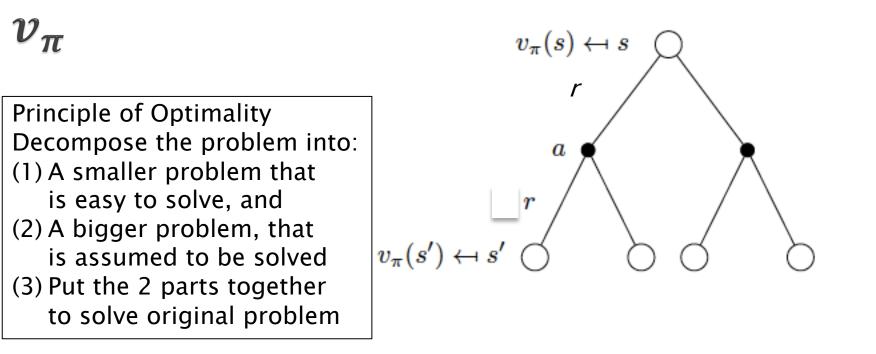
Model Free Prediction Methods: Monte Carlo and Temporal Difference Algorithms Lecture 4 Subir Varma

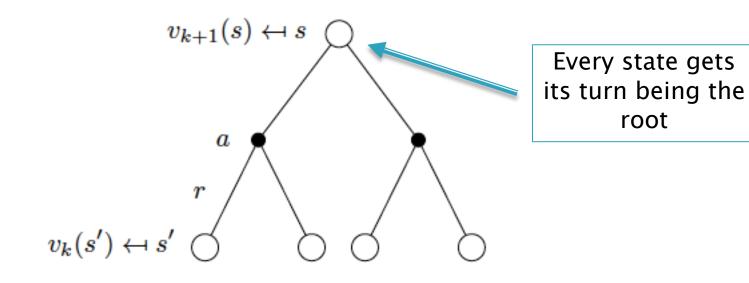
Bellman Expectation Equation for



$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

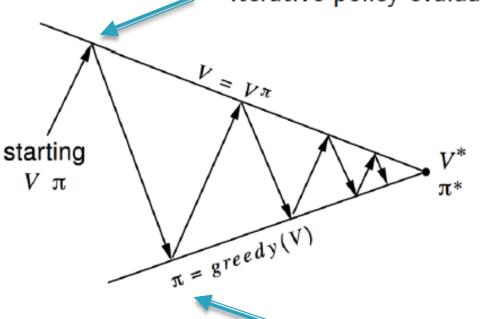
Value Function for State s = One Step Reward +Value Function for Next State s'

Iterative Policy Evaluation



Policy Iteration - Find Best Policy

Policy evaluation Estimate v_{π} Iterative policy evaluation

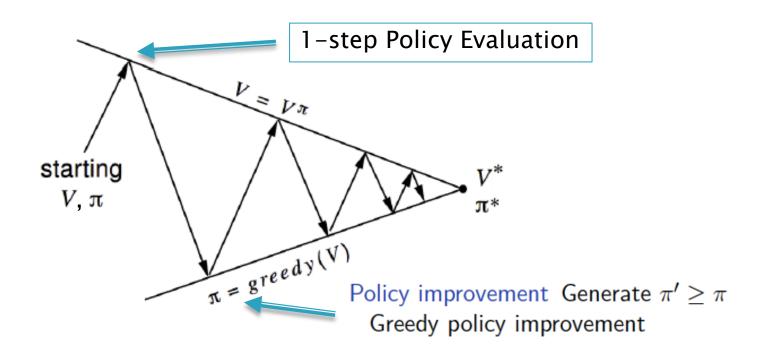


This process is guaranteed to converge to optimal Value Function V* and thus the optimal policy

Policy improvement Generate $\pi' \ge \pi$ Greedy policy improvement

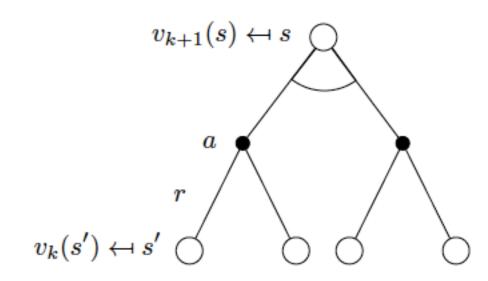
Generalized Policy Iteration

Find Heuristics to be able to solve Problems with huge number of states and/or actions



- Iterate only a few times, even just once (k = 1)
- Don't have to update all the states in each iteration update only those that are actually visited

