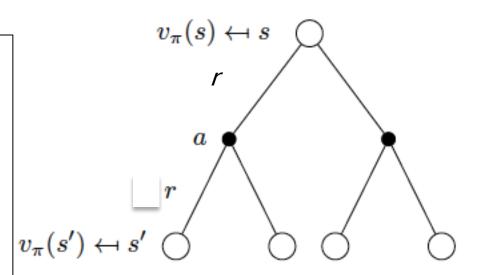
Model Based Control: Policy Iteration and Value Iteration

Lecture 3 Subir Varma

Bellman Expectation Equation for v_π

Principle of Optimality
Decompose the problem into:

- (1) A smaller problem that is easy to solve, and
- (2) A bigger problem, that is assumed to be solved
- (3) Put the 2 parts together to solve original problem



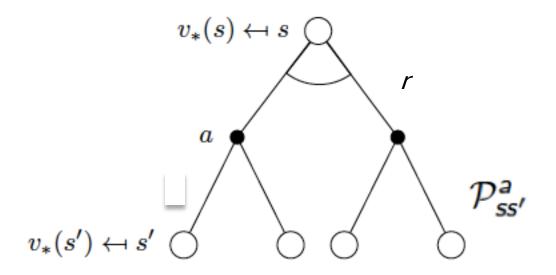
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

Value Function for State s = One Step Reward + Value Function for Next State s'

If $v_{\pi_1}(s) \ge v_{\pi_2}(s)$ for all s, then $\pi_1 \ge \pi_2$

Bellman Optimality Equation for

 $oldsymbol{v}_*$



$$v_*(s) = \max_{a} \left[\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right]$$

The Policy π_* corresponding to v_* is the Optimal Policy

Finding the Optimal Policy

$$v_*(s) = \max_{a} \left[\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right]$$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

$$\pi_* = argmax_a(q_*(s,a))$$

Today's Lecture: Solving the Planning Problem using Dynamic Programming

- Last Lecture: We set up equations for MDPs but did not show how to solve them
- Today's Lecture: Solution Methods Dynamic Programming
- These methods have limited utility in RL
 - They assume a perfect model
 - Computational expense
- However they are important theoretically since they provide a foundation for RL methods in rest of course

Rest of Course: Turn these methods onto scalable RL Algorithms

Today's Lecture: Solving the Planning Problem using Dynamic Programming

We will discuss two types of Planning Algorithms:

- Policy Evaluation: Given an MDP and a Policy, find the Value Function v(S)
- 2. Optimal Control: Given an MDP, find the Optimal Policy $\pi(S)$
 - a. Policy Iteration
 - b. Value Iteration

Dynamic Programing

Policy Evaluation

Policy Evaluation

MDP known

Policy known

Question: What are the Value

Functions

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

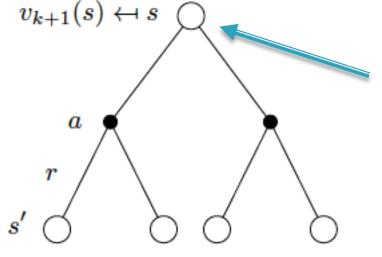
$$q_{\pi}(s, a) = \mathcal{R}^{a}_{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

How to Solve:

- Matrix Inversion
- Iterative Methods

Iterative Policy Evaluation

Full Backup



Every state gets its turn being the root

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$
Bellman Expectation Equation

 $v_{k+1}(s)$: Value function at the next iteration $v_k(s)$: Value function at the previous iteration

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s

Iterative Policy Evaluation

Iterative policy evaluation

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in \mathcal{S}^+

Repeat

\Delta \leftarrow 0

For each s \in \mathcal{S}:

v \leftarrow V(s)

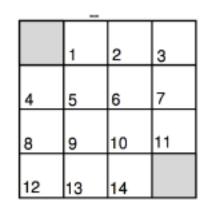
V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta,|v-V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

Evaluating a Random Policy in a Small Gridworld



r = -1 on all transitions

- One terminal state (shown twice as shaded squares)
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in a Small

