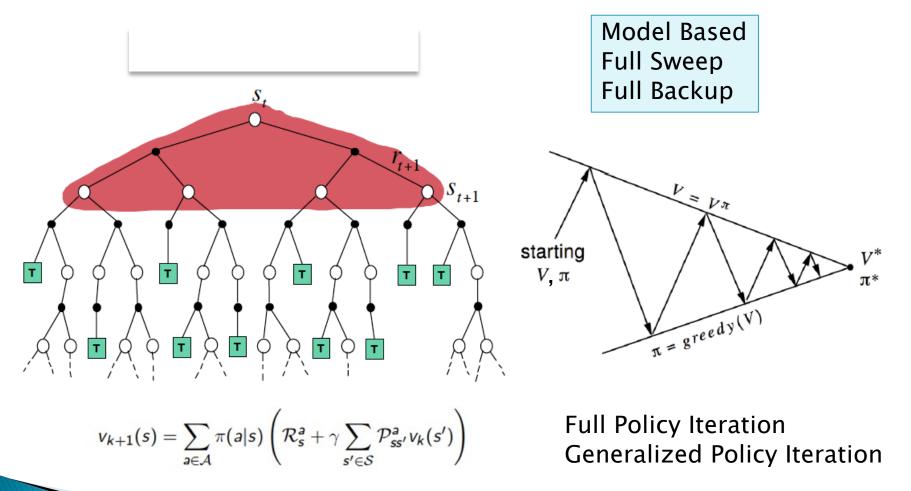
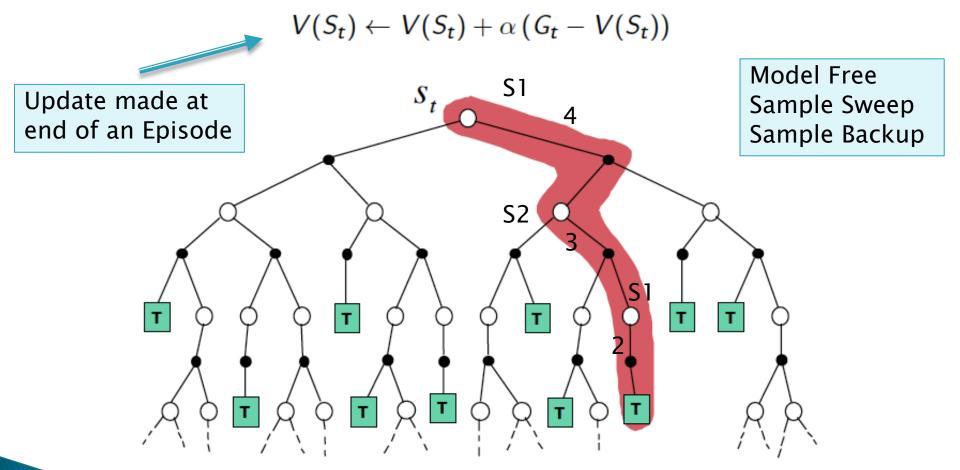
Model Free Control Lecture 5 Subir Varma

Model Based Policy Evaluation and Optimal Control (Lecture 3)



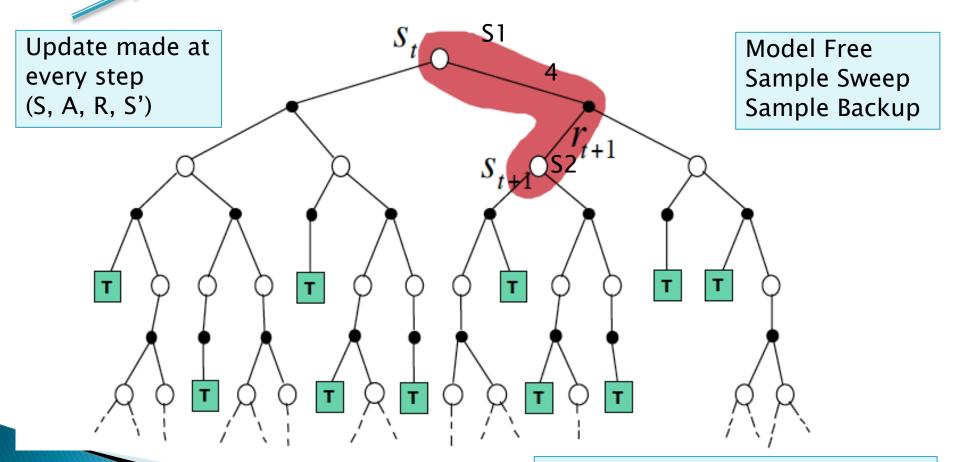
Model Free Policy Evaluation: Monte Carlo Learning (Lecture 4)



Instead of a Model, we now have sample episodes from the MDP

Model Free Policy Evaluation: Temporal-Difference (TD) Learning (Lecture 4)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$



Instead of a Model, we now have sample episodes from the MDP

The Next Step..