Value Iteration - Find Best Policy



Turn the Bellman Optimality Equation into an Iterative Update

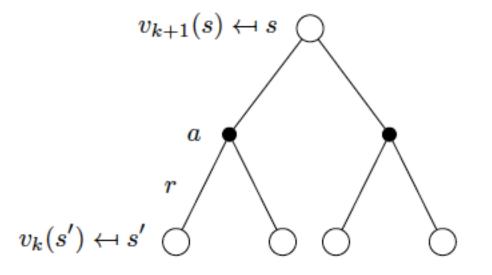
 $v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$

Finding the Optimal Policy

$$v_*(s) = \max_{a} \left[\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_*(s') \right]$$
$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_*(s')$$
$$\pi_* = \operatorname{argmax}_a(q_*(s, a))$$

But...

These algorithms are dependent on the knowledge of the MDP Model P



$$\begin{aligned} \mathbf{v}_{k+1}(s) &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) \left(\mathcal{R}_s^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} \mathbf{v}_k(s') \right) \\ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

Motivation

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

Policy Iteration and Value Iteration Algorithms don't work if:

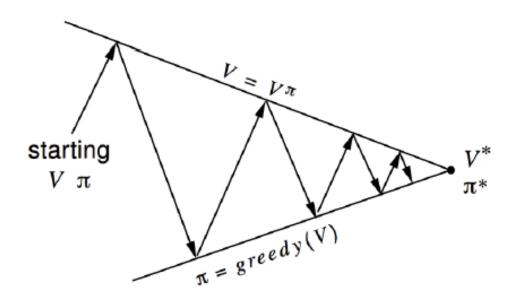
• The Environment Model is not known, or

• The number of states is extremely large

How can we find the Value Function and the Optimal Policy under these conditions

Solution: Instead of Computing these functions from a Model, Learn them from <u>Experience</u>!

Motivation (cont)



Still Doing Policy Iteration

- <u>Experience</u>: Sample sequences of States, Actions and Rewards (S, A, R, S')
- The Experience can be either Real or Simulated

Model Free Reinforcement Learning

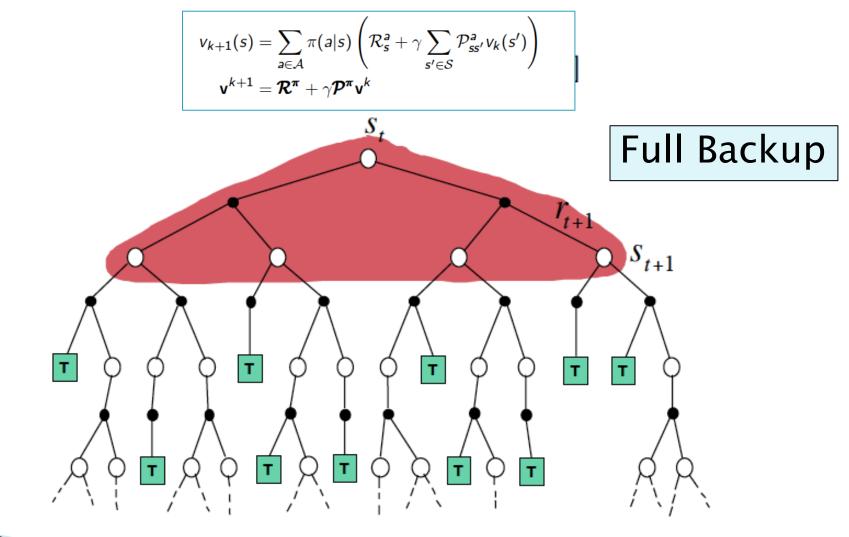
- Model for the Environment not known
- Agent uses its interaction with environment to figure out its Value Function and Optimal Policy
- This Lecture: Given a Policy, how do we figure out the Value Function, without knowing the model
- Next lecture: How to find Optimal Policy, without knowing the model

This Lecture

- 1. Monte Carlo (MC) Learning
 - Look at complete trajectories and estimate the value by looking at sample returns
- 2. Temporal Difference (TD) Learning
 - Look one step ahead and estimate the return
 - Can be significantly more efficient than MC Learning in practice.
- 3. TD(n) and TD(λ)
 - Unifies the MC and TD approaches

