but the number
of weights is smaller, and the function generalizes



Benefits:
- The number of Parameters W required to define the

function fW Is much less than the size of the state space for S
- The Parameters W can be learnt from the MDP data, using

well known algorithms such as Backprop

fW is represented using
a multilayer Neural Network

S

Q(S,A1)fW(.)

Q(S,AK)

(Lecture 7)



Policy Gradients Algorithms: Estimate Optimal Policy directly without 
first estimating the Value Function

S
fW(.) 𝜋(𝐴!|𝑆)

𝜋(𝐴"|𝑆)

(Lecture 8)



Two ways:
1. Use the Neural Network to approximate Q 

Functions
◦ DQN: Deep Q Networks
◦ A3C: Asynchronous Methods

2. Use the Neural Network to approximate the 
Policy
◦ Policy Gradients Methods
◦ Reinforce Algorithm

3. Use Neural Network to approximate both Q 
Function and Policy

o Actor Critic Methods



Reinforcement Learning: How to make Optimal Decisions in an
unknown environment

Deep Learning: How to solve complex problems in very large
state spaces, especially with sensory data

+

Deep Reinforcement Learning: How to make Optimal Decisions
for complex problems in large state spaces

=

S

Q(S,A1)fW(.)

Q(S,AK)
Other Names:
Deep RL
Approximate DP



Run Sample Episodes from the System

Use Monte Carlo, SARSA or Q-Learning to get samples of the mapping
(S,A,R,S’)  Q(S,A). This becomes the Training Data

Update the Neural Network weights 
So that Q(S,A) and Q(S,A,W) move closer

S
Q(S,A1,W)fW(.)

Q(S,AK,W)

We replace Table updates with
NN Weight updates using

Gradient Descent
Q(S,A1)

Q(S,AK)

Actual
Output

Desired
Output

Regression Problem



State Space
Training Episodes

Neural Network approximates the
Value Function for parts of the State
space outside the sample episodes



Run Sample Episodes from the System

After each episode: Modify the Neural Network to increase the
probability of actions that lead to higher rewards, and decrease the

probability of actions that lead to lower rewards.

S
fW(.) 𝜋(𝐴!|𝑆)

𝜋(𝐴"|𝑆)





1. Linear Networks
2. Dense Feed Forward Networks
3. Convolutional Neural Networks
4. Recurrent Neural Networks
5. Transformers

S
Q(S,A1,W)fW(.)

Q(S,AK,W)

We will focus on these

Used by the Atari
Game Playing RL 
System



𝑥!

𝑥"

𝑥#

𝑦 =&
$%!

#

𝑤$𝑥$ + 𝑏

S
A

Q(S,A,W)

w1

w2

wN

Notation: X is an input vector
𝑋 = (𝑥!, 𝑥", … , 𝑥#)

Components of the
input vector



S
Q(S,A1,W)

Q(S,AK,W)

NK+K
parameters

.

.

.

.

w11

w21

wn1

w1K

w2K

wnK

𝑦! =#
"#!

$

𝑤"!𝑥" + 𝑏!

𝑦% =#
"#!

$

𝑤"%𝑥" + 𝑏%

𝑥!

𝑥"

𝑥&



S Q(S,A1,W)

Q(S,AK,W)
S2

S3

Two Solutions:

(1) Explicitly introduce non-linear inputs into a linear system
-  Feature Selection

(2) Let the Training Process discover the non-linear function
- Deep Learning



.

.

. .
.
.

Hidden Layer
Activations

Input
Layer Output

Layer -Logits

𝑎!
(") = ∑𝑤!$

(")𝑧$
(!) +𝑏!

(")

𝑎"
(") = ∑𝑤"$

(")𝑧$
(!) +𝑏"

(")

𝑎)
(") = ∑𝑤)$

(")𝑧$
(!) +𝑏)

(")

𝑎!
(!) = ∑𝑤!$

(!) 𝑥$ +𝑏!
(!)