Gridworld

 $v_{m{k}}$ for the Random Policy

$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$
$\mathbf{v}^{k+1} = \mathbf{\mathcal{R}}^{m{\pi}} + \gamma \mathbf{\mathcal{P}}^{m{\pi}} \mathbf{v}^k$

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 3$$

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = \infty$$

_			
0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy Iteration

Policy Iteration

Basic Idea: It is possible to find a Better Policy, while following another Policy

Finding the Optimal Policy

 v_{k} for the Random Policy w.r.t. $v_{m{k}}$

Greedy Policy
$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

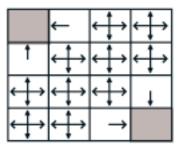
k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

random policy

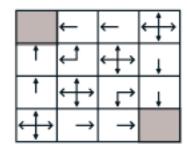
k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0



k = 2

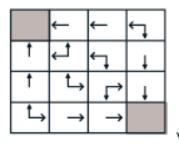
0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0



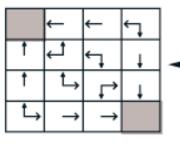
Finding the Optimal Policy (2)

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

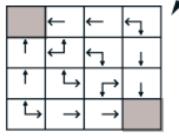


0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0



$\pi'(s) =$	$\operatorname*{argmax}_{\pmb{a}\in\mathcal{A}}$	q_{π}	(5,	•

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



We evaluated a Random Policy π_1 , but at the same time we were able to compute the Optimal Policy π_2

optimal

Greedy Policy w.r.t. $v_{m{k}}$

policy

Improving Policies

- Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

lacktriangle Improve the policy by acting greedily with respect to v_π

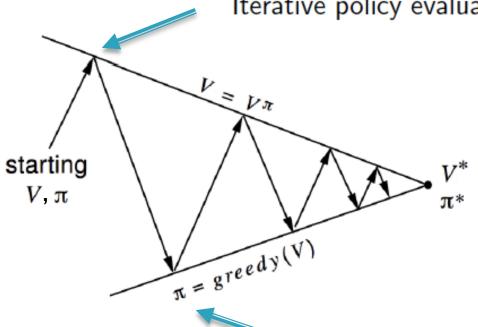
$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Compute
$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation



This process is guaranteed to converge to optimal Value Function V^* and thus the optimal policy π^*

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Iteration Algorithm

Policy iteration (using iterative policy evaluation)

Initialization
 V(s) ∈ ℝ and π(s) ∈ A(s) arbitrarily for all s ∈ S

2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement policy-stable ← true For each s ∈ S: old-action ← π(s) π(s) ← arg max_a ∑_{s',r} p(s', r | s, a) [r + γV(s')] If old-action ≠ π(s), then policy-stable ← false If policy-stable, then stop and return V ≈ v_{*} and π ≈ π_{*}; else go to 2

Proof: Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can *improve* the policy by acting greedily

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

lacksquare It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s \right] = v_{\pi'}(s)$$

Policy Improvement (2)

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- Therefore $v_{\pi}(s) = v_{*}(s)$ for all $s \in \mathcal{S}$
- \blacksquare so π is an optimal policy

Generalized Policy Iteration

Policy iteration (using iterative policy evaluation)

- 1. Initialization
 - $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation Repeat

$$\Delta \leftarrow 0$$

For each $s \in \mathcal{S}$:

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

The Policy Improvement step? $v \leftarrow V(s)$

How many times do we need

To iterate before going on to

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Generalized Policy Iteration

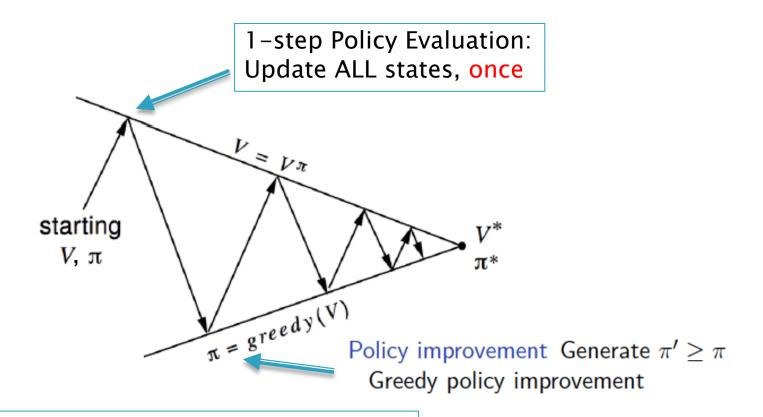
■ Does policy evaluation need to converge to v_{π} ?