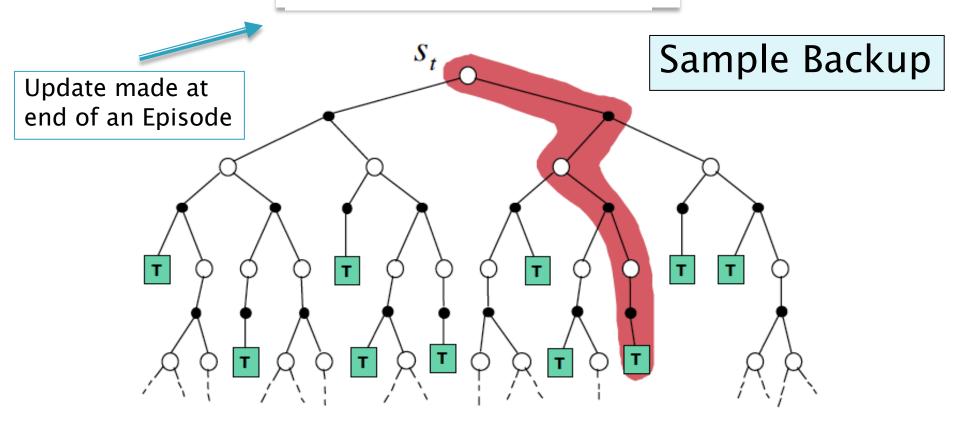
Monte Carlo Reinforcement Learning

Dynamic-Programming Backup



Monte Carlo Backup

 $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$



Don't Need the Model Anymore!

Monte Carlo Policy Evaluation

Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

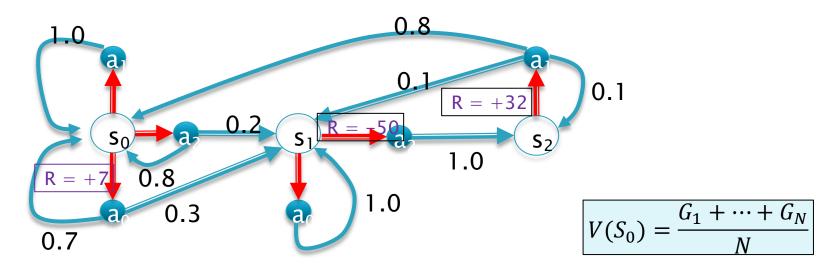
Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Monte-Carlo policy evaluation uses empirical mean return instead of expected return

$$V(S_0) = \frac{G_1 + \dots + G_N}{N}$$

Example of MC: MDP Returns



Sample returns, starting from state s_0 and $\gamma = 1$,

Average return computed from 1000 episodes and 100 steps per episode

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

policy_fire
States (+rewards): 0 1 (-50) 2 (40) 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 ... Total rewards = -220
States (+rewards): 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 ... Total rewards = 40
States (+rewards): 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 (10) 0 1 (-50) 2 (40) ... Total rewards = 160
States (+rewards): 0 (10) 0 (10) 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (40) 0 (10) 0 (10) ... Total rewards = 280
States (+rewards): 0 (10) 0 1 (-50) 2 1 (-50) 2 (40) 0 (10) 0 (10) 0 (10) 0 (10) ... Total rewards = 190
Summary: mean=122.2, std=134.956674, min=-340, max=490

Monte Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
 MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from *complete* episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to *episodic* MDPs
 All episodes must terminate

Computing the Empirical Mean

Two Techniques

- First Visit Monte Carlo
- Every Visit Monte Carlo

First Visit Monte Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers, $V(s)
 ightarrow v_{\pi}(s)$ as $N(s)
 ightarrow \infty$

How quickly does it converge: Variance of error reduces as 1/n

We are sampling instead of doing a full sweep and this breaks the the dependence on the size of the problem state space

First Visit Monte Carlo

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\begin{array}{l} \pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S} \end{array}$

Repeat forever: Generate an episode using π For each state *s* appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of *s* Append *G* to *Returns*(*s*) $V(s) \leftarrow$ average(*Returns*(*s*))

Every Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- Again, $V(s) o v_{\pi}(s)$ as $N(s) o \infty$

In one episode, V(s) can be updated multiple times (for a given s)

Incremental Mean Update

$$V_{N} = \frac{\sum_{i=1}^{N} G_{i}}{N}$$

= $\frac{1}{N} (G_{N} + \sum_{i=1}^{N-1} G_{i})$
= $\frac{1}{N} (G_{N} + (N-1)V_{N-1})$
= $V_{N-1} + \frac{1}{N} (G_{N} - V_{N-1})$

New Estimate = Current Estimate + Error Term

Incremental Monte Carlo Updates

• Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$

For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

 $V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$

Exponential Smoothing

In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

Smoothing Parameter Example: $\alpha = 0.1$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Leads to an exponential forgetting rate

This works better in practice, since with policy improvements the system keeps changing

