
Lecture 4
Subir Varma

r

Value Function for State s = One Step Reward +Value Function for Next State s’

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that

is easy to solve, and
(2) A bigger problem, that

is assumed to be solved
(3) Put the 2 parts together

to solve original problem

Bellman
Expectation
Equation

Every state gets
its turn being the

root

This process is
guaranteed to converge
to optimal Value Function
V* and thus the optimal
policy

1-step Policy Evaluation

Find Heuristics to be able
to solve Problems with huge
number of states and/or actions

- Iterate only a few times, even just once (k = 1)
- Don’t have to update all the states in each iteration

update only those that are actually visited

,

Turn the Bellman
Optimality Equation

into an Iterative
Update

𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂(𝒒∗ 𝒔, 𝒂)

These algorithms are dependent on the knowledge of the MDP Model P

} Policy Iteration and Value Iteration Algorithms
don’t work if:
◦ The Environment Model is not known, or
◦ The number of states is extremely large

How can we find the Value Function and the Optimal Policy
under these conditions

Solution: Instead of Computing these functions from a Model,
Learn them from Experience!

} Experience: Sample sequences of States, Actions
and Rewards
(S, A, R, S’)

} The Experience can be either Real or Simulated

Still Doing Policy
Iteration

} Model for the Environment not known
} Agent uses its interaction with environment

to figure out its Value Function and Optimal
Policy

} This Lecture: Given a Policy, how do we figure
out the Value Function, without knowing the
model

} Next lecture: How to find Optimal Policy,
without knowing the model

1. Monte Carlo (MC) Learning
◦ Look at complete trajectories and estimate the value by

looking at sample returns
2. Temporal Difference (TD) Learning
◦ Look one step ahead and estimate the return
◦ Can be significantly more efficient than MC Learning in

practice.
3. TD(n) and TD(𝜆)
◦ Unifies the MC and TD approaches

Full Backup

Don’t Need the Model Anymore!

Update made at
end of an Episode

Sample Backup

𝑉(𝑆#) =
𝐺$ +⋯+ 𝐺%

𝑁

Sample returns, starting from state s0 and 𝛾 = 1,

Average return computed from 1000 episodes and 100 steps per episode

s0 s1 s2

a0

a1

a2

a0

a2

a1

0.2

0.8
0.3

0.7

1.0

1.0
1.0

0.1

0.8

0.1

R = +7

R = -50
R = +32

𝑉(𝑆#) =
𝐺$ +⋯+ 𝐺%

𝑁

Two Techniques
} First Visit Monte Carlo
} Every Visit Monte Carlo

How quickly does it converge: Variance of error reduces as 1/n

We are sampling instead of doing a full sweep and this breaks the
the dependence on the size of the problem state space

In one episode, V(s) can be updated multiple times (for a given s)

New Estimate = Current Estimate + Error Term

𝑉! =
∑"#$! 𝐺"
𝑁

 = $

!
𝐺! + ∑"#$!%$𝐺"

 = $
!
𝐺! + (𝑁 − 1)𝑉!%$

 = 𝑉!%$ +
$
!
(𝐺! − 𝑉!%$)

Leads to an exponential forgetting rate

This works better in practice, since with policy
improvements the system keeps changing

Smoothing Parameter
Example: 𝛼 = 0.1

Sometimes also written as:
𝑉 𝑆& ← 1 − 𝛼 𝑉 𝑆& + 𝛼𝐺&

𝑉&'$ = 𝛼𝐺$ + 𝛼(1 − 𝛼)&($𝐺) +⋯+ 𝛼 1 − 𝛼 𝐺& + 𝛼𝐺&'$

Sample Backup

Computational expense of estimating the value of
a single state is independent of the number of states

Full Backup

Update made at
end of an Episode

Sample Backup

} Having to wait until end of episode to
compute update

} Downsides:
◦ What if something “bad” happens at end of episode
◦ Some MDPs are continuous, i.e., never ending

episodes

Update made at
every step
(St, A, R, St+1)

Sample Backup

Similar to Monte Carlo

Different from Monte Carlo
Similar to Dynamic Programming

With MC

With TD

Best estimate of Gt

Gt: Real Return
𝑅*'$ + 𝛾𝑉 𝑆*'$: Estimated	Return	

1-step
reward

Estimated Reward for
rest of trajectory

= 	𝛾𝑉(𝑆HIJ)

Sometimes also written as:
𝑉 𝑆 ← 1 − 𝛼 𝑉 𝑆 + 𝛼[𝑅 + 𝛾𝑉 𝑆']

Leads to faster convergence

𝑉 𝑆 ← 1 − 𝛼 𝑉 𝑆 + 𝛼[𝑅 + 𝛾𝑉 𝑆']

𝑉 𝑆& ← 1 − 𝛼 𝑉 𝑆& + 𝛼𝐺& High Variance

Lower Variance

TD converges much faster

Larger 𝛼: Faster	but	noisier	convergence
Smaller 𝛼: Slower	and	smoother	convergence

1-step
reward

Estimated Reward for
rest of trajectory

= 	𝛾𝑉(𝑆HIJ)

2-step
reward Estimated Reward for

rest of trajectory
=	𝛾U𝑉(𝑆HIU)

Sutton and Barto:
- Chapter 5: Section 5.1
- Chapter 6: Sections 6.1-6.3
- Chapter 7: Section 7.1

