Model Free Control

Lecture 5
Subir Varma

Model Based Policy Evaluation
and Optimal Control (Lecture 3)

Model Based
Full Sweep
Full Backup

J St+1

starting

Tl OO0 OfF O O OF O O [f F O V,
oouoﬂonon Q Q e
,'\‘| N ;N PR A | I\,\

\ /N /N A 1 ,‘I‘

Full Policy Iteration
= - P2,
K ; als)(’Z i) Generalized Policy Iteration

—

13

Model Free Policy Evaluation: Monte
Carlo Learning (Lecture 4)

V(S:) « V(S5:) + a (G — V(S5:))

/ Model Free

Update made at S, >
end of an Episode

4 Sample Sweep

e Sample Backup

O T
/7 \

1 \
/ I
1 \ /

Instead of a Model, we now have
sample episodes from the MDP

Model Free Policy Evaluation: Temporal-
Difference (TD) Learning (Lecture 4)

/

Update made at
every step
(S! Al R’ S’)

V(S:) « V(S5:) + a(Rix1 + 7V(Stx1) — V(51))

Model Free
Sample Sweep
Sample Backup

/ \
/ \\ /

Instead of a Model, we now have
sample episodes from the MDP

The Next Step..

So Far: We have algorithms to find the Value Function v,, given
a policy m (with or without a model)

But: We are really interested in finding the Optimal Policy =,

Model Free Reinforcement
Learning

m Last lecture:

m Model-free prediction
m Estimate the value function of an unknown MDP

m [his lecture:

m Model-free control
m Optimise the value function of an unknown MDP

Uses of Model-Free Control

Some example problems that can be modelled as MDPs

Elevator

Parallel Parking

O
O

m Ship Steering
m Bioreactor

i

Helicopter
m Aeroplane Logistics

For most of these problems, either:

m Robocup Soccer

m Quake

m Portfolio management
m Protein Folding

m Robot walking

m Game of Go

O RL based on Human Feedback (RLHF)

m MDP model is unknown, but experience can be sampled

m MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

Rt N

On and Off-Policy Learning

m On-policy learning
m ‘Learn on the job”
m Learn about policy m from experience sampled from

Policy being used to generate episode is the same as the policy being learnt

m Off-policy learning

m ‘Look over someone’s shoulder”
m Learn about policy m from experience sampled from p

Policy being used to generate episode is the different than the policy being
learnt

Monte Carlo Control

p—

Generalized Policy Iteration

We computed v, by using
the Bellman Expectation
Equation

starting
V. nt

Policy evaluation Estimate V;,

e.g. lterative policy evaluation

Policy improvement Generate 7/ > 7
e.g. Greedy policy improvement

Generalized Policy Iteration with
Monte Carlo Evaluation

starting
V

Instead of using Bellman
Expectation Equation to
compute v,, we are using
Monte Carlo Policy
evaluation to estimate V,

Policy evaluation Monte-Carlo policy evaluation, V = v, ?

Policy improvement Greedy policy improvement?

What is wrong with this approach?

Model-Free Policy Iteration Using
Action-Value Function

m Greedy policy improvement over V(s) requires model of MDP
m'(s) = argmax[@ +). P2, V(sﬂ
acA

m Greedy policy improvement over Q(s, a) is model-free

7'(s) = argmax Q(s, a)
acA

Estimating V,(s) is not enough, we need to
estimate Q,(s,a)

Generalized Policy Iteration with
Action-Value Function

Starting
Q,

g%, Tx

Evaluate new action VF Q,(s,a)
Compute new policy

Policy evaluation Monte-Carlo policy evaluation, = g,

Policy improvement Greedy policy improvement?

Generalized Policy Iteration with
Action-Value Function

Run a single episode, and then immediately
improve the Policy!

Evaluate new action VF Q,(s,a)
Compute new policy

Starting Q

q*f J.|:=I=

Every episode:
Policy evaluation Monte-Carlo policy evaluation, @ ~ g,

Policy improvement -greedy policy improvement

Mi—

Monte Carlo Backup for Q

Q(S,4) < Q(S,4) + a(G — Q(S, 4)

Q(S1,A1) <--Q(S1,A1)
+ a(9 -Q(S1,A1))

/

Update made at S °
end of episode Ay 3
S3 O (0
T O Q (| O

S1

Al

Q(S2,A1) <--Q(S2,A1)
+ a(5-Q(S2,A1))

Q(S,A) Update => Policy Update

Policy changes at end of every episode

Another Problem:
How to ensure that
every (S,A) pair is
visited?