Sometimes also written as: $V(S_t) \leftarrow (1 - \alpha)V(S_t) + \alpha G_t$

 $V_{n+1} = \alpha G_1 + \alpha (1-\alpha)^{n-1} G_2 + \dots + \alpha (1-\alpha) G_n + \alpha G_{n+1}$

First Visit Monte Carlo with Exponential Smoothing

First-visit MC prediction, for estimating $V \approx v_{\pi}$

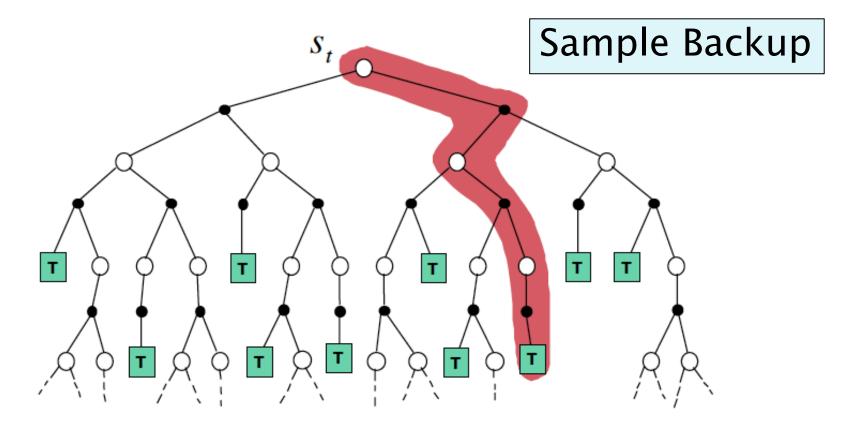
Initialize:

 $\begin{array}{l} \pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S} \end{array}$

Repeat forever: Generate an episode using π For each state *s* appearing in the episode: *G* \leftarrow the return that follows the first occurrence of *s* Append *G* to *Returns*(*s*) $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$

MC Estimate for a Single State

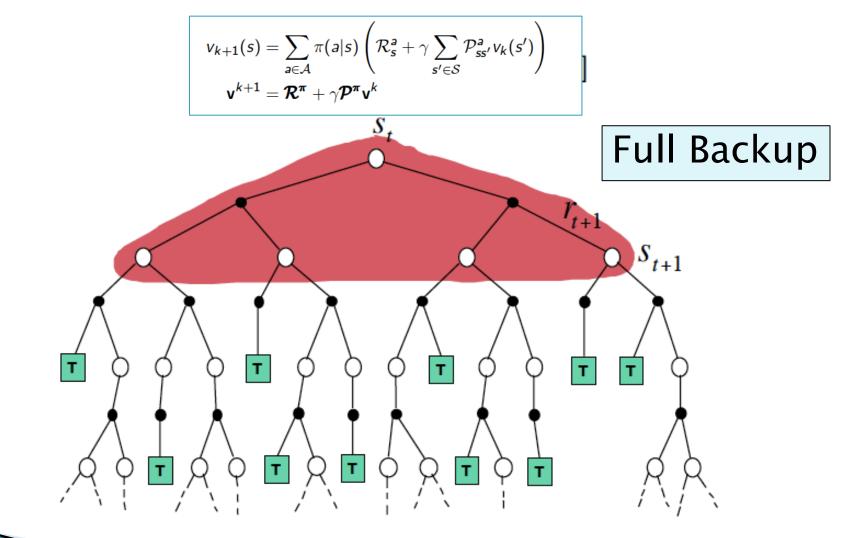
 $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$



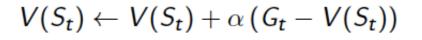
Computational expense of estimating the value of a single state is independent of the number of states

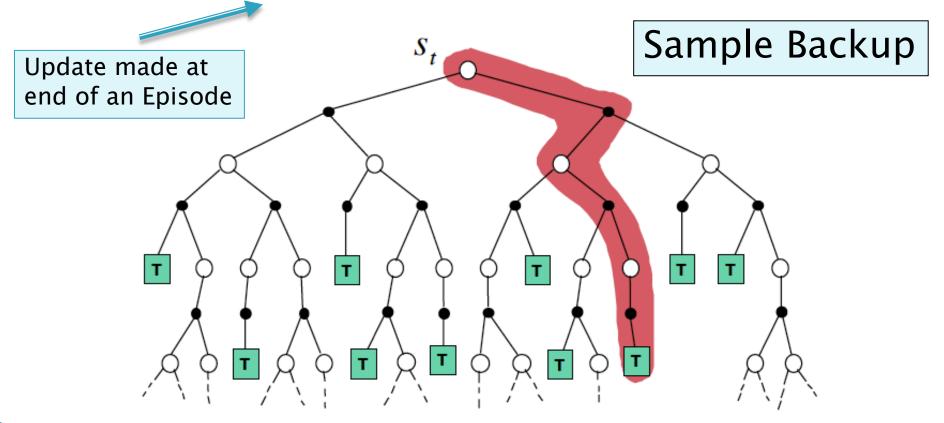
Temporal Difference (TD) Reinforcement Learning