So Far: We have algorithms to find the Value Function v_{π} , given a policy π (with or without a model)

But: We are really interested in finding the Optimal Policy π_*

Model Free Reinforcement Learning

Last lecture:

- Model-free prediction
- Estimate the value function of an unknown MDP

This lecture:

- Model-free control
- Optimise the value function of an unknown MDP

Uses of Model-Free Control

Some example problems that can be modelled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactor
- Helicopter
- Aeroplane Logistics

- Robocup Soccer
- Quake
- Portfolio management
- Protein Folding
- Robot walking

Game of Go

RL based on Human Feedback (RLHF)

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

On and Off-Policy Learning

On-policy learning

- "Learn on the job"
- Learn about policy π from experience sampled from π

Policy being used to generate episode is the same as the policy being learnt

Off-policy learning

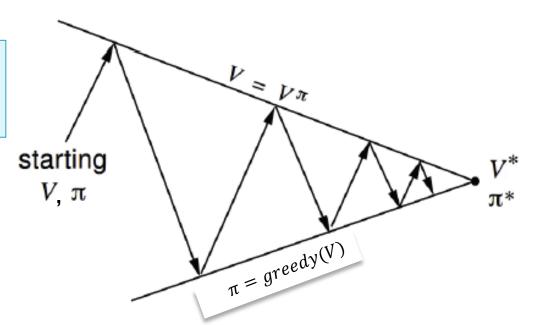
- "Look over someone's shoulder"
- Learn about policy π from experience sampled from μ

Policy being used to generate episode is the different than the policy being learnt

Monte Carlo Control

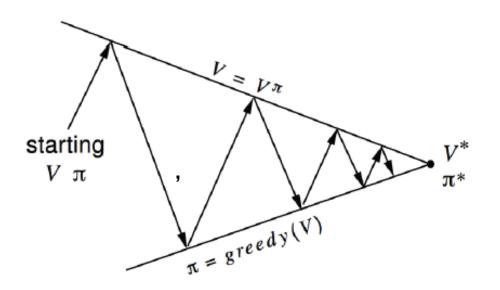
Generalized Policy Iteration

We computed v_{π} by using the Bellman Expectation Equation



Policy evaluation Estimate V_{π} e.g. Iterative policy evaluation Policy improvement Generate $\pi' \ge \pi$ e.g. Greedy policy improvement

Generalized Policy Iteration with Monte Carlo Evaluation



Instead of using Bellman Expectation Equation to compute v_{π} , we are using Monte Carlo Policy evaluation to estimate V_{π}

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

What is wrong with this approach?

Model-Free Policy Iteration Using Action-Value Function

Greedy policy improvement over V(s) requires model of MDP

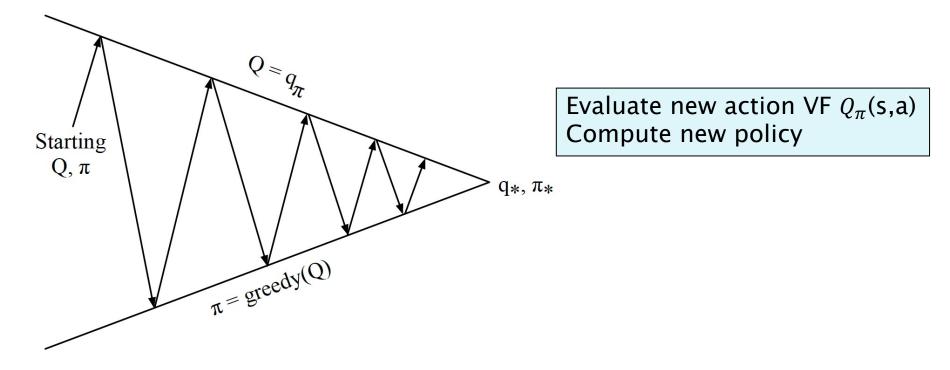
$$\pi'(s) = \operatorname{argmax}_{a \in \mathcal{A}} \left[\mathcal{R}^{a}_{s} + \sum \mathcal{P}^{a}_{ss'} V(s') \right]$$

Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q(s, a)$$

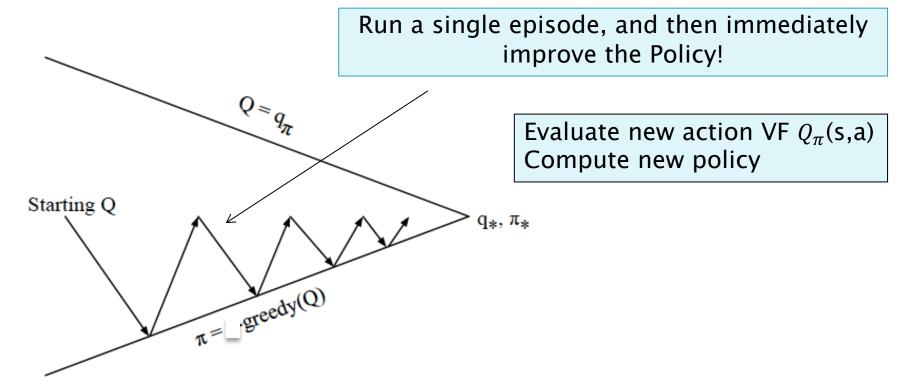
Estimating $V_{\pi}(s)$ is not enough, we need to estimate $Q_{\pi}(s,a)$

