Model Free Prediction Methods:

Monte Carlo and Temporal Difference Algorithms

Lecture 4
Subir Varma

Bellman Expectation Equation for
vTC

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that
is easy to solve, and
(2) A bigger problem, that
is assumed to be solved
(3) Put the 2 parts together
to solve original problem

0r(5) = 3 w(als) (R2 47 Y P2va(s)

acA s'eS

Value Function for State s = One Step Reward +Value Function for Next State s’ ‘

Iterative Policy Evaluation

Vp+1(8) s

\ Every state gets

its turn being the
root
a
r
vp(s') «a 8
Vier1(s) = Y m(als) (Rg +v) P vk(s')) _ Ee”mint'
acA s'eS Xpectation
Equation
Vk-i-l —R™ + ,}/Parvk g

Policy Iteration - Find Best Policy

Policy evaluation Estimate v;

/ Iterative policy evaluation

This process is

starting V¥ guaranteed to converge
V i ¥ to optimal Value Function
V* and thus the optimal
policy

Policy improvement Generate 7/ > 7
Greedy policy improvement

Generalized Policy Iteration

Find Heuristics to be able
to solve Problems with huge
humber of states and/or actions

1-step Policy Evaluation

(eI Policy improvement Generate 7/ > «
Greedy policy improvement

- Iterate only a few times, even just once (k = 1)
- Don’t have to update all the states in each iteration
update only those that are actually visited

Value Iteration - Find Best Policy

Vr4+1(8) s

vp(s') < 8

Vk+1(S) = max (Rg + Z Pvi(s)
s'eS

.

Turn the Bellman
Optimality Equation
into an lterative
Update

|

Findi
inding the Optimal Policy

vi(s) = maax[[Rg + Z P v*(s')]]

s’eS

g«(s,a) = R2 + Z P ve(s)

s'eS

T, =
argmax,(q.(s,a))

p—

But...

These algorithms are dependent on the knowledge of the MDP Model P

V41(8) s

vi(s') s

RI+~) P vk(S'))

s'eS

Motivation o= (s)

vkt = 'R + 4Pk

» Policy Iteration and Value Iteration Algorithms
don’t work if:

- The Environment Model is not known, or
- The number of states is extremely large

¥

How can we find the Value Function and the Optimal Policy
under these conditions

4

Solutlon Instead of Computing these functions from a Model,
N Learn them from Experience!

Motivation (cont)

Still Doing Policy

starting v* lteration

V

» Experience: Sample sequences of States, Actions
and Rewards
(S! A’ Rl S’)

» The Experience can be either Real or Simulated

Model Free Reinforcement
Learning

» Model for the Environment not known

» Agent uses its interaction with environment
to figure out its Value Function and Optimal
Policy

» This Lecture: Given a Policy, how do we figure
out the Value Function, without knowing the
model

» Next lecture: How to find Optimal Policy,
without knowing the model

This Lecture

1. Monte Carlo (MC) Learning

- Look at complete trajectories and estimate the value by
looking at sample returns

2. Temporal Difference (TD) Learning

- Look one step ahead and estimate the return

> Can be significantly more efficient than MC Learning in
practice.

3. TD(n) and TD(4)
> Unifies the MC and TD approaches

Monte Carlo Reinforcement
Learning

p—

Dynamic-Programming Backup

Vee1(s) = Z m(als) (Rg + 7 Z P vk(s’)>
acA s'eS
vk+1 —R™ + ’yP’Vk

S

Full Backup

| St+l

7l OO0 OF © O OF O O [F ©

"D'Ql°é$ﬁlcm offe

/ \ \
&l

Monte Carlo Backup

V(S:) « V(S:) + a (G — V(S:))

e | Ky

Update made at

Sample Backup

t

end of an Episode

O\
/’\/\‘

| / \ 1 1
Yo /Ny /N A 1 v

- Don’t Need the Model Anymore!