Do we need to iterate to k = infinity

■ Why not update policy every iteration? i.e. stop after k = 1This is equivalent to Value Iteration

Use approximate policy evaluation rather than exact policy evaluation

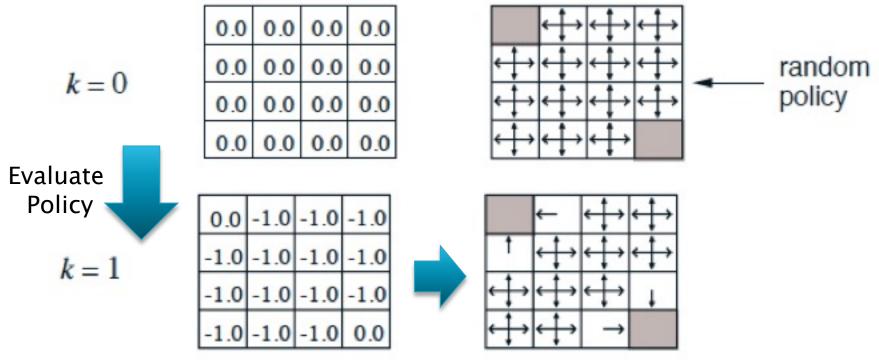
Generalized Policy Iteration (GPI)



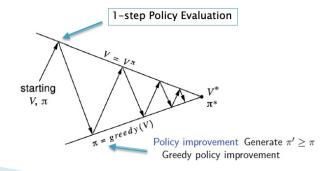
Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

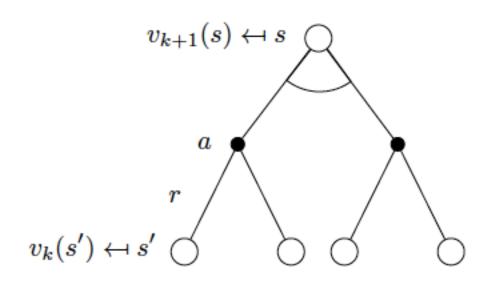
Find Heuristics to be able to solve Problems with huge number of states and/or actions

GPI with k = 1



Improve Policy





$$v_*(s) = \max_{\mathbf{a}} [\mathcal{R}_s^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v_*(s')]$$

Full Sweep

Full Backup

Turn the Bellman
Optimality Equation
into an Iterative
Update

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

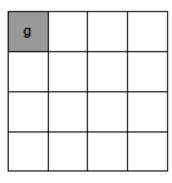
- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \left[\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right]$$

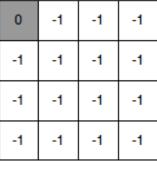
- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Example: Shortest Path



0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0



0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

Problem

V٠

٧2

 V_3

0	-1	-2	-3
-1	-2	ဒု	-3
-2	-3	-3	-3
-3	-3	ņ	-3

0	-1	-2	-3
-1	-2	ဒု	-4
-2	-3	-4	-4
-3	-4	-4	-4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_4

 V_5

 V_6

٧₇

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

- **Problem:** find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_*$
- Using synchronous backups
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- \blacksquare Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration Algorithm

Value iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in \mathbb{S}^+)