Generalized Policy Iteration with Action-Value Function



Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

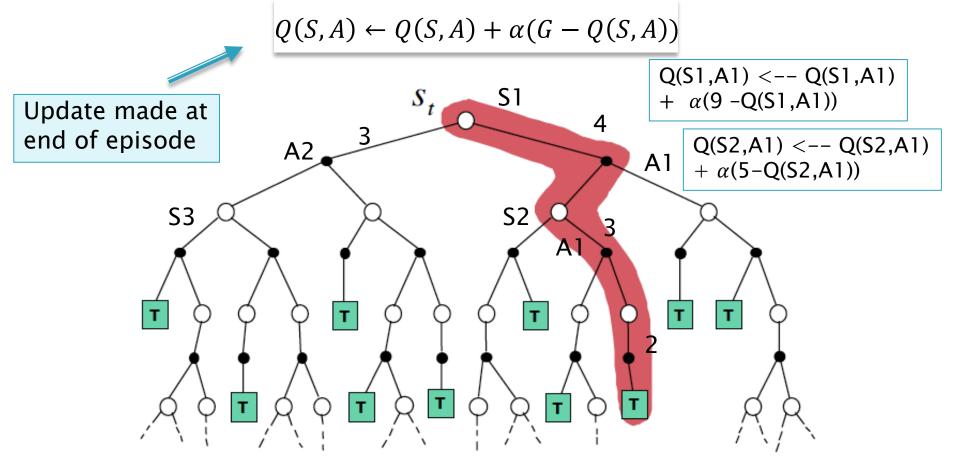
Generalized Policy Iteration with Action-Value Function



Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement _-greedy policy improvement

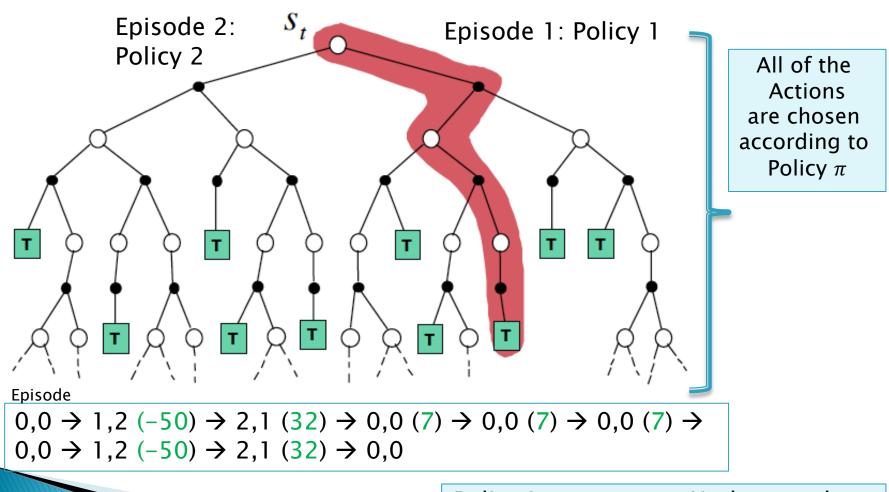
Monte Carlo Backup for Q



Q(S,A) Update => Policy Update Policy changes at end of every episode Another Problem: How to ensure that every (S,A) pair is visited?

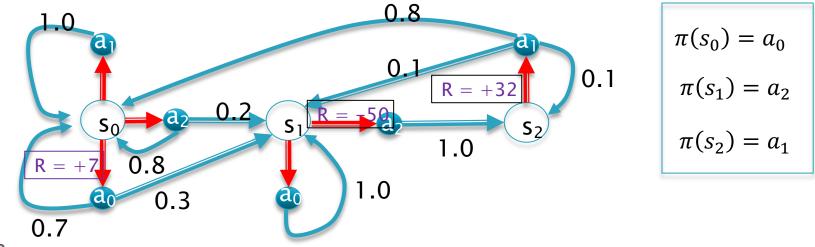
Model Free Monte Carlo Control

 $Q(S,A) \leftarrow Q(S,A) + \alpha(G - Q(S,A))$



Policy Improvement Update made at end of an Episode

Example: Q(S,A) Evaluation



policy_fire

States (+rewards): 0 1 (-50) 2 (40) 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 ... Total rewards = -220
States (+rewards): 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 ... Total rewards = 40
States (+rewards): 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 (10) 0 1 (-50) 2 (40) ... Total rewards = 160
States (+rewards): 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 (10) 0 (10) ... Total rewards = 280
States (+rewards): 0 (10) 0 1 (-50) 2 1 (-50) 2 (40) 0 (10) 0 (10) 0 (10) ... Total rewards = 280
States (+rewards): 0 (10) 0 1 (-50) 2 1 (-50) 2 (40) 0 (10) 0 (10) 0 (10) ... Total rewards = 190
Summary: mean=122.2, std=134.956674, min=-340, max=490

 $0 \rightarrow 1 \ (-50) \rightarrow 2 \ (32) \rightarrow 0 \ (7) \rightarrow 0 \ (7) \rightarrow 0 \ (7) \rightarrow 0 \rightarrow 1 \ (-50) \rightarrow 2 \ (32) \rightarrow 0 \ \dots$

Estimating V

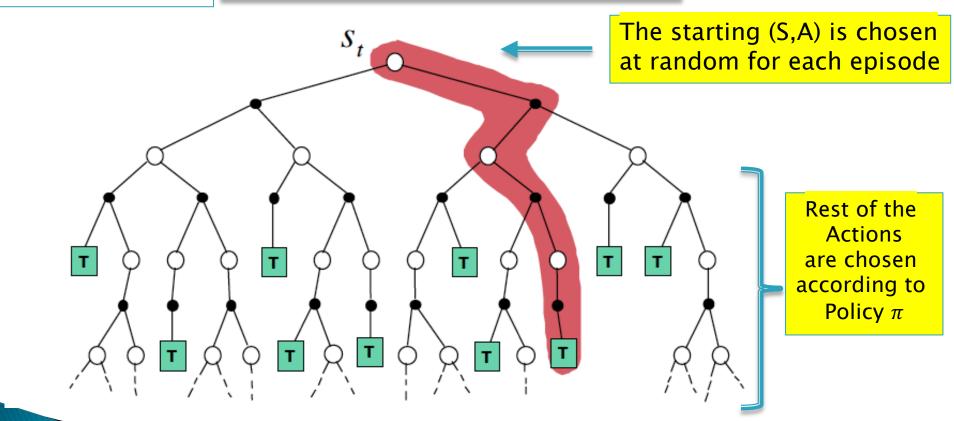
Estimating Q

 $\begin{array}{c} 0,2 \rightarrow 1,2 \; (-50) \rightarrow 2,1 \; (32) \rightarrow 0,0 \; (7) \rightarrow 0,$