Model Free Monte Carlo Control
Q(S,A) « Q(S,A) +a(G—Q(S,4))

Episode 2: 9§, Episode 1: Policy 1

Policy 2 All of the

Actions
are chosen
according to
Policy

Q0 Q
\\/ N

N

/
L S A /

2,1(32)>0,0(7)>0,0(7) > 0,0(7)~>
2,1 (32) > 0,0

Policy Improvement Update made at
end of an Episode

Example: Q(S,A) Evaluation

m(sy) = ag
n(sy) = a,
m(sy) = ay

policy fire
States (+rewards):
States (+rewards):

1 (-50) 2 (40) 0 (10) O (10) O (10) 0 1 (-50) 2 (40) 0 ... Total rewards = -220

(10) 0 (10) O (10) O (10) O (10) O (10) O (10) O (10) O (10) O ... Total rewards = 40
States (+rewards): (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) O (10) O 1 (-50) 2 (40) ... Total rewards = 160
States (+rewards): (10) 0 (10) 0 (10) O (10) O (10) O 1 (-50) 2 (40) O (10) O (10) ... Total rewards = 280
States (+rewards): (10) 0 1 (-50) 2 1 (-50) 2 (40) 0 (10) O (10) O (10) O (10) ... Total rewards = 190
Summary: mean=122.2, std=134.956674, min=-340, max=490

OO O OO

02>1(-50)>23B2)20((7)>0(7)>0(7)>0~>1(500>2(3E2)>0...

EstimatingV. ="
Estimating Q

> 2,1(32) > 0,0(7) > 0,0(7) > 0,0(7) >
> 2,1 (32)> 0,0 ...

Monte Carlo Backup for Action Value
Functions with Exploring Starts

Update made at | A S 4 G —0(S A
end of an Episode Q(S,4) « Q(S,4) + a(G - Q(S,4))

The starting (S,A) is chosen
at random for each episode

Rest of the
Actions
T |[T| O are chosen
according to
Policy

A

O T
/7 N\

1
1 / \

/
/

Policy Improvement Update made at
end of an Episode

Monte Carlo Control with
Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating = ~ ,

Initialize, for all s € §, a € A(s):
Q(s,a) « arbitrary
m(s) + arbitrary
Returns(s,a) + empty hst

Repeat forever:
Choose Sp € § and Ao € A(Spb) s.t. all pairs have probability > 0
Generate an episode starting from Sp, Ap, following =
For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) «+ average(Returns(s,a))
For each s in the episode:
7(s) + argmax, Q(s,a)

How to Avoid the Exploring Starts
Assumption

The initial State and Action may not be under our control

General Strategy: Continue to select all
possible Actions (even during an episode)

But: The agent is supposed to follow Policy .

p—

ldea: Randomize the Policy!

All of the
Actions
are chosen
according to
Policy n'

' is a
Random
Policy

Q0 Q)
\\/ \

/
/

Policy Improvement Update made at
end of an Episode

e —Greedy Exploration

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability
m With probability 1 — € choose the greedy action

m With probability e choose an action at random

acA

e/m+1—e¢e if a* =argmax Q(s, a)
m(als) = |
€/m otherwise

Toss Coin

Works very well in practice
Guarantees that you continue to explore everything € 1—¢
Guarantees that you improve your policy

Choose Choose
Random Greedy
Action Action

Exploration and Exploitation

m Exploration finds more information about the environment
m Exploitation exploits known information to maximise reward

m It is usually important to explore as well as exploit

p—

Generalized Policy Iteration with Action-
Value Function and € Greedy Exploration

Starting Q
Q- T

Every episode:
Policy evaluation Monte-Carlo policy evaluation, Q ~ q,

Policy improvement e-greedy policy improvement

On-Policy First Visit MC Control
with £ Greedy Policies

On-policy first-visit MC control (for =-soft policies), estimates ™ ~ ,

Initialize, for all s € §, a € A(s):
Q(s,a) « arbitrary
Returns(s,a) + empty hst
w(al|s) + an arbitrary £-soft policy

