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Value Function for State s = One Step Reward +Value Function for Next State s’

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that

is easy to solve, and
(2) A bigger problem, that

is assumed to be solved
(3) Put the 2 parts together

to solve original problem



Bellman
Expectation 
Equation

Every state gets
its turn being the

root



This process is
guaranteed to converge
to optimal Value Function
V* and thus the optimal
policy



1-step Policy Evaluation

Find Heuristics to be able
to solve Problems with huge
number of states and/or actions

- Iterate only a few times, even  just once (k = 1)
- Don’t have to update all the states in each iteration

update only those that are actually visited

,



Turn the Bellman
Optimality Equation

into an Iterative
Update



𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂(𝒒∗ 𝒔, 𝒂 )



These algorithms are dependent on the knowledge of the MDP Model P



} Policy Iteration and Value Iteration Algorithms 
don’t work if:
◦ The Environment Model is not known, or
◦ The number of states is extremely large

How can we find the Value Function and the Optimal Policy
under these conditions

Solution: Instead of Computing these functions from a Model, 
Learn them from Experience!



} Experience: Sample sequences of States, Actions 
and Rewards 
(S, A, R, S’)

} The Experience can be either Real or Simulated

Still Doing Policy
Iteration



} Model for the Environment not known
} Agent uses its interaction with environment 

to figure out its Value Function and Optimal 
Policy

} This Lecture: Given a Policy, how do we figure 
out the Value Function, without knowing the 
model

} Next lecture: How to find Optimal Policy, 
without knowing the model



1. Monte Carlo (MC) Learning
◦ Look at  complete trajectories and estimate the value by 

looking at sample returns
2. Temporal Difference (TD) Learning
◦ Look one step ahead and estimate the return
◦ Can be significantly more efficient than MC Learning in 

practice. 
3. TD(n) and TD(𝜆)
◦ Unifies the MC and TD approaches





Full Backup



Don’t Need the Model Anymore!

Update made at
end of an Episode

Sample Backup



𝑉(𝑆#) =
𝐺$ +⋯+ 𝐺%

𝑁



Sample returns, starting from state s0 and 𝛾 = 1,

Average return computed from 1000 episodes and 100 steps per episode
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Two Techniques
} First Visit Monte Carlo
} Every Visit Monte Carlo



How quickly does it converge: Variance of error reduces as 1/n

We are sampling instead of doing a full sweep and this breaks the
the dependence on the size of the problem state space





In one episode, V(s) can be updated multiple times (for a given s)



New Estimate = Current Estimate + Error Term
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Leads to an exponential forgetting rate

This works better in practice, since with policy
improvements the system keeps changing

Smoothing Parameter
Example: 𝛼 = 0.1

Sometimes also written as:
𝑉 𝑆& ← 1 − 𝛼 𝑉 𝑆& + 𝛼𝐺&

𝑉&'$ = 𝛼𝐺$ + 𝛼(1 − 𝛼)&($𝐺) +⋯+ 𝛼 1 − 𝛼 𝐺& + 𝛼𝐺&'$





Sample Backup

Computational expense of estimating the value of
a single state is independent of the number of states





Full Backup



Update made at
end of an Episode

Sample Backup



} Having to wait until end of episode to 
compute update

} Downsides:
◦ What if something “bad” happens at end of episode
◦ Some MDPs are continuous, i.e., never ending 

episodes



Update made at
every step
(St, A, R, St+1)

Sample Backup



Similar to Monte Carlo

Different from Monte Carlo
Similar to Dynamic Programming



With MC

With TD

Best estimate of Gt



Gt: Real Return
𝑅*'$ + 𝛾𝑉 𝑆*'$ : Estimated	Return	

1-step
reward

Estimated Reward for
rest of trajectory

= 	𝛾𝑉(𝑆HIJ)



Sometimes also written as:
𝑉 𝑆 ← 1 − 𝛼 𝑉 𝑆 + 𝛼[𝑅 + 𝛾𝑉 𝑆' ]





Leads to faster convergence

𝑉 𝑆 ← 1 − 𝛼 𝑉 𝑆 + 𝛼[𝑅 + 𝛾𝑉 𝑆' ]

𝑉 𝑆& ← 1 − 𝛼 𝑉 𝑆& + 𝛼𝐺& High Variance

Lower Variance









TD converges much faster

Larger 𝛼: Faster	but	noisier	convergence
Smaller 𝛼: Slower	and	smoother	convergence





















1-step
reward

Estimated Reward for
rest of trajectory

= 	𝛾𝑉(𝑆HIJ)



2-step
reward Estimated Reward for

rest of trajectory
=	𝛾U𝑉(𝑆HIU)







Sutton and Barto:
- Chapter 5: Section 5.1
- Chapter 6: Sections 6.1-6.3
- Chapter 7: Section 7.1