𝑎"
(!) = ∑𝑤"$
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𝑎*
(!) = ∑𝑤*$

(!) 𝑥$ +𝑏*
(!)

𝑧(
(()=f(𝑎(

(())
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(()=f(𝑎+
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(()=f(𝑎,
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.

.

.

𝑤!!
(!)

𝑤$!
(!)

𝑤%!
(!)

Discovers Non-Linear Functions during the
Training Process

𝑥!

𝑥"

𝑥&



Input
Image

Conv 1 Conv 2 Conv 3 Conv 4 Conv 5

FC1  FC2  FC3

Q(S,A1,W)

Q(S,AK,W)



Q(S,A1,W)

Q(S,AK,W)

Frame 1

Frame n

.

.



There is a single algorithm that is used to train 
all types of Neural Networks!!

Stochastic Gradient Descent

Backprop: An efficient implementation of 
Stochastic Gradient Descent



Input vector X=(x1,…,xN) is associated with 
Output ‘desired’ vector T = (t1, t2, …, tK)

 

Ground Truth T=

X(1)  T(1)
X(2)  T(2)
.
.
X(M)  T(M)

Training Dataset

S, A, R, S’ Q(S,A)

Also called Label
Or ‘Ground Truth’

𝑥!
𝑥"

𝑥&

.

.

.



Problem: Find a model for the System, such that it is able to
Predict “suitably good” values of T, for new or un-seen values of X.

X T



Training Set Test Set

Epoch 1             Epoch 2              Epoch 3
B1   B2    B3 B1   B2    B3 B1   B2    B3Test Test Test

Validation
Set

V V V

28

Don’t touch this 
data!

Used to tune
the model





Application of the input vector X = (x1, x2, …, xN) to the Model
Results in the output vector Y = (y1, y2, …, yK) while the desired
outputs are (t1, t2, …,tK)

Testing: The model gives good results even for inputs
that are not part of the Training Set

Training: Adjust the weights W, so that the “distance” between the
Model Output y and the Label t is minimized

Model
Output Labels



𝐿 𝑊 =
1

2𝐾𝑀.
23!

4

.
53!

"

(𝑡5(𝑗) − 𝑦5(𝑗))6

Mean Square Error

Given the Training Data Set {X(j), T(j)}, j = 1,…,M, 
The best parameters W are the ones that 

minimize the Mean Square Error

Label
Network Output



Ground Truth
or

Label

Model
ℎ+(𝑋,𝑊)

X(s)

X(s)

(𝑡!, 𝑡", … , 𝑡))

(𝑦!, 𝑦", … , 𝑦))

(2) Compute
Model Prediction

(3) Compute Loss

(4) Change W to make the Loss smaller

(0) Collect Labeled Data (X(s),T(s))
(1) Choose Model hk(X,W)

PDF

𝐿 𝑊 =
1
𝐾
*
-.(

/

(𝑡-(𝑗) − 𝑦-(𝑗))+



Ground Truth

𝐿 𝑊 =
1
𝐾*
-.(

/

(𝑡-(𝑗) − 𝑦-(𝑗))+

t1
.
.
.
tK

y1
.
.
.
yK

𝑥!
𝑥"

𝑥&

.

.

.

𝑥!
𝑥"

𝑥&

.

.

.



𝑥!

𝑥"

𝑥#

y= ∑$%!# 𝑤$𝑥$ + 𝑏

w1

w2

wN



𝐿 𝑊 =
1
2𝑀.

23!

4

(𝑦 𝑗 − 𝑡 𝑗 )6

𝑦(𝑗) =.
:3!

;

𝑤:𝑥:(𝑗) + 𝑏

where
𝑥!

𝑥"

𝑥#

𝑦 =&
$%!