Repeat forever:
(a) Generate an episode using &
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" « argmax, Q(s,a) (with ties broken arbitrarily)
For all a € A(s):
l1—e+¢/|A(s)] ifa=A"
@) = A e g

On Policy: Policy being used to generate episode is
the same as the policy being learnt

Example: Monte Carlo

. Given the following episode:

a=08y=1

(s1,a0) (r=3) > (s0,a0) (r =2) > (s2,al1) (r =-1) > (s0,a0)

assume that the Q values in the starting iteration are given by the following

table:
Q(s,a) a0 al
s0 2 -1
sl 4 3
s2 0 5

&) Monte [wrle Q(58) < ReSiA) + 0L G- RS/M)

@(c, Ao) = 4r0»?x((332 1) ~4) = &
4(Sey a0y = 240 0% (((2-1)-2)= 12

4 (Sr.a)=5+0gx (-1-5) =0)

Mi—

e —Greedy Policy Improvement

Is the £ greedy policy n’ actually better than the old policy n?

Theorem

For any e-greedy policy w, the e-greedy policy @’ with respect to
Gr IS an improvement, Vy/(s) > vr(s)

ve(s) =) 7(a]5)qx(s,)

acA
=€/m) 4x(s,3) + (1 - €) max gx(s,)
acA
mw(als) —e/m

ze/mz:q,r(s,a)—l—(l—e)z 1 q-(s, a)

acA acA

— Z 7(a|s)q.(s,a) = v, (s)

acA

One More Problem ...

» We know that the Optimal Policy is NOT
Random

» We need a way to gradually reduce the
randomness in the Policy

Solution: GLIE

Greedy in the Limit with Infinite Exploration (GLIE)

m All state-action pairs are explored infinitely many times, True for

epsilon greed
lim Ng(s,a) = o0

k— o0
Policy
m [he policy converges on a greedy policy, eventually
' . o . becomes
Jim_ mk(als) = 1(a = argmax Qk(s,a)) greedy

acA

m For example, e-greedy is GLIE if € reduces to zero at ¢, = %

GLIE Monte-Carlo Control

m Sample kth episode using m: {51,A1,R2,...,S1} ~7
m For each state S; and action A; in the episode,

N(St, At) — N(St, At) +1

Q(Se, Ad) — Q(Se, Ae) + ~—

N(St= At)

(Gt — Q(S¢, Ar))

m Improve policy based on new action-value function

e+ 1/k
7 +— e-greedy(Q)

GLIE Monte-Carlo control converges to the optimal action-value
function, Q(s,a) — q.(s, a)

j

On Policy TD Control:
The SARSA Algorithm

p—

Recall: Temporal-Difference (TD)
Learning

/ V(S:) < V(St) + a(Reg1 +vV(Se41) — V(St))

Update made at
every step
(S! Al R’ S’)

00 O © O O [1 O O [[O
ol RiiNe

Q I'I Q Q
I /' \\l\ l\| ll\/ \\

Model Free On Policy Temporal-
Difference Algorithm: SARSA

Q(S.A) + Q(S.A) + o (R+~Q(S' A) — Q(S, A))

Actions
are chosen
S] according to
Policy 71

Actions
are chosen
according to
Improved Policy 7

Policy Improvement Update made after
each step!

Updating Q Functions with SARSA

S.A Start from (S,A)
R

S’ Sample S’

A Sample A’

Q(S,A) « Q(S,A) +a (R+1Q(S', A) — Q(S. A)

For Value Functions:
V(S5:) < V(St) + a(Res1 +7V(Se+1) — V(Sr))

On-Policy Control with SARSA

Make update to just a single
state, and then immediately
improve the Policy!