Dynamic-Programming Backup



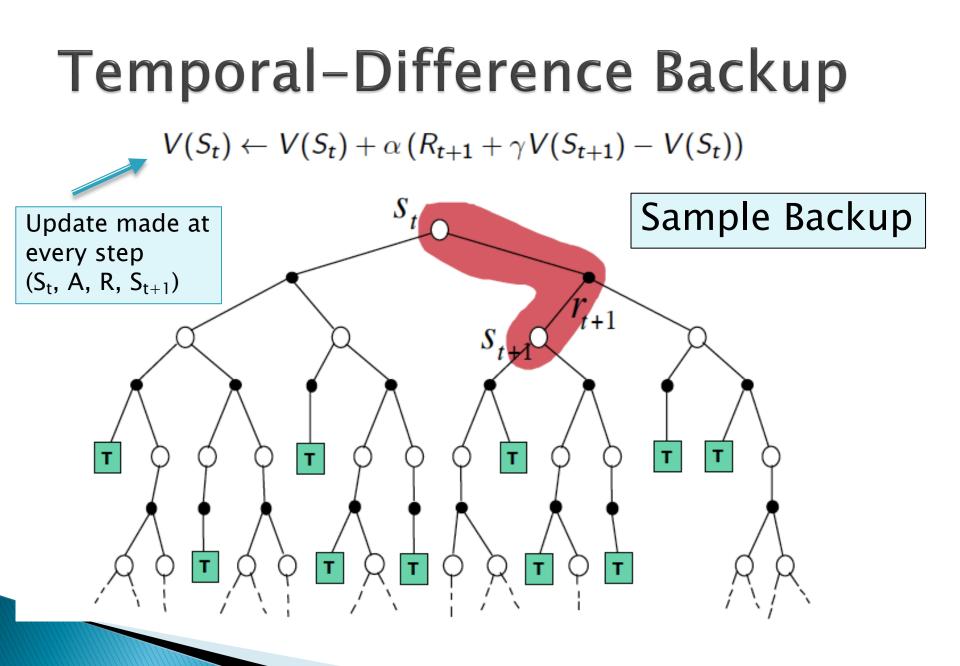
Monte Carlo Backup





Issue with MC Learning

- Having to wait until end of episode to compute update
- Downsides:
 - What if something "bad" happens at end of episode
 - Some MDPs are continuous, i.e., never ending episodes



Temporal-Difference (TD) Learning

TD methods learn directly from episodes of experience

TD is *model-free*: no knowledge of MDP transitions / rewards

Similar to Monte Carlo

TD learns from *incomplete* episodes, by *bootstrapping* TD updates a guess towards a guess

Different from Monte Carlo Similar to Dynamic Programming

Derivation of TD Update Rule

With MC

Goal: learn v_{π} online from experience under policy π

Incremental every-visit Monte-Carlo

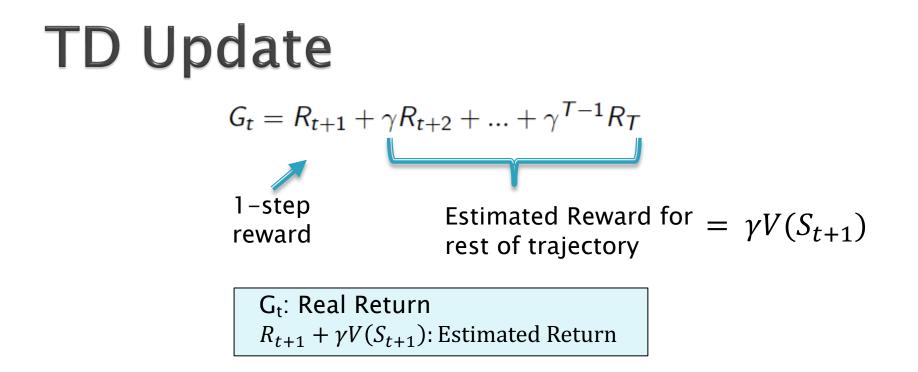
• Update value $V(S_t)$ toward *actual* return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_t} - V(S_t) \right)$$

