Model Based Control:
Policy Iteration and Value Iteration

Lecture 3
Subir Varma

Bellman Expectation Equation for v,

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that
is easy to solve, and
(2) A bigger problem, that
is assumed to be solved
(3) Put the 2 parts together
to solve original problem

ve(s) =Y w(als) [RZ+~ Y Piva(s)

acA s'eS

Value Function for State s = One Step Reward +Value Function for Next State s’ ‘

If v, (s) = vy, (s) for all s, then m; > m,

Bellman Optimality Equation for
v,

v.(s") < &

Vi (S) = mgx[fRﬁ + 7y Z Pas V*(SI)]]

s'eS

The Policy m, corresponding to v, is the Optimal Policy

Findi
inding the Optimal Policy

vi(s) = maax[[Rg + Z P v*(s')]]

s’eS

g«(s,a) = R2 + Z P ve(s)

s'eS

T, =
argmax,(q.(s,a))

p—

Today’s Lecture: Solving the Planning
Problem using Dynamic Programming

» Last Lecture: We set up equations for MDPs but did not
show how to solve them

» Today’s Lecture: Solution Methods - Dynamic
Programming

» These methods have limited utility in RL
- They assume a perfect model
- Computational expense

» However they are important theoretically since they
provide a foundation for RL methods in rest of course

Rest of Course: Turn these methods onto scalable RL Algorithms

Today’s Lecture: Solving the Planning
Problem using Dynamic Programming

We will discuss two types of Planning
Algorithms:
1. Policy Evaluation: Given an MDP and a
Policy, find the Value Function v(S)
2. Optimal Control: Given an MDP, find the
Optimal Policy m(S5)
a. Policy Iteration
b. Value Iteration

Dynamic Programing

Policy Evaluation

p—

Policy Evaluation

MDP known

Policy known

Question: What are the Value
Functions

vr(s) = Z w(a|s) (Rg + Z 'P;’s,vw(s'))

acA s'eS

gr(s,a) =R2+7 Y PL > w(d|s)gx(s,)

s’'eS a'cA

How to Solve:
— Matrix Inversion
— Iterative Methods

Iterative Policy Evaluation

V4+1(8) 4 s

\ Every state gets

Full Sweep its turn being the
" root
Full Backup
r
vp(s') « 8
Vee1(s) = Z m(als) (Rg + 7y Z P vk(s’)) Eellma}[nt_
acA s'eS <« Expectation
vkl — R~ 4 ,Y’pqrvk Equation

Vi+1(s): Value function at the next iteration
v, (s): Value function at the previous iteration

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup

mVT — Vo — ... =2 Vg
m Using synchronous backups,

m At each iteration k + 1

m For all states s € S

m Update vy 1(s) from vi(s")

m where s’ is a successor state of s

Iterative Policy Evaluation

Iterative policy evaluation

Input m, the policy to be evaluated
Initialize an array V' (s) =0, for all s € 8*
Repeat
A+0
For each s € 8:
v+ V(s)
V(s) X m(als) S, p(s's7]5,0) [r + 1V ()]
A + max(A, |v—V(s)|)
until A < @ (a small positive number)
Output V =~ v,

Evaluating a Random Policy in a
Small Gridworld

1 2 3
4 |5 |6 |7 r=-1
on all transitions
8 9 |10 M
ion
actions 12 13 |14

m One terminal state (shown twice as shaded squares)