Starting Q
q*9 Ty

Multiple updates per episode

Every time-step:
Policy evaluation Sarsa, Q =~ g

Policy improvement e-greedy policy improvement

SARSA Algorithm for On-Policy
Control

Sarsa (on-policy TD control) for estimating @ ~ g,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q@ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, A) + Q(S,A) + a[R+~Q(S', A') — Q(S,A)]
S« 8 A« A
until S is terminal

On Policy: Policy being used to generate episode is
the same as the policy being learnt

Example: SARSA

. Given the following episode:

a=08y=1

(s1,a0) (r=3) > (s0,a0) (r=2) > (s2,al) (r =-1) > (s0,a0)

assume that the Q values in the starting iteration are given by the following

table:
Q(s,a) a0 al
s0 2 -1
sl 4 3
s2 0 5

(o) SARSA: - (V(S.8) < @ (S.aytok (Rt ¥R (S)A") - QesA)
J6109> 3 Gan+ofy (3G 50,00y = §(5,,00)
=4+ 0P x (3274) =4 R

055,00 = (S0, Dytogx (2+ J05,000- 9S50, G)
=210 8% (248-2) =},

Jesvy 00 2GS +0.gx(~1 1+ 9¢ 5, a0 =3¢S, an)

N -)
=St oY= (gptb-5) = §
.

MC vs TD Control

m Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)

m Lower variance
m Online
m Incomplete sequences

Convergence of SARSA

Sarsa converges to the optimal action-value function,
Q(s, a) — q«(s, a), under the following conditions:

m GLIE sequence of policies m¢(als)

m Robbins-Monro sequence of step-sizes

2
[
g

A
3

2
~ N

M 108

~
I
-

Off Policy Temporal Difference
Control: The Q Learning
Algorithm

p—

On and Off-Policy Learning

m On-policy learning
m ‘Learn on the job”
m Learn about policy m from experience sampled from

Policy being used to generate episode is the same as the policy being learnt

m Off-policy learning

m ‘Look over someone’s shoulder”
m Learn about policy m from experience sampled from p

Policy being used to generate episode is the different than the policy being
learnt

General Off Policy Learning

Behavior Agent chooses actions
Based on its own policy. For example
It can simply choose action with

Equa| pI‘ObabiIity Q(S,A) + Q(S,A) +«a (R-l—v max Q(S',d) — Q(S,A))

0 Q
FHl 00 OfF © © O [{ O O [& [O Fl OO OF O OO0 WO O FE O
) \\ /Q %\Q] /\/\ R ,\ ® /‘ gg}g 7] R R
Behavior Agent Target Agent

Follows Behavior Agent
AND In Parallel
Computes Best Possible Action

Model Free Off Policy Temporal-
Difference Algorithm - Q Learning

QS.A) QS A)+a R+ max Q(S',) - Q(5.)

The Q value updates

made at each step according
to Target policy

(by Q Target Agent)

Two Agents

]

Behavior Agent All of the
Target Agent Actions chosen
g g ® @ according to

Behavior Policy 1
(by Behavior Agent

Off Policy Control with Q Learning

Q(S,4) « Q(S,A) + a(R +yQ(S', argmax, Q(S’,a’)) — Q(S, 4))

Pl

Behavior Policy Target Policy

Q(S.A) ¢ Q(S.A) +a (R max Q(5'.) — Q(S.A))

Next Action chosen according to a randomized Behavior Policy
This ensures Exploration of the State Space

But: Q-Value Update made according to the ‘Optimal’ Target Policy

Q(S,A) « Q(S,A) +a (R+~7Q(S", A) — Q(S, A))

Q Learning: Behavior Policy also
Evolves

Q(S.A) ¢ Q(S.)+ (R+ 7 max Q(S',) — Q(5.4))

The Q value updates
made at each step according
to Target policy

(by Q Target Agent) A

Use € Greedy to Choose Behavior Policy

A2 Al
Actions chosen
1 according to
Behavior Policy 71
® () \J{ @ S2 o (by Behavior Agent)
A2

Al

O || [T| O

Actions chosen

9
according to improvec
T Behavior Policy n2
(by Behavior Agent)
T () Q I ORE; T O |7 0 Q
| / \\
|

ll\
/ \ I / \ | \/

uses the same Q value to choose actio

: A special case of
Q Learn I n g Off Policy Learning

Behavior Agent chooses actions using
The Q values that the Target Agent \

Computes Q(S,A) . Q(S’A) 4+« (R_f_A,, ma;,\x Q(S"a/) _ Q(S,A))

Q Q
H 00 O 0 00 K O O [[E O Fl OO OF O OO0 WO O FE O
Q9§\Q 00ﬂ0ﬂ°ﬂ'ﬂ offe
Behavior Agent Target Agent
Controls All Actions Actually Taken Follows Behavior Agent
AND In Parallel

ing epsilon-greedy algo
, Computes Best Possible Action

Off Policy Control with Q Learning

m We now allow both behaviour and target policies to improve

m [he target policy 7 is greedy w.r.t. Q(s, a)