With TD

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}{\gamma} \right)$$

Best estimate of G_t



Simplest temporal-difference learning algorithm: TD(0)

• Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

 $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$

R_{t+1} + $\gamma V(S_{t+1})$ is called the *TD target* $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the *TD error*

TD Algorithm

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

S \leftarrow S'

until S is terminal
```

Sometimes also written as: $V(S) \leftarrow (1 - \alpha)V(S) + \alpha[R + \gamma V(S')]$

Advantages and Disadvantages of MC vs TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known

TD can learn without the final outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

Leads to faster convergence

TD target is much lower variance than the return:

- Return depends on many random actions, transitions, rewards
- TD target depends on one random action, transition, reward

$$V(S_t) \leftarrow (1 - \alpha)V(S_t) + \alpha G_t$$
High Variance
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1}R_T$$
Lower Variance
$$V(S) \leftarrow (1 - \alpha)V(S) + \alpha[R + \gamma V(S')]$$

Bias/Variance Trade-Off

TD target $R_{t+1} + \gamma V(S_{t+1})$ is *biased* estimate of $v_{\pi}(S_t)$

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is *unbiased* estimate of $v_{\pi}(S_t)$

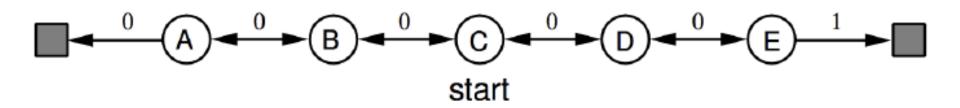
Advantages and Disadvantages of MC vs TD (2)

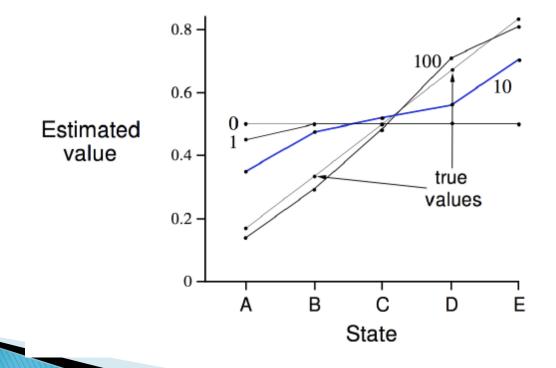
- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use

TD has low variance, some bias

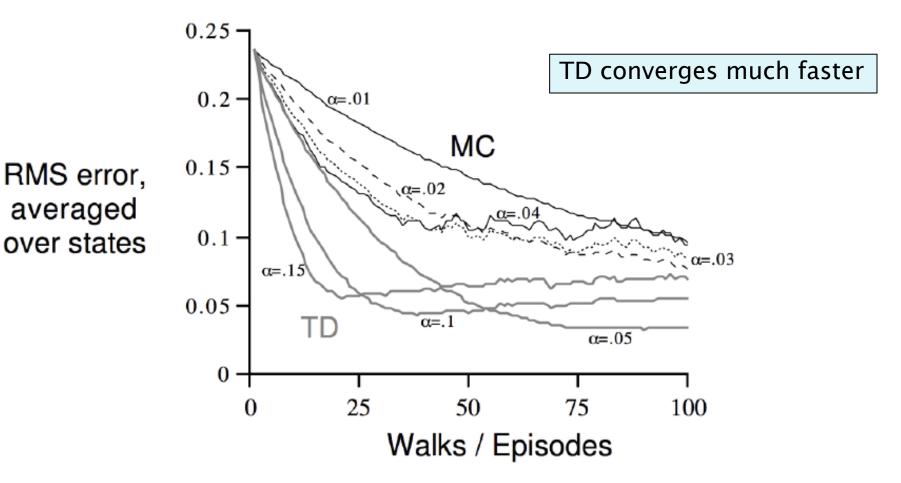