m Agent follows uniform random policy

(el) = n(sl-) = m(w]-) = 0.25

| m(n|-)=m

Iterative Policy Evaluation in a Small
Gridworld

U for the
Random Policy

Vis1(s) = D (als) (Rg +v) P vk(sl)>

acA s'eS
vk+1 —R™ + "}’P"Vk

00(00[00|00 00|-24[-29[-3.0 PR T R
0/00[00|0: 2.4(-29|-30|-29| [l random
k:O 00]00]0.0] 0.0 k:3 Iolesoletnledo policy
00(00[00|00 -29|-30[-29|-24
00(00[00|00 -3.0[-29]-24| 0.0
00[-10/-10/-1.0 00|-6.1/-8.4/-9.0
r—1 10l-10l-10l-10 k=10 -6.1|-7.7|-8.4|-8 4
- -1.0[-1.0[-1.0[-1.0 -84|-84]-7.7]-6.1
-10l-10l-10l 00 -00/-84|-6.1|1 00
-14.[-20 |-22.
0.0[-1.7-2.0[-2.0 L2
-14.|-18.]-20|-20.
-20.[-20|-18 |-14.
22(-20]-14| 0.0

Policy Iteration

p—

Policy Iteration

Basic Idea: It is possible to find a Better Policy , while following
another Policy

Finding the Optimal Policy

Vg for the Greedy Policy [/(s) = argmax gx(s, a)
Random Policy wrl Vg acA
00(00/00]| 00 ol o
L—0 00(00/00|00 5 5 5 i random
00(00/00|00 ol ol policy
00(00|00]| 00 Pl
00|-1.0/-1.0/-10 — |l
L AN A N A BN
k= 1 -10/-1.0/-1.0|-10 | :
-1.0(-1.0/-1.0|-1.0 e
-1.0/-1.0/-1.0] 0.0 Pl -
00|-1.7]-2.0|-2.0 — | |
-1.7]-2.0l-2.0l-2.0 i bl
20l-20/-20]-1.7 Vbl Pl
2.0[-2.0/-1.7/ 00 | - -

Finding the Optimal Policy (2)

00|-2.4|-29/-30 — = |9
k-3 24|-29[30[-29 Pl e |
29[-30|-2.0-2.4 R e
-30|-29(-2.4| 0.0 L - -
00|-6.1|-8.4/-0.0 — = g9
k=10 -6.1|-7.7|-8.4|-8.4 Pid g |, | < optimal
-8.4|-8.4]-77]-6.1 S el , policy
-9.0|-8.4/-6.1| 0.0 bl - - Greedy Policy m'(s) = a"gerzax G (s, 2
w.rl. Vg
00|-14.[-20]-22 — = |9
" 14.1-18 120 |20 P e | We evaluated a Random
=® 20120 118 |14 TS o, Policy 7,, but at the
22 |20]-14] 00 Ll 5] - same time we were

able to compute the
Optimal Policy m,

Improving Policies
m Given a policy 7
m Evaluate the policy o
Ve(S) = E[Res1 + YRes2 + .St = 9]

m Improve the policy by acting greedily with respect to v,

7' (s) = argmax gx(s, a)
acA

m In Small Gridworld improved policy was optimal, 7’ = 7*
m In general, need more iterations of improvement / evaluation

m But this process of policy iteration always conlvgrges to mx

Compute Gr(s.2) =RZ+7 > PaLva(s)

s'eS

Policy Iteration

Policy evaluation Estimate v;

/ Iterative policy evaluation

This process is

v* guaranteed to converge
¥ to optimal Value Function
V* and thus the optimal
policy m*

starting

Policy improvement Generate 7/ > 7
Greedy policy improvement

Policy Iteration Algorithm

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € 8:
v+ V(s)
V(s) <3, . p(s',7|s,7(s)) [r +9V(s")]
A + max(A, v —V(s)|)
until A < # (a small positive number)

3. Policy Improvement
policy-stable + true
For each s € 8:
old-action + m(s)
7(s) + argmax, Y_,, . p(s’,r|s,a)[r + 7V ()]
If old-action # m(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7 =~ 7,; else go to 2

e -

Proof: Policy Improvement

m Consider a deterministic policy, a = 7 (s)
m We can improve the policy by acting greedily

7' (s) = argmax gx(s, a)
acA

m [his improves the value from any state s over one step,

Gr(s,7'(s)) = max gx(s, a) 2 gx (s, 7(