#

𝑤$𝑥$ + 𝑏

w1

w2

wN



Function Minimization by Iteration

Reward Function Maximization: Gradient Ascent

𝑤$ ← 𝑤$ + 𝜂
𝜕𝑅
𝜕𝑤$

L(w)

w2w1 w3



𝜕𝐿
𝜕𝑤-

= 𝑦 − 𝑡 𝑥&

𝑥!

𝑥"

𝑥#

𝑦 =&
$%!

#

𝑤$𝑥$ + 𝑏

𝐿 𝑊 =
1
2
(𝑦 − 𝑡)"

𝑦(𝑗) =&
$%!

#

𝑤$𝑥$ + 𝑏

𝜕𝐿
𝜕𝑏

= 𝑦 − 𝑡

w1

w2

wN
N+1 Parameters

𝑤$ ← 𝑤$ − 𝜂𝑥&[𝑦 − 𝑡]



Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
M training samples

Feed-in jth Training sample
Compute Gradients

Compute New Weights

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy

𝜕𝐿
𝜕𝑤"

= 𝑥$ 𝑗 [𝑦 𝑗 − 𝑡 𝑗 ]

𝑤2 ← 𝑤2 − 𝜂𝑥$(𝑗)[𝑦 𝑗 − 𝑡 𝑗 ]

Linear Regression

𝐿 𝑊 =
1
2𝑀

*
3.(

,

(𝑦	(𝑗) − 𝑡	(𝑗))+

Weight
Updates
Using

Stochastic
Gradient
Descent A single epoch



𝜕𝐿
𝜕𝑤:5

= 𝑦5 − 𝑡+ 𝑥$

𝐿 𝑊 =
1
2𝐾&

+%!

)

[𝑦+ − 𝑡+]"

𝑦+(𝑗) =&
$%!

#

𝑤$+𝑥$ + 𝑏+

23
24!

= 𝑦5 − 𝑡+

NK+K Parameters

𝑤$+ ← 𝑤$+ − 𝜂
𝜕𝐿
𝜕𝑤$+

𝑤$+ ← 𝑤$+ − 𝜂𝑥&[𝑦' − 𝑡']



Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
M training samples

Feed-in jth Training sample
Compute Gradients

Compute New Weights

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy

𝑤2- ← 𝑤2-𝜂𝑥$(𝑗)[𝑦+ 𝑗 − 𝑡+ 𝑗 ]

Linear Regression

𝐿 𝑊 =
1
2𝑀

*
3.(

,

*
-.(

/

(𝑡-(𝑗) − 𝑦-(𝑗))+

Weight
Updates
Using

Stochastic
Gradient
Descent

𝜕𝐿
𝜕𝑤+$

= 𝑦+ 𝑗 − 𝑡! 𝑗 𝑥"(𝑗)





∑+%!) 𝑦+ = 1

Application of the input vector X = (x1, x2, …, xN) to the Model
Results in the output vector Y = (y1, y2, …, yK) while the desired
outputs are (t1, t2, …,tK)

Testing: The model gives good results even for inputs
that are not part of the Training Set

Training: Adjust the weights W, so that the “distance” between the
Model Output y and the Label t is minimized

Label

0
1
.
.
0

=
Classification

Problem



𝑦+ = ℎ+ 𝑋,𝑊 = P Y = k X

&
+%!

)

𝑦+ = 1

h(𝑋,𝑊)𝑋

P(T=1|X)= 𝑦! = ℎ!(𝑋,𝑊)

Label = 𝑇 ∈ {1,2, … , 𝐾}

P(T=K|X)= 𝑦)= ℎ)(𝑋,𝑊) Output is a Discrete 
Probability Density

Function

In the context of Reinforcement Learning
𝑦+ = P(𝐴+ = 1|𝑋)

Gives the Distribution of Actions given
an input State



𝐿 𝑊 = 5
6
∑7856 ∑985: 𝑡9 𝑗 log 𝑦9(j)