Monte Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy 7

S1.A1.Ry. ... ~ 7

m Recall that the return is the total discounted reward:

Gt = Rey1 + YRes2 + .+ IRy

m Recall that the value function is the expected return:
Vr(s) = E; [G: | St = S]

m Monte-Carlo policy evaluation uses empirical mean return

instead of expected return
Gl + + GN
M eI =Ty

Example of MC: MDP Returns

(;1 ‘F °e 4‘ (;AI
V(So) =

Sample returns, starting from state so and y =1,

Average return computed from 1000 episodes and 100 steps per episode

Gi =Ry + ’}/R3 T .- T 7T—2RT

policy fire

States (+rewards):
States (+rewards):
States (+rewards):

1 (-50) 2 (40) 0 (10) O (10) O (10) O 1 (-50) 2 (40) O ... Total rewards = -220

(10) 0 (10) 0 (10) O (10) O (10) O (10) O (10) O (10) O (10) O ... Total rewards = 40
(10) 0 (10) 0 (10) 0 1 (-50) 2 (40) O (10) 0 1 (-50) 2 (40) ... Total rewards = 160
States (+rewards): (10) 0 (10) O (10) O (10) O (10) O 1 (-50) 2 (40) O (10) O (10) ... Total rewards = 280
States (+rewards): (10) 0 1 (-50) 2 1 (-50) 2 (40) 0 (10) O (10) O (10) O (10) ... Total rewards = 190
Summary: mean=122.2, std=134.956674, min=-340, max=490

C

OO O OO

Monte Carlo Reinforcement
Learning

m MC methods learn directly from episodes of experience

m MC is model-free: no knowledge of MDP transitions / rewards

m MC learns from complete episodes: no bootstrapping

m MC uses the simplest possible idea: value = mean return

m Caveat: can only apply MC to episodic MDPs
m All episodes must terminate

p—

Computing the Empirical Mean

Two Techniques
» First Visit Monte Carlo
» Every Visit Monte Carlo

First Visit Monte Carlo Policy
Evaluation

m lo evaluate state s

m [he first time-step t that state s is visited in an episode,

m Increment counter N(s) < N(s) +1
m Increment total return S(s) < S(s) + G;

m Value is estimated by mean return V(s) = S(s)/N(s)
m By law of large numbers, V(s) — vz(s) as N(s) — oo

How quickly does it converge: Variance of error reduces as 1/n

We are sampling instead of doing a full sweep and this breaks the
the dependence on the size of the problem state space

First Visit Monte Carlo

First-visit MC prediction, for estimating V =~ v,

Initiahze:
m + policy to be evaluated
V' « an arbitrary state-value function
Returns(s) + an empty list, forall s € 8

Repeat forever:
Generate an episode using «
For each state s appearing in the episode:
G + the return that follows the first occurrence of s
Append G to Returns(s)
V (s) « average(Returns(s))

Every Visit Monte-Carlo Policy
Evaluation

m [o evaluate state s

m Every time-step t that state s is visited in an episode,
m Increment counter N(s) < N(s) +1

m Increment total return S(s) < S(s) + G;

m Value is estimated by mean return V/(s) = S(s)/N(s)
m Again, V(s) — vz(s) as N(s) =

In one episode, V(s) can be updated multiple times (for a given s)

Incremental Mean Update

L1 G;
N

VN —
= %(GN + %15 Gy)

= %(GN + (N —1)Vy_1)

1
= Vy_q + N (Gny — Vyn-1)

\

New Estimate = Current Estimate + Error Term

Incremental Monte Carlo Updates

m Update V/(s) incrementally after episode Sy, A1, Ry, ..., ST

m For each state S; with return G;

N(St) + N(Sp) + 1
1
N(5:)

V(Se) < V(S:) + (Ge — V(5¢))

p—

Exponential Smoothing

m In non-stationary problems, it can be useful to track a running

mean, i.e. forget old episodes. Smoothing Parameter
/ Example: a = 0.1

V(S:) < V(St) + a(Gr — V(5:))

Leads to an exponential forgetting rate

This works better in practice, since with policy
improvements the system keeps changing

Sometimes also written as:
V(S) « (1 —a)V(S) + aG,

Vorr = aGy +a(l—a)" 16, + -+ a(l — a)G, + aG, 41

First Visit Monte Carlo with
Exponential Smoothing

First-visit MC prediction, for estimating V =~ v,

Initiahze:
m + policy to be evaluated
V' « an arbitrary state-value function
Returns(s) + an empty list, forall s € 8

Repeat forever:
Generate an episode using «
For each state s appearing in the episode:
G + the return that follows the first occurrence of s
Append G to Returns(s)

