
Lecture 5
Subir Varma

,

Full Policy Iteration
Generalized Policy Iteration

Model Based
Full Sweep
Full Backup

Instead of a Model, we now have
sample episodes from the MDP

Update made at
end of an Episode

Model Free
Sample Sweep
Sample Backup

S1

S2

S1

4

3

2

Instead of a Model, we now have
sample episodes from the MDP

Update made at
every step
(S, A, R, S’)

Model Free
Sample Sweep
Sample Backup

S1

S2

4

So Far: We have algorithms to find the Value Function 𝑣!, given
a policy 𝜋 (with or without a model)

But: We are really interested in finding the Optimal Policy 𝜋∗

 RL based on Human Feedback (RLHF)

Policy being used to generate episode is the same as the policy being learnt

Policy being used to generate episode is the different than the policy being
learnt

We computed 𝑣! by using
the Bellman Expectation

Equation

,

𝜋 =
𝑔𝑟𝑒𝑒

𝑑𝑦(𝑉
)

𝑉!

What is wrong with this approach?

,

Instead of using Bellman
Expectation Equation to
compute 𝑣!, we are using
Monte Carlo Policy
evaluation to estimate 𝑉!

Σ

Estimating 𝑉!(s) is not enough, we need to
estimate 𝑄!(s,a)

Evaluate new action VF 𝑄!(s,a)
Compute new policy

Evaluate new action VF 𝑄!(s,a)
Compute new policy

Run a single episode, and then immediately
improve the Policy!

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴)

Update made at
end of episode

Another Problem:
How to ensure that
every (S,A) pair is
visited?

S1

S2

4
A1A2 3

S3 3

2

Q(S1,A1) <-- Q(S1,A1)
+	 𝛼(9 –Q(S1,A1))

A1

Q(S2,A1) <-- Q(S2,A1)
+ 𝛼(5-Q(S2,A1))

Q(S,A) Update => Policy Update
Policy changes at end of every episode

Policy Improvement Update made at
end of an Episode

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴)

All of the
Actions

are chosen
according to

Policy 𝜋

0,0  1,2 (-50)  2,1 (32)  0,0 (7)  0,0 (7)  0,0 (7) 
0,0  1,2 (-50)  2,1 (32)  0,0

Episode

Episode 1: Policy 1Episode 2:
Policy 2

s0 s1 s2

a0

a1

a2

a0

a2

a1

0.2

0.8
0.3

0.7

1.0

1.0
1.0

0.1

0.8

0.1

R = +7

R = -50
R = +32

0  1 (-50)  2 (32)  0 (7)  0 (7)  0 (7)  0  1 (-50)  2 (32)  0 …

0,2  1,2 (-50)  2,1 (32)  0,0 (7)  0,0 (7)  0,0 (7) 
0,0  1,2 (-50)  2,1 (32)  0,0 …

𝜋 𝑠" = 𝑎"

𝜋 𝑠# = 𝑎$

𝜋 𝑠$ = 𝑎#

Estimating V
Estimating Q

Update made at
end of an Episode

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴)

The starting (S,A) is chosen
at random for each episode

Rest of the
Actions

are chosen
according to

Policy 𝜋

Policy Improvement Update made at
end of an Episode

General Strategy: Continue to select all
possible Actions (even during an episode)

But: The agent is supposed to follow Policy 𝜋.

The initial State and Action may not be under our control

Policy Improvement Update made at
end of an Episode

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝐺 − 𝑄 𝑆, 𝐴)

All of the
Actions

are chosen
according to

Policy 𝜋′

𝜋′	is a
Random
Policy

43

Works very well in practice
Guarantees that you continue to explore everything
Guarantees that you improve your policy

𝜖 1 − 𝜖

Choose
Greedy
Action

Choose
Random
Action

Toss Coin

On Policy: Policy being used to generate episode is
the same as the policy being learnt

𝛼 = 0.8, 𝛾 = 1

𝑣!%(s)

Is the 𝜀	 greedy policy 𝜋′ actually better than the old policy 𝜋?