Monte Carlo Backup for Action Value Functions with Exploring Starts

Update made at end of an Episode

 $Q(S,A) \leftarrow Q(S,A) + \alpha(G - Q(S,A))$



Policy Improvement Update made at end of an Episode

Monte Carlo Control with Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

Initialize, for all $s \in S$, $a \in A(s)$: $Q(s, a) \leftarrow arbitrary$ $\pi(s) \leftarrow arbitrary$ $Returns(s, a) \leftarrow empty list$

Repeat forever: Choose $S_0 \in S$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) For each s in the episode: $\pi(s) \leftarrow$ arg max_a Q(s, a)

How to Avoid the Exploring Starts Assumption

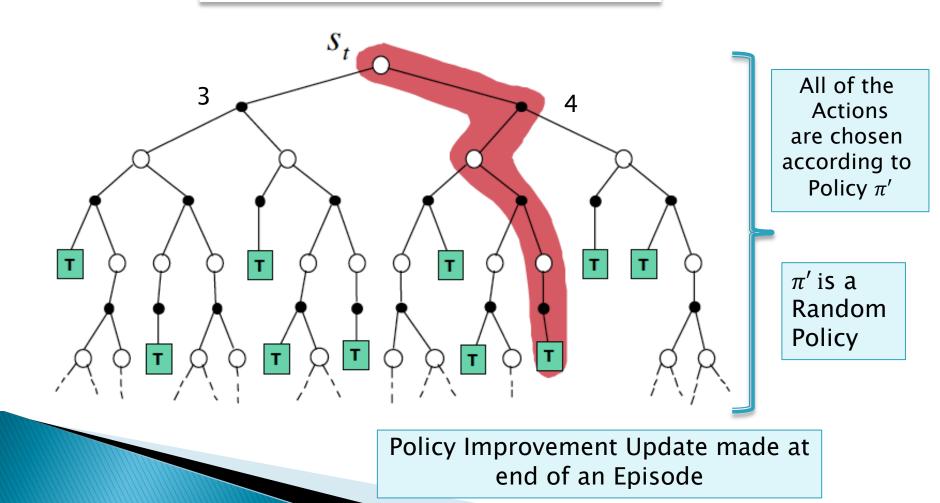
The initial State and Action may not be under our control

General Strategy: Continue to select all possible Actions (even during an episode)

But: The agent is supposed to follow Policy π .

Idea: Randomize the Policy!

 $Q(S,A) \leftarrow Q(S,A) + \alpha(G - Q(S,A))$

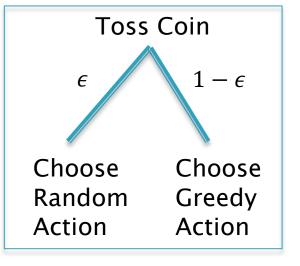


ε –Greedy Exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a^* = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

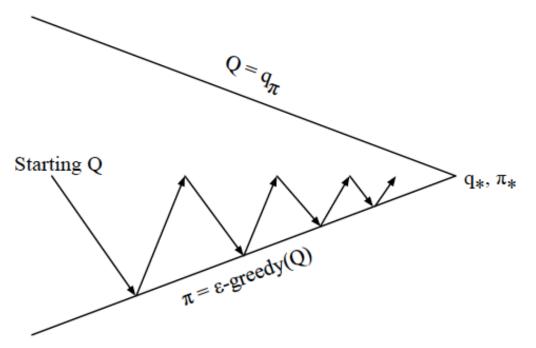
Works very well in practice Guarantees that you continue to explore everything Guarantees that you improve your policy



Exploration and Exploitation

Exploration finds more information about the environment
 Exploitation exploits known information to maximise reward
 It is usually important to explore as well as exploit

Generalized Policy Iteration with Action-Value Function and ϵ Greedy Exploration



Every episode: Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

On–Policy First Visit MC Control with *ε* Greedy Policies

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

Initialize, for all $s \in S$, $a \in A(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow empty list$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon \text{-soft policy}$ Repeat forever: (a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow average(Returns(s, a))$ (c) For each s in the episode: $A^* \leftarrow \arg \max_a Q(s, a)$ (with ties broken arbitrarily) For all $a \in \mathcal{A}(s)$: $\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$

> On Policy: Policy being used to generate episode is the same as the policy being learnt

Example: Monte Carlo

$$\alpha = 0.8, \gamma = 1$$

Given the following episode:

 $(s\underline{1,a}0)$ $(r = 3) \rightarrow (s0,a0)$ $(r = 2) \rightarrow (s2,a1)$ $(r = -1) \rightarrow (s0,a0)$

assume that the Q values in the starting iteration are given by the following table:

Q(<mark>s,a</mark>)	a0	a1
sO	2	-1
s1	4	3
s2	0	5

(c) Monte Tarlo
$$Q(S,A) \in Q(S,A) + d(G-Q(S,A))$$

 $q(S_1, a_0) = 4 + 0.8 \times ((3+2-1) - 4) = 4$
 $q(S_0, a_0) = 2 + 0.8 \times ((2-1) - 2) = 1.2$
 $q(S_2, a_1) = 5 + 0.8 \times (-1 - 5) = 0.2$

ε-Greedy Policy Improvement

Is the ε greedy policy π' actually better than the old policy π ?