- Usually more efficient than MC
- **TD(0)** converges to $v_{\pi}(s)$
- (but not always with function approximation)
- More sensitive to initial value

Random Walk Example





Random Walk: MC vs TD



Larger α : Faster but noisier convergence Smaller α : Slower and smoother convergence

Batch MC and TD

- MC and TD converge: $V(s) o v_{\pi}(s)$ as experience $o \infty$
- But what about batch solution for finite experience?

$$s_{1}^{1}, a_{1}^{1}, r_{2}^{1}, ..., s_{T_{1}}^{1}$$

$$\vdots$$

$$s_{1}^{K}, a_{1}^{K}, r_{2}^{K}, ..., s_{T_{K}}^{K}$$

- e.g. Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k

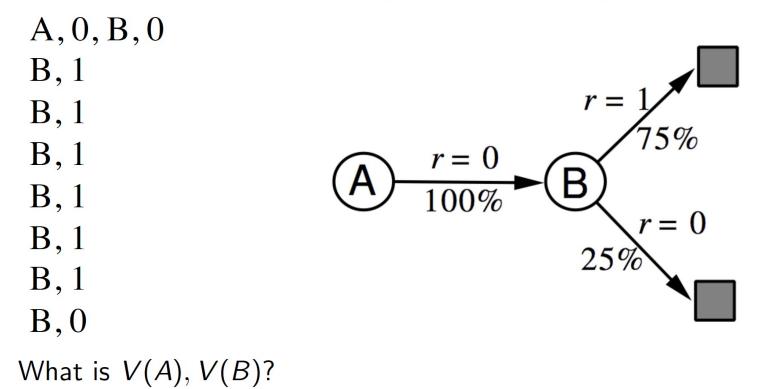
AB Example

Two states A, B; no discounting; 8 episodes of experience

What is V(A), V(B)?

AB Example

Two states A, B; no discounting; 8 episodes of experience



Convergence Properties

MC converges to solution with minimum mean-squared error

Best fit to the observed returns

$$\sum_{k=1}^{K}\sum_{t=1}^{T_k}\left(G_t^k-V(s_t^k)
ight)^2$$

• In the AB example, V(A) = 0

TD(0) converges to solution of max likelihood Markov model
 Solution to the MDP (S, A, P, R, γ) that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = rac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbf{1}(s_{t}^{k}, a_{t}^{k}, s_{t+1}^{k} = s, a, s')$$
 $\hat{\mathcal{R}}_{s}^{a} = rac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbf{1}(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$

In the AB example, V(A) = 0.75

MC vs TD

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Bootstrapping and Sampling

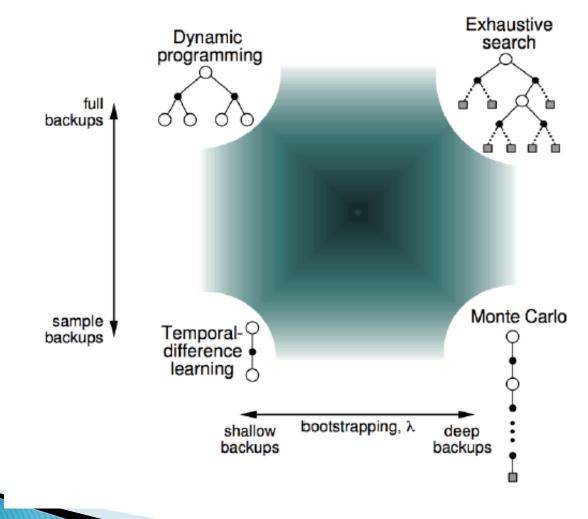
Bootstrapping: update involves an estimate