Cross Entropy

Given the Training Data Set {X(j), T(j)}, j = 1,…,M, 
The best parameters W are the ones that 

Maximize the Cross Entropy



ℒ = [𝑡 log 𝑦 + 1 − 𝑡 log(1 − 𝑦) ]

ℎ(𝑋,𝑊)
𝑋 P(T=1|X) = y

Single output

Single Label: t
(1,0) and (0,1)

y

1-y



𝑦,

ℒ

𝑡S=1
ℒ = log 𝑦S, 0 ≤ 𝑦S ≤ 1

Exact Match
 𝑦, 	=1

Complete Mismatch
𝑦, =0

ℒ = 0 ℒ = −∞

ℒ = [𝑡 log 𝑦 + 1 − 𝑡 log(1 − 𝑦) ]



𝐿 𝑊 = #
$
∑%&#$ ∑!&#' 𝑡! 𝑠 log 𝑦!(s)

Ground Truth
or

Label

Model
ℎ+(𝑋,𝑊)

X(s)

X(s)

(𝑡!, 𝑡", … , 𝑡))

(𝑦!, 𝑦", … , 𝑦))

(2) Compute
Model Prediction

(3) Compute Loss

(4) Change W to make the L bigger

(0) Collect Labeled Data (X(s),T(s))
(1) Choose Model hk(X,W) 1-Hot Labels

PDF



𝑥!

𝑥"

𝑥#

𝑦 =&
$%!

#

𝑤$𝑥$ + 𝑏

P(T = 0)

P(T = 1)

How to get probabilities?

w1

w2

wN



𝑥!

𝑥"

𝑥#

𝑎 =&
$%!

#

𝑤$𝑥$ + 𝑏 𝑦 = 𝜎(𝑎)

𝑦 = 𝜎 𝑎 =
1

1 + exp(−𝑎)
w1

w2

wN



No Closed Form solution
Will have to use Gradient Descent

𝐿 𝑊 =
1
𝑀.

23!

4

[𝑡 𝑗 log 𝑦 𝑗 + (1 − 𝑡(𝑗) log	(1 − y j) ]

𝑤$ ← 𝑤$ + 𝜂
𝜕𝐿
𝜕𝑤$



𝐿 𝑊 = 𝑡 log 𝑦 + 1 − 𝑡 log(1 − 𝑦)

𝜕𝐿
𝜕𝑤-

= (𝑡 − 𝑦)𝑥-

𝑤& ← 𝑤& + 𝜂𝑥:(𝑡 − 𝑦)

𝑤$ ← 𝑤$ + 𝜂
𝜕𝐿
𝜕𝑤$

How did we get this?

If

then



ℒ= [𝑡 log 𝑦 + 1 − 𝑡 log 1 − y ]

𝑦 =
1

1 + 𝑒YZ
, a = 	.

:3!

[

𝑤:𝑥: + 𝑏

𝜕ℒ
𝜕𝑤:

=
𝜕ℒ
𝜕𝑦

𝜕𝑦
𝜕𝑎

𝜕𝑎
𝜕𝑤:Use Chain Rule:

𝑡 − 𝑦
𝑦(1 − 𝑦) 𝑦(1 − 𝑦) 𝑥:

𝜕𝐿
𝜕𝑤-

= (𝑡 − 𝑦)𝑥-



Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
M training samples

Feed-in jth Training sample
Compute Gradients

Compute New Weights

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy

𝜕𝐿
𝜕𝑤"

= 𝑥$ 𝑗 [𝑡 𝑗 − 𝑦(𝑗)]

𝑤2 ← 𝑤2 + 𝜂𝑥$(𝑗)[𝑡 𝑗 − 𝑦 𝑗 ]

Training Using
Stochastic  Gradient Descent

Logistic Regression
Training

Algorithm:
Exactly the
same as for
Regression!