Theorem

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \ge v_{\pi}(s)$

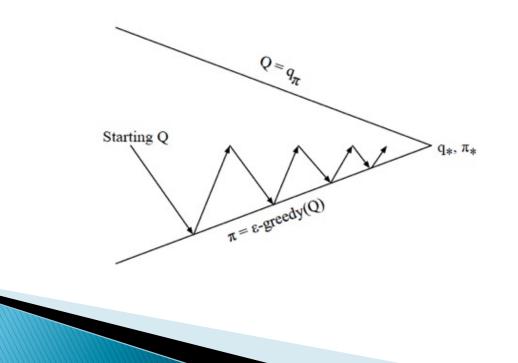
$$v_{\pi\prime}(s) = \sum_{a \in \mathcal{A}} \pi'(a|s)q_{\pi}(s,a)$$

= $\epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a)$
 $\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a)$
 $= \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s,a) = v_{\pi}(s)$

Therefore from policy improvement theorem, $v_{\pi'}(s) \ge v_{\pi}(s)$

One More Problem ...

- We know that the Optimal Policy is NOT Random
- We need a way to gradually reduce the randomness in the Policy



Solution: GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}(a = \operatorname{argmax}_{a' \in \mathcal{A}} Q_k(s, a'))$$

True for epsilon greed

Policy eventually becomes greedy

For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$

 $\pi \leftarrow \epsilon$ -greedy(Q)

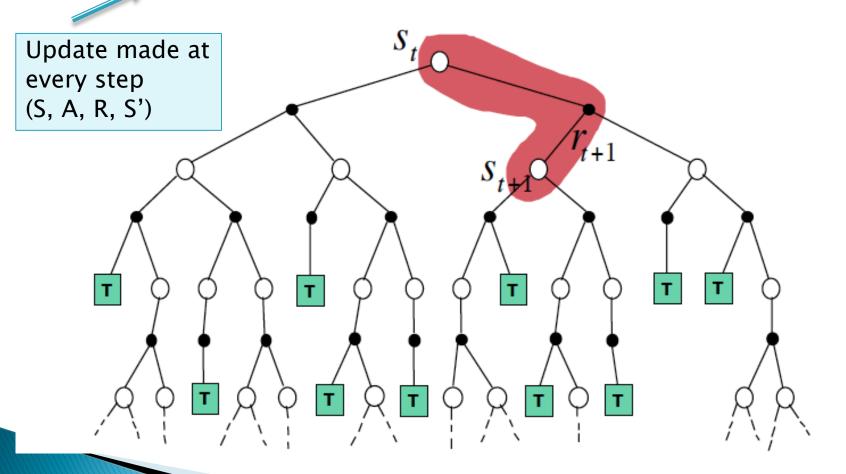
Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$

On Policy TD Control: The SARSA Algorithm

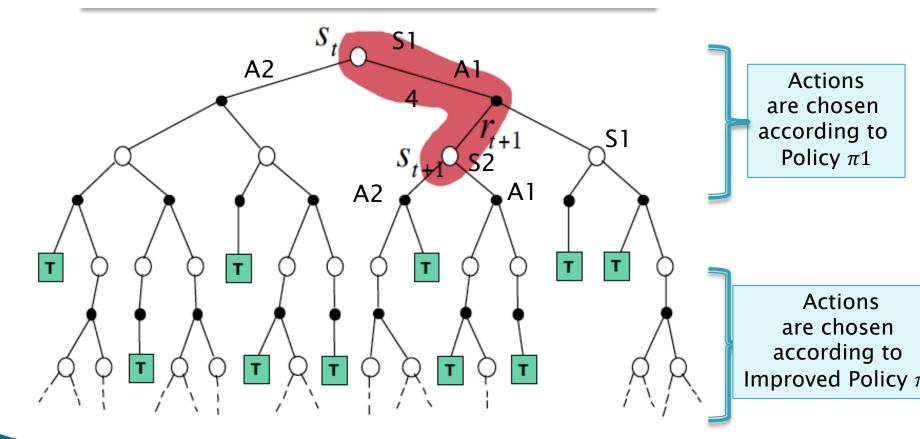
Recall: Temporal-Difference (TD) Learning

 $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$



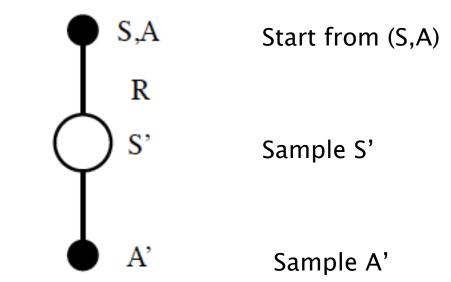
Model Free On Policy Temporal-Difference Algorithm: SARSA

 $Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A) \right)$



Policy Improvement Update made after each step!