V(Se) « V(Se) + a (Ge — V(SY))

MC Estimate for a Single State

V(St) < V(S5t) + a (G — V(St))

Sample Backup

\

O T
\

1 /
1 / \

QT

/
/

Computational expense of estimating the value of
a single state is independent of the number of states

Temporal Difference (TD)
Reinforcement Learning

p—

Dynamic-Programming Backup

Visr1(s) = Z m(a|s) (Rg + Z P vk(s’)>
acA s’'eS
Vil = R™ 4 PV
S

Full Backup

| St+l

7l OO0 OF © O OF O O [F ©

"D'Ql°é$ﬁlcm offe

/ \ \
&l

Monte Carlo Backup

V(St) < V(S5t) + a (G — V(St))

e

Update made at

Ky Sample Backup

t

end of an Episode

Issue with MC Learning

» Having to wait until end of episode to
compute update

» Downsides:

- What if something “bad” happens at end of episode

- Some MDPs are continuous, i.e., never ending
episodes

Temporal-Difference Backup

V(S5:) < V(St) + a(Rep1 + vV (St+1) — V(St))

Sample Backup

Update made at

every step
(Sh A! R1 St+1)

Temporal-Difference (TD)
Learning

m [D methods learn directly from episodes of experience

m D is model-free: no knowledge of MDP transitions / rewards

\ Similar to Monte Carlo

m [D learns from incomplete episodes, by bootstrapping

m [D updates a guess towards a guess

\ Different from Monte Carlo

h Similar to Dynamic Programming

Derivation of TD Update Rule

With MC

m Goal: learn v, online from experience under policy =

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S:) «+ V(S:) + a (G — V(S:))

With TD

V(St) < V(S) + e ({?t+1 + 'Y'V(St+1? — V(5t))

v
Best estimate of G;

TD Update

Gt = Rey1 +YRes2 + . + v IRy

»

1-step

eward Estimated Reward for — YV (Sriq)

rest of trajectory

G:: Real Return
R; 1 + YV (S;41): Estimated Return

m Simplest temporal-difference learning algorithm: TD(0)

m Update value V/(S;) toward estimated return Ry 1 +vV/(5:.1)
V(St) — V(St) + « (Rt+1 + A,«"V(Sp}.l) — V(St))

B Rer1 +vV(S:y1) is called the TD target
m 0 = Rep1 +7V(Si41) — V(S,) is called the TD error

TD Algorithm

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V(s) arbitrarily (e.g., V(s) =0, for all s € §1)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A + action given by 7 for S
Take action A, observe R, S’
V(S) « V(S) + a[R +~4V(8') - V(S)]
S8
until S is terminal

Sometimes also written as:
V(ES) « (1 —a)V(S)+ a[R +yV(S")]

Advantages and Disadvantages of
MC vs TD

m [D can learn before knowing the final outcome

m [D can learn online after every step
m MC must wait until end of episode before return is known

m D can learn without the final outcome

m D can learn from incomplete sequences

m MC can only learn from complete sequences

m D works in continuing (non-terminating) environments
m MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

Leads to faster convergence

m [D target is much lower variance than the return:

m Return depends on many random actions, transitions, rewards
m [D target depends on one random action, transition, reward

V(St) « (1 —a)V(Sy) + aG,

High Variance

Gt = Rey1 +YRep2 + ... +7" 'Rr

/ Lower Variance

V() « (1 —-—a)V(S)+ a[R +yV(S")]

Bias/Variance Trade-Off

m 1D target Rry1 + vV/(S:11) is biased estimate of v, (S;)

m Return G; = Rep1 + YRes2 + ... + v 1Rt is unbiased
estimate of v, (S;)

m True TD target Rii1 + vV (St11) is unbiased estimate of
Vi (St)

p—

Advantages and Disadvantages of
MC vs TD (2)

m MC has high variance, zero bias

m Good convergence properties

m (even with function approximation)
m Not very sensitive to initial value

m Very simple to understand and use

m [D has low variance, some bias

m Usually more efficient than MC

m TD(0) converges to v,(s)

m (but not always with function approximation)
m More sensitive to initial value

Random Walk Example

.<L®<L>O OO 1 .

start

0.8 1

0.6

Estimated
value 0.4 -

Random Walk: MC vs TD

0.25 =

TD converges much faster

0.2 |\%:

RMS error, 0157
averaged
over states 0.1+

0.05

0 25 50 75 100
Walks / Episodes

Larger a: Faster but noisier convergence
Smaller a: Slower and smoother convergence

Batch MC and TD

m MC and TD converge: V(s) — v,(s) as experience — o

m But what about batch solution for finite experience?
1 .1 ,1 1
51 g 31, I’2 — ST1

K _K K K
S1,d1,hH 7"‘7STK

m e.g. Repeatedly sample episode k € [1, K]
m Apply MC or TD(0) to episode k

AB Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)?

p—

AB Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)?