} We know that the Optimal Policy is NOT
Random

} We need a way to gradually reduce the
randomness in the Policy

True for
epsilon greedy

Policy
eventually
becomes
greedy

Update made at
every step
(S, A, R, S’)

Actions
are chosen

according to
Policy 𝜋1

Policy Improvement Update made after
each step!

Actions
are chosen

according to
Improved Policy 𝜋2

S1
A1

S2
A2

4
A2

S1

A1

Start from (S,A)

Sample S’

Sample A’

For Value Functions:

Make update to just a single
state, and then immediately

improve the Policy!

Multiple updates per episode

On Policy: Policy being used to generate episode is
the same as the policy being learnt

𝛼 = 0.8, 𝛾 = 1

Policy being used to generate episode is the same as the policy being learnt

Policy being used to generate episode is the different than the policy being
learnt

Behavior Agent Target Agent
Follows Behavior Agent
AND In Parallel
Computes Best Possible Action

Behavior Agent chooses actions
Based on its own policy. For example
It can simply choose action with
Equal probability

All of the
Actions chosen

according to
Behavior Policy 𝜋1

(by Behavior Agent)

The Q value updates
made at each step according

to Target policy
(by Q Target Agent)

Behavior Agent
Target Agent

Two Agents

Next Action chosen according to a randomized Behavior Policy
This ensures Exploration of the State Space

But: Q-Value Update made according to the ‘Optimal’ Target Policy

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝑅 + 𝛾𝑄 𝑆5, 𝑎𝑟𝑔𝑚𝑎𝑥6,𝑄(𝑆5, 𝑎′) − 𝑄 𝑆, 𝐴)

Behavior Policy Target Policy

Actions chosen
according to

Behavior Policy 𝜋1
(by Behavior Agent)

Actions chosen
according to improved

Behavior Policy 𝜋2
(by Behavior Agent)

The Q value updates
made at each step according

to Target policy
(by Q Target Agent)

Use 𝜖 Greedy to Choose Behavior Policy

S1

S2

A1A2

A1A2

4

Behavior Agent uses the same Q value to choose actions

Behavior Agent Target Agent
Follows Behavior Agent
AND In Parallel
Computes Best Possible Action

Behavior Agent chooses actions using
The Q values that the Target Agent
computes

Controls All Actions Actually Taken
Using epsilon-greedy algo

A special case of
Off Policy Learning

Behavior Policy

Target Policy

𝛼 = 0.8, 𝛾 = 1

SARSA

Critical Idea used in
Deep Reinforcement Learning

(S1,A1,R1,S1’)

(S2,A2,R2,S2’)

(S3,A3,R3,S3’)

(S4,A4,R4,S4’)

A Collection of
1-Step Transitions

The Q value updates
made at each step according

to Target policy
(by Q Target Agent)

Use 𝜖 Greedy to Choose Behavior Policy

S1

S2

A1A2

A1A2

4

Allows reuse of a single transition multiple times

All of the
Actions
in the

episode are
fixed

The Q value updates
made at each step according

to Target policy

Allows reuse of a single episode multiple times

} On Policy Monte Carlo Control: This involves a Policy Evaluation step
follows by a Policy Improvement Step. Policy Evaluation is done based on
the data from a complete episode of the MDP. This is followed by Policy
Improvement using the new Q values, and the new policy is used to
generate the next episode.

} On Policy Temporal Difference Control (SARSA): This also involves Policy
Evaluation followed by Policy Improvement. However the Policy
Evaluation is based on the data from a single step of the MDP. This is
immediately followed by Policy Improvement, and the improved policy is
used to generate the next step of the MDP.

} Off Policy Temporal Difference Control (Q Learning): In this case the
Agent taking the Actions (using the Behavior Policy) is different from the
Agent computing the optimal Q function (using the Target Policy).
Behavior Policy uses some randomness to traverse the MDP, and Target
Policy uses the data generated from this traversal to compute the
optimal Q function.

Sutton and Barto:
} Chapter 5: Sections 5.3 - 5.4
} Chapter 6: Sections 6.4 - 6.5