𝐿 𝑊 =
1
𝑀
2
(&#

$

[𝑡 𝑗 log 𝑦 𝑗 + (1 − 𝑡(𝑗) log	(1 − y j ]



𝑤$+ ← 𝑤$+ + 𝜂𝑥$(𝑡+ − 𝑦+)

Training Equation

w11

w21

wn1

w1K

w2K

wnK

𝑎! =#
"#!

$

𝑤"!𝑥" + 𝑏!

𝑎% =#
"#!

$

𝑤"%𝑥" + 𝑏%

𝑦# =
exp(𝑎#)

∑!&#' exp(𝑎!)

𝑦' =
exp(𝑎')

∑!&#' exp(𝑎!)

𝑥!

𝑥"

𝑥&



Assume	that	qth output	yq in	a	training	sample	corresponds	to	the
Ground	Truth,	i.e.,	the	Label	is	given	by
T	=	(0,0,…,1,…0)

Then	the	Training	Equation	becomes

𝑤&( ← 𝑤&(+𝜂 )*
)+56

= 𝑤&( + 𝜂𝑥&(1 − 𝑦() for k = q and for all i
𝑤&' ← 𝑤:5 − 𝜂𝑥:𝑦5, 𝑓𝑜𝑟 𝑘 ≠ 𝑞 and for all i

qth position

This equation shows that if the qth action is the correct one
for input X, then its synapse weight is increased, while
the synapse weights of the other actions are reduced

𝑤$+ ← 𝑤$+ + 𝜂𝑥$(𝑡+ − 𝑦+)

Training Equation



} Weight Initialization
} Choosing the Learning Rate parameter 𝜂
} Deciding when to stop the training
} Improving Generalization Error

These are called Hyper-Parameters



𝑤& ← 𝑤& − 𝜂𝑥:(𝑦 − 𝑡)

𝑥!

𝑥"

𝑥#

y= ∑$%!# 𝑤$𝑥$ + 𝑏

𝑤&' ← 𝑤&' − 𝜂𝑥:(𝑦5 − 𝑡5)

w1

w2

wN

𝐿 𝑊 =
1
2𝑀&

0%!

*

&
+%!

)

(𝑡+(𝑗) − 𝑦+(𝑗))"
Choose weights to 

Minimize Error



𝑤& ← 𝑤& − 𝜂𝑥:(𝑦 − 𝑡) 𝑤&' ← 𝑤&' − 𝜂𝑥:(𝑦5 − 𝑡5)

𝐿 𝑊 = !
%
∑,-!% ∑'-!. 𝑡' 𝑗 log 𝑦'(j)Choose weights to

Maximize Reward





} Backprop requires only TWO passes to compute ALL the 
derivatives, irrespective of the size of the network!

.

.

.

y

.

.

.

.

.

.

x1

xN

FORWARD PASS
Compute the Node
Activations z

𝜕ℒ
𝜕𝑤

= zδ



Set up Model
(Define Computational Graph)

Initialize Weights

Loop for
E Epochs

Loop for
M Inputs

Feed-in Next Training Sample
Compute Gradients

Update Weights

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy

Backprop Forward Pass
Compute z’s

Backprop Backward Pass
Compute 𝛿&𝑠

Compute Gradients
𝜕ℒ
𝜕𝑤 = 𝑧𝛿

A General
Training
Algorithm
(Backprop)

Update Weights

𝑤"' ← 𝑤"' − 𝜂
𝜕ℒ
𝜕𝑤"'



Input Layer           Hidden Layer 1              Hidden Layer 2



(a) (b)

(c) (d)





“Introduction to Deep Learning” by Varma and 
Das: https://subirvarma.github.io/GeneralCognitics/Books.html

Chapter 1: Introduction
Chapter 2: Pattern Recognition
Chapter 3: Supervised Learning
Chapter 4: Linear Neural Networks

https://srdas.github.io/DLBook2/
https://subirvarma.github.io/GeneralCognitics/Books.html