7(Se41) = argmax Q(S¢41,a)
a/

m The behaviour policy i is e.g. e-greedy w.r.t. Q(s, a)
m [he Q-learning target then simplifies:

Res1+7Q(St41. A)
=Rei1 +7Q(Se41,argmax Q(Sey1,a"))
al

=Rey1 + mae}x YQ(St+1. ")

Q Learning Algorithm for Off
Policy Control

Q-learning (off-policy TD control) for estimating 7~ m,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S

Repeat (for each step of episode): - Behavior Policy

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) « Q(S,A) + a[R +y maxa Q(S',a) — Q(S, A)]

S8
until S 1s terminal \

Target Policy

Example: Q Learning

a=08y=1
. Given the following episode:
(s1,a0) (r=3) > (s0,a0) (r=2) > (s2,al) (r =-1) > (s0,a0)

assume that the Q values in the starting iteration are given by the following

table:
Q(s,a) a0 al
s0 2 -1
sl 4 3
s2 0 5

M; Ris.0) < Q(5.8) +ol(R+ YouX Q (50 @(%w)
N ‘
1S, 1a0= 410X (3 + max (2, 41) —4) =4,
}So,800= 2t0.9x (2t max(0,5y) = 4

‘I(Sma.): v o> (-1 F+ moaX (f,-1) -5y=5

Q Learning Control Algorithm

SARSA
sa @sA
% ? '
A S’
Q(5,A) « Q(5,A) + a (R+~Q(S, A) — Q(S, A)
® o

Q(S.A) « Q(S.A) +a (R +7 max Q(S',3) - Q(S. A))

Q-learning control converges to the optimal action-value function,
Q(Sa a) — q*(sa 3)

Other Uses of Off Policy Learning

m Learn about optimal policy while following exploratory policy

m Learn from observing humans or other agents

m Learn about multiple policies while following one policy

m Re-use experience generated from old policies 71, m, ..., Tr_1

Critical Idea used in

Deep Reinforcement Learning

Q Learning in Batch Mode

Q(S.A) ¢ Q(S.A)+a R+ mgx Q(S'#) — Q(S.4))

(S1,A1,R1,S17)

(S2,A2,R2,S2’) _
A Collection of

1-Step Transitions
(§3,A3,R3,S3%)

(S4,A4,R4,54’)

Q Learning: Behavior Policy also
Evolves
Q(S.A) + Q(S,A)+«a (R +7 max Q(S,a) — Q(S. A))

The Q value updates Use € Greedy to Choose Behavior Policy
made at each step according

to Target policy
(by Q Target Agent)

A2

/I\’
/ \ I/ \ | \/

9
%
TQTT T O |7 00

Wreuse of a single transition multiple times

Q Learning in Batch Mode

Q(S.A) ¢ Q(S.)+ (R+ mgx Q(S'4) — Q(5.4))
The Q value updates ?

made at each step according
to Target policy S

o
All of the

Actions
in the
episode are
fixed

®
T O |T T O (7| oo
: \

Allows reuse of a single episode multiple times

Summary

p—

Summary

» On Policy Monte Carlo Control: This involves a Policy Evaluation step
follows by a Policy Improvement SteP. Policy Evaluation is done based on
the data from a complete episode of the MDP. This is followed by Policy
Improvement using the new Q values, and the new policy is used to
generate the next episode.

» On Policy Temporal Difference Control (SARSA): This also involves Policy
Evaluation followed by Policy ImFrovement. However the Policy
Evaluation is based on the data from a single step of the MDP. This is
immediately followed by Policy Improvement, and the improved policy is
used to generate the next step of the MDP.

» Off Policy Temporal Difference Control (Q Learning): In this case the
Agent taking the Actions (using the Behavior Policy) is different from the
Agent computing the optimal Q function (using the Target Policgl).
Behavior Policy uses some randomness to traverse the MDP, and Target

Policy uses the data generated from this traversal to compute the
optimal Q function.

Further Reading

Sutton and Barto:
» Chapter 5: Sections 5.3 - 5.4
» Chapter 6: Sections 6.4 - 6.5