Convergence Properties

m MC converges to solution with minimum mean-squared error

m Best fit to the observed returns
K T

ZZ (GE = V(sf))

Je—=1.t—=1

m In the AB example, V(A) =0
m TD(0) converges to solution of max likelihood Markov model

m Solution to the MDP (S A, P, R,~) that best fits the data
K T

/
ss’_ EE :1(5t73t75t+1 57375)
>4 k 1 t=1
K T
Re = EE :I(Staat—sa)rt
sa
1l |

m In the AB example, V(A) =0.75

MCvs TD

m D exploits Markov property
m Usually more efficient in Markov environments
m MC does not exploit Markov property
m Usually more effective in non-Markov environments

Bootstrapping and Sampling

m Bootstrapping: update involves an estimate

m MC does not bootstrap
m DP bootstraps
m [D bootstraps

m Sampling: update samples an expectation

m MC samples
m DP does not sample
m [D samples

Unified View of Reinforcement
Learning

. Exhaustive
Dynamic search
programming
full | ’/'(‘ '7'\' .Q-
backups

Monte Carlo

b;%z‘ﬂ,: \ Temporal-
difference
learning
—~ - -
backups backups

;

TD Algorithm

For this part of the problem assume that the model shown above is not
available, and we are executing the Temporal Difference (TD) algorithm
to estimate the Value Function. Consider the following set of
transitions:

(s0,a0) (r=3) 2 (s0,a0) (r=3) =2 (s2,a0) (r=-1) 2 (s0,a1)(r =-2)>(s2,a1)

(1) Using this data, use the TD algorithm to estimate the V values for
the states s0 and s2.

Applying the TD recursion for V Values:
V(S) « V(S) + a(R +yV (") — V(S))

V(S0)=0+0.8(3+0-0)=2.4
V(S0)=2.4+0.8(3 +0—2.4) =2.88
V(S2)=0+0.8(-1+2.88-0)=1.5

V(S0) = 2.88 + 0.8(-2 + 1.5—2.88) = 0.17

n-Step Temporal Difference:
TD(n)

p—

] -step Prediction

m Let TD target look n steps into the future
ID (1-step) 2-step 3-step 11-step Moante Carlo

S S S

Gr = Rt+1+’7Rt+2+-.-+’7T_1RT ;
2 Y —
1-step

Estimated Reward for — /(g
rest of trajectory YV (Se+1)

G = Res1 +7V(Sen1)

2-step Prediction

m Let TD target look n steps into the future
ID (1-step) 2-step 3-step 11-step Moante Carlo

S S S

G = Rt+1+’7Rt+2+-.-+’7T_1RT ;

%#%zﬂ

2-step :
Estimated Reward for — ,2y/(g
reward rest of trajectory . 4 . (t'."Z).

ng) = Res1 + YRes2 + 77 V(S:+2)

n-step Return

m Consider the following n-step returns for n =1, 2, oc:

n=1 (TD) G = Rer1+7V(Ser1)
n=>2 G(2) Ret+1 + YRet2 + 72 V(St42)

n=oco (MC) G(°°) Rest +YRes2 + . +7T1Ry
m Define the n-step return
Gt(n) = Riy1 +YRty2 + ... + ’)’n_lRt+n + ’)’n V(5r+n)

m n-step temporal-difference learning

V(S;) « V(S,) + a (Gt(") _ V(St))

Large Random Walk Example

ON-LINE
n-STEP TD

RMS error, 457 Y
averaged over ad
first 10 episodes

Further Reading

Sutton and Barto:

- Chapter 5: Section 5.1

- Chapter 6: Sections 6.1-6.3
- Chapter 7: Section 7.1