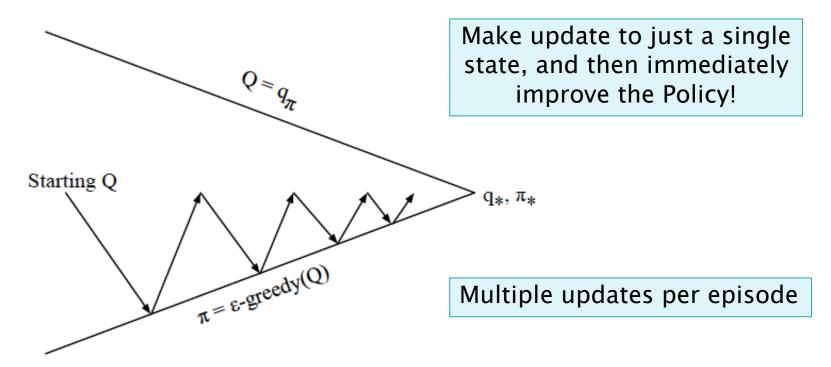
Updating Q Functions with SARSA



 $Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A) \right)$

For Value Functions: $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$

On–Policy Control with SARSA



Every time-step: Policy evaluation Sarsa, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

SARSA Algorithm for On-Policy Control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ϵ -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ϵ -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

> On Policy: Policy being used to generate episode is the same as the policy being learnt

Example: SARSA

 $\alpha = 0.8, \gamma = 1$

Given the following episode:

 $(s\underline{1,a}0)$ $(r = 3) \rightarrow (s0,a0)$ $(r = 2) \rightarrow (s2,a1)$ $(r = -1) \rightarrow (s0,a0)$

assume that the Q values in the starting iteration are given by the following table:

Q(s,a)	a0	a1
sO	2	-1
s1	4	3
s2	0	5

$$\begin{array}{l} (a) SARSA: Q(S,A) \leftarrow Q(S,A) + d(R+) Q(S'A') - Q(S'A)) \\ g(S_{1},a_{0}) = g(S_{1},a_{0}) + o(8 \times (3+g(S_{0},a_{0}) - g(S_{1},a_{0}))) \\ &= 4 + o(8 \times (3+2-4) = -4i8 \\ g(S_{0},a_{0}) = g(S_{0},a_{0}) + o(8 \times (2+g(S_{2},a_{1}) - g(S_{0},G_{0}))) \\ &= 2+0.8 \times (2+5-2) = b \\ g(S_{2},a_{1}) = g(S_{2},a_{1}) + o(8 \times (-1+g(S_{0},a_{0}) - g(S_{1},a_{1}))) \\ &= 5+08 \times (aa + b - 5) = 5 \end{array}$$

MC vs TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences

Convergence of SARSA

Theorem

Sarsa converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- Robbins-Monro sequence of step-sizes \(\alpha_t\)

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$
$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Off Policy Temporal Difference Control: The Q Learning Algorithm

On and Off-Policy Learning

On-policy learning

- "Learn on the job"
- Learn about policy π from experience sampled from π

Policy being used to generate episode is the same as the policy being learnt

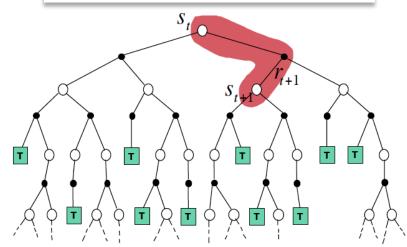
Off-policy learning

- "Look over someone's shoulder"
- Learn about policy π from experience sampled from μ

Policy being used to generate episode is the different than the policy being learnt

General Off Policy Learning

Behavior Agent chooses actions Based on its own policy. For example It can simply choose action with Equal probability

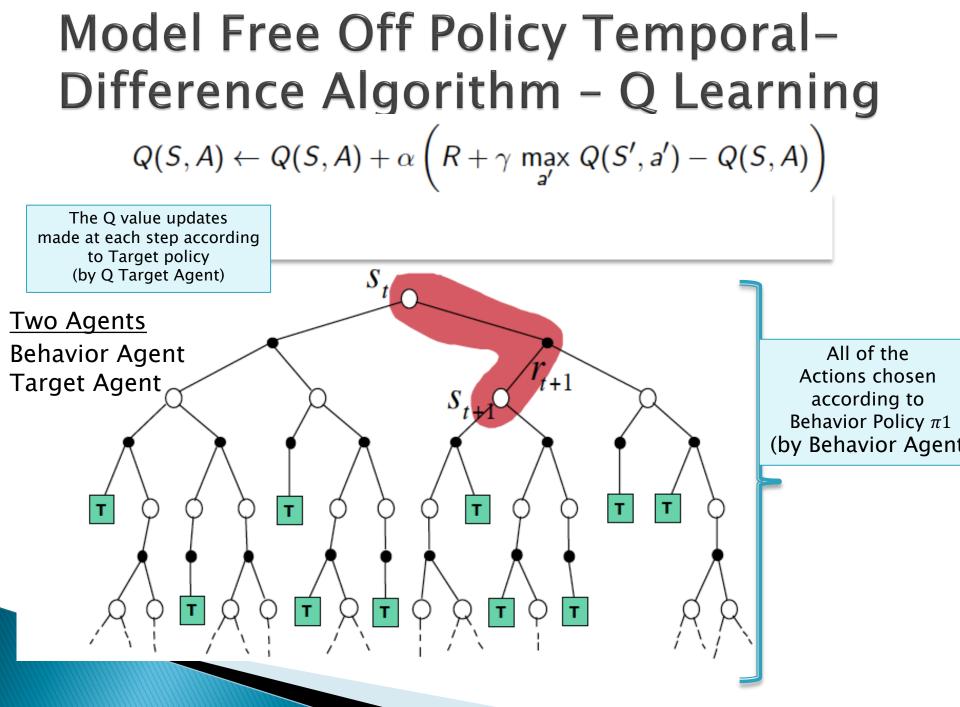


Behavior Agent

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$

Target Agent

Follows Behavior Agent AND In Parallel Computes Best Possible Action



Off Policy Control with Q Learning

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S', argmax_{a'}Q(S',a')) - Q(S,A))$$