- MC does not bootstrap
- DP bootstraps
- TD bootstraps

Sampling: update samples an expectation

- MC samples
- DP does not sample
- TD samples

Unified View of Reinforcement Learning



TD Algorithm

For this part of the problem assume that the model shown above is not available, and we are executing the Temporal Difference (TD) algorithm to estimate the Value Function. Consider the following set of transitions:

(s0,a0) $(r = 3) \rightarrow (s0,a0)$ $(r = 3) \rightarrow (s2,a0)$ $(r = -1) \rightarrow (s0,a1)(r = -2) \rightarrow (s2,a1)$

(1) Using this data, use the TD algorithm to estimate the V values for the states s0 and s2.

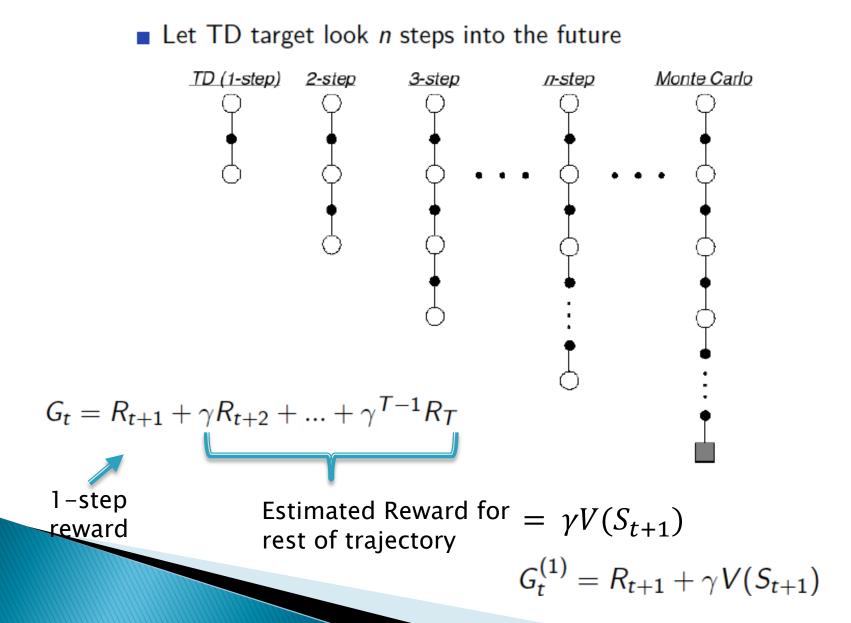
Applying the TD recursion for V Values:

$$V(S) \leftarrow V(S) + \alpha(R + \gamma V(S') - V(S))$$

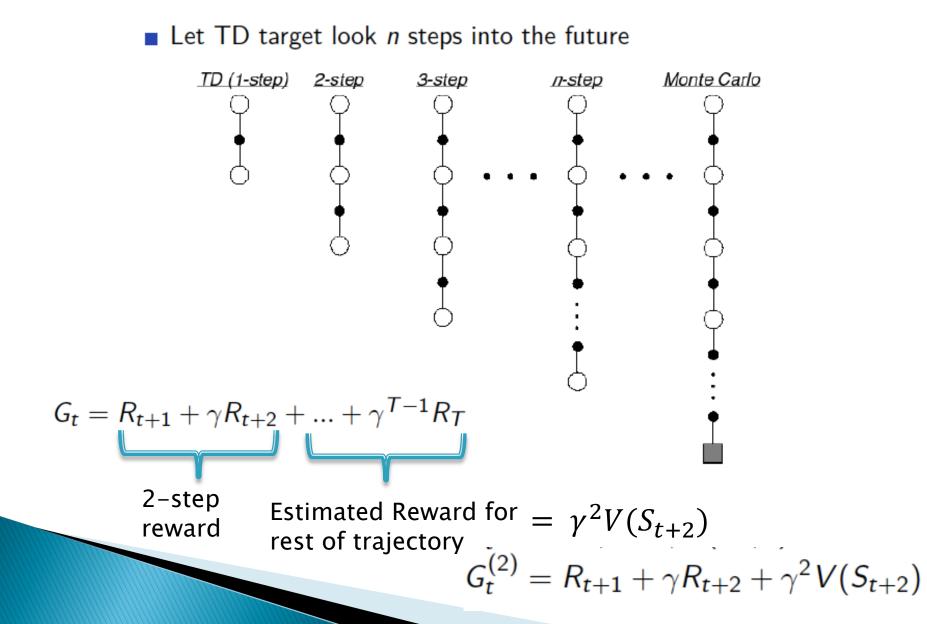
V(S0) = 0 + 0.8(3 + 0 - 0) = 2.4V(S0) = 2.4 + 0.8(3 + 0 - 2.4) = 2.88V(S2) = 0 + 0.8(-1 + 2.88 - 0) = 1.5V(S0) = 2.88 + 0.8(-2 + 1.5 - 2.88) = 0.17

n-Step Temporal Difference: TD(n)

1-step Prediction



2-step Prediction



n-step Return

Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 \quad (TD) \quad G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots \qquad \vdots$$

$$n = \infty \quad (MC) \quad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

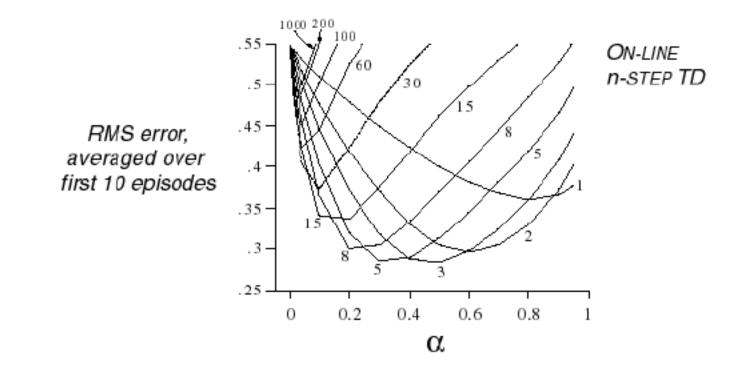
Define the *n*-step return

$$G_{t}^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^{n} V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

Large Random Walk Example



Further Reading

Sutton and Barto:

- Chapter 5: Section 5.1
- Chapter 6: Sections 6.1-6.3
- Chapter 7: Section 7.1