Repeat
\Delta \leftarrow 0
For each s \in \mathbb{S}:
v \leftarrow V(s)
V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi \approx \pi_*, such that \pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]
```

Contrasting Policy Iteration with Value Iteration

- In Policy Iteration we used the Bellman Expectation equation to find the Value Function for a given policy, and then iterate to find the optimal policy.
 - We alternate between Value Functions and Policies
- In Value Iteration: We take the Bellman Optimality Equation and iterate, which gives us the optimal Value Function
 - We go directly from Value Function to Value Function, there is no explicit policy

So Far: Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Dradiction	Bellman Expectation Equation	Iterative	
Prediction	Delinian Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	+ Greedy Policy Improvement	Folicy Iteration	
Control	Bellman Optimality Equation	Value Iteration	

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
- Complexity $O(m^2n^2)$ per iteration

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Way to do Asynchronous Dynamic Programming

Different ways to choose which states to update:

- In Place Dynamic Programming
- Real Time Dynamic Programming
- Prioritized Sweeping

Moving away from Full Sweep technique

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in S

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{old}(s') \right)$$

 $V_{old} \leftarrow V_{new}$

In-place value iteration only stores one copy of value function

for all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Plug in the latest value

Incorporates the latest information hence can be much more efficient

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in S

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{old}(s') \right)$$

 $V_{old} \leftarrow V_{new}$

■ In-place value iteration only stores one copy of value function

for all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

States can be updated in any order you like, but then Which states should be updates first?

Prioritized Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{\mathbf{s}}^{\mathbf{a}} + \gamma \sum_{\mathbf{s}' \in \mathcal{S}} \mathcal{P}_{\mathbf{s}\mathbf{s}'}^{\mathbf{a}} v(\mathbf{s}') \right) - v(\mathbf{s}) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Instead of naively updating every state, select the states whose Value Functions are changing the most, ignore static states

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- \blacksquare Backup the state S_t

$$v(S_t) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{S_t}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^{\mathbf{a}} v(s') \right)$$

Instead of naively updating every state, run the agent in the real World and select the states that the agent actually visits

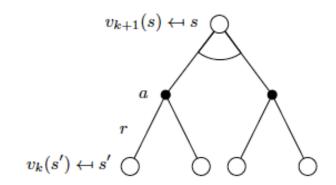
Model Free and Approximate Dynamic Programming

Full-Width Backups

■ DP uses full-width backups

Problems

- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive



Example: An Atari screen with 170 pixels has 10^{170} states!

$$v(S_t) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{S_t}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^{\mathbf{a}} v(s') \right)$$
This does not scale

Idea 2: Sample Backups

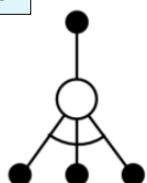
Sample a State

Sample an Action and Reward

Sample the next State
Don't need Model anymore!

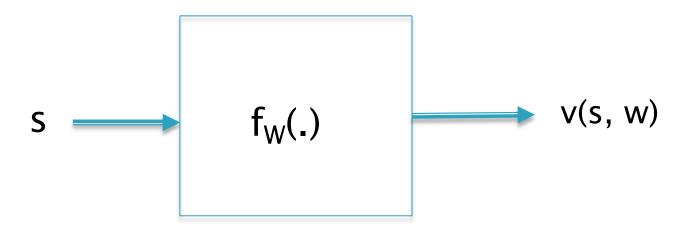
And then Simply Update the Sampled State!

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- lacksquare Instead of reward function ${\cal R}$ and transition dynamics ${\cal P}$
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - lacksquare Cost of backup is constant, independent of $n=|\mathcal{S}|$



Idea 1: Approximate Dynamic Programming

Function Approximator



The Dynamic Programming Equations are used to update the weights in the Function Approximator

Basic Idea: Don't update all the States. The Value Function for the non-updated states can be approximated using a Function Approximator

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- **Apply dynamic programming to** $\hat{v}(\cdot, \mathbf{w})$
- \blacksquare e.g. Fitted Value Iteration repeats at each iteration k,
 - lacksquare Sample states $ilde{\mathcal{S}}\subseteq\mathcal{S}$
 - For each state $s \in S$, estimate target value using Bellman optimality equation,

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

■ Train next value function $\hat{v}(\cdot, \mathbf{w}_{k+1})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Code Examples

https://github.com/dennybritz/reinforcementlearning/tree/master/Introduction

https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/tree/master

Further Reading

Sutton and Barto:

- Chapter 4