Behavior Policy
 $Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'}Q(S',a') - Q(S,A)\right)$

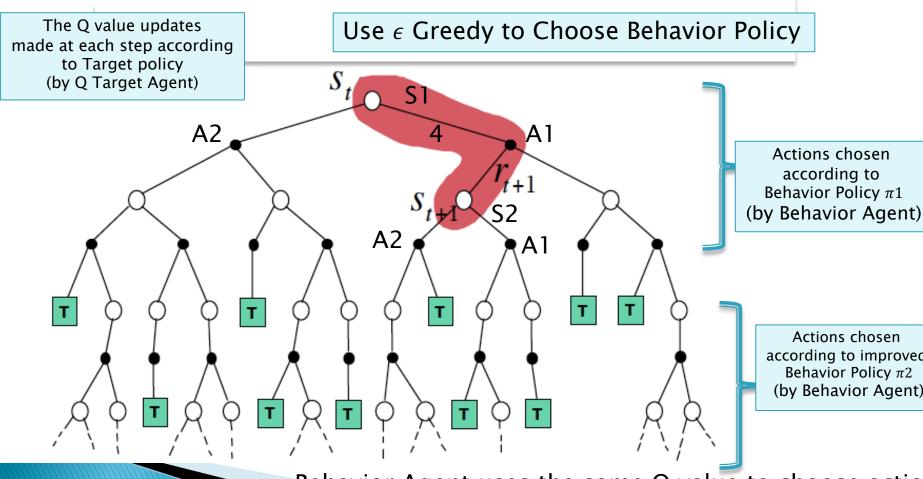
Next Action chosen according to a randomized Behavior Policy This ensures Exploration of the State Space

But: Q-Value Update made according to the 'Optimal' Target Policy

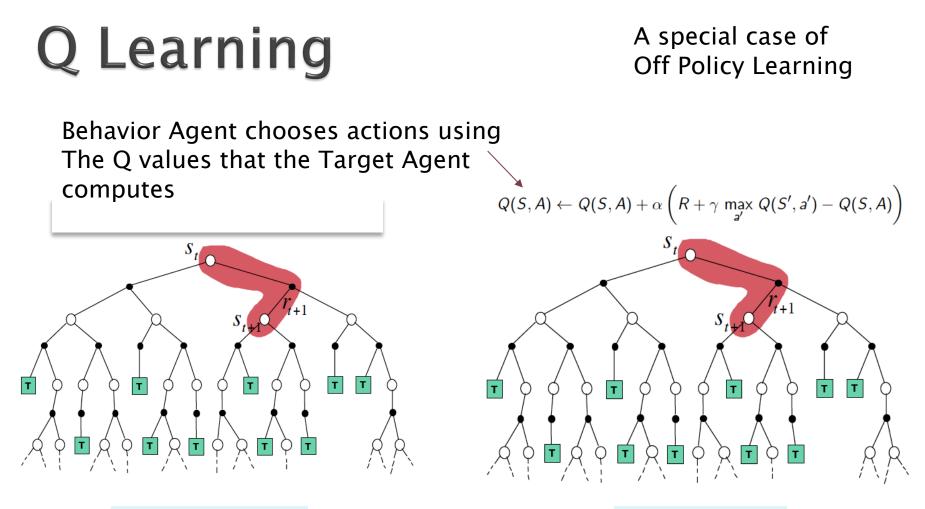
 $Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A) \right)$

Q Learning: Behavior Policy also Evolves

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$



Behavior Agent uses the same Q value to choose actio



Behavior Agent

Controls All Actions Actually Taken Using epsilon-greedy algo

Target Agent

Follows Behavior Agent AND In Parallel Computes Best Possible Action

Off Policy Control with Q Learning

We now allow both behaviour and target policies to improve
 The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \operatorname{argmax}_{a'} Q(S_{t+1}, a')$$

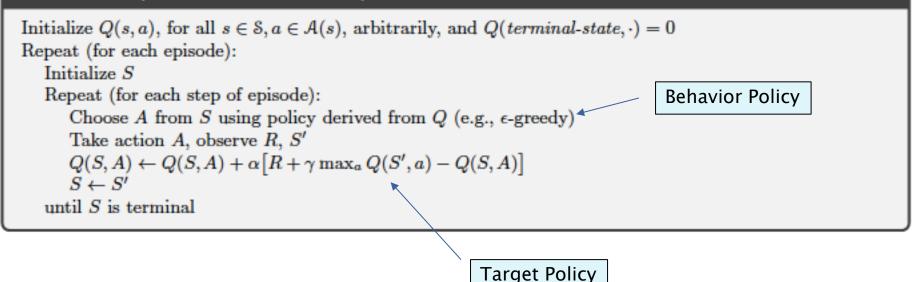
The behaviour policy μ is e.g. ε-greedy w.r.t. Q(s, a)
 The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

= $R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a'))$
= $R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$

Q Learning Algorithm for Off Policy Control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$



Example: Q Learning

 $\alpha = 0.8, \gamma = 1$

Given the following episode:

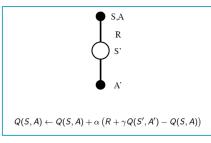
 $(s\underline{1,a}0)$ $(r = 3) \rightarrow (s0,a0)$ $(r = 2) \rightarrow (s2,a1)$ $(r = -1) \rightarrow (s0,a0)$

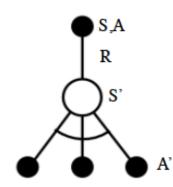
assume that the Q values in the starting iteration are given by the following table:

Q(s,a)	a0	a1
sO	2	-1
s1	4	3
s2	0	5

(b) $\mathbb{Q} \sim \text{learning}$: $\mathbb{Q}(s,A) \in \mathbb{Q}(s,A) + \mathcal{Q}(\mathbb{R} + \mathcal{V}_{\text{max}} \mathbb{Q}(s',a') - \mathbb{Q}(s,A))$ 9(S, 100)= 4+018×(3+ max(2,-1)-4) = 418 Q(So, 90) = 2+0,8x(2+ max(0,5)-2) = 6 9(52, a1)= 5+ 08× (-1+ MOX (6,-1)-5)=5

Q Learning Control Algorithm





$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A) \right)$$

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

Other Uses of Off Policy Learning

- Learn about optimal policy while following exploratory policy
- Learn from observing humans or other agents
- Learn about *multiple* policies while following *one* policy
- Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$

Critical Idea used in Deep Reinforcement Learning

Q Learning in Batch Mode

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A) \right)$$

(S1,A1,R1,S1')

(S2,A2,R2,S2')

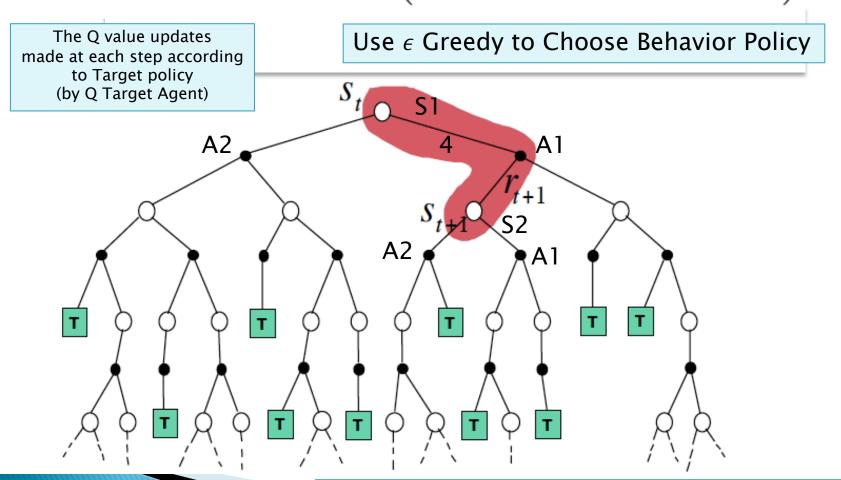
(\$3,A3,R3,\$3')

(S4,A4,R4,S4')

A Collection of 1-Step Transitions

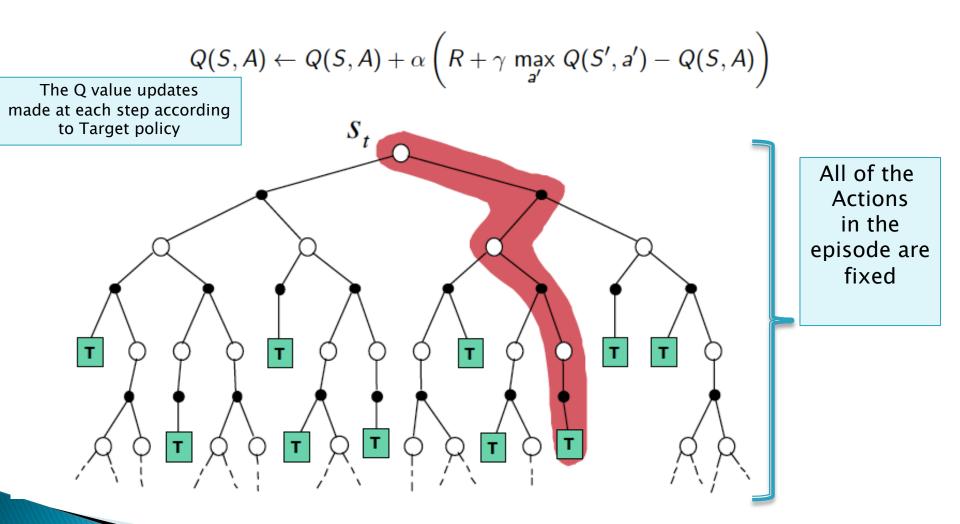
Q Learning: Behavior Policy also Evolves

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$



Allows reuse of a single transition multiple times

Q Learning in Batch Mode



Allows reuse of a single episode multiple times

Summary

Summary

- On Policy Monte Carlo Control: This involves a Policy Evaluation step follows by a Policy Improvement Step. Policy Evaluation is done based on the data from a complete episode of the MDP. This is followed by Policy Improvement using the new Q values, and the new policy is used to generate the next episode.
- On Policy Temporal Difference Control (SARSA): This also involves Policy Evaluation followed by Policy Improvement. However the Policy Evaluation is based on the data from a single step of the MDP. This is immediately followed by Policy Improvement, and the improved policy is used to generate the next step of the MDP.
- Off Policy Temporal Difference Control (Q Learning): In this case the Agent taking the Actions (using the Behavior Policy) is different from the Agent computing the optimal Q function (using the Target Policy). Behavior Policy uses some randomness to traverse the MDP, and Target Policy uses the data generated from this traversal to compute the optimal Q function.

Further Reading

Sutton and Barto:

- Chapter 5: Sections 5.3 5.4
- Chapter 6: Sections 6.4 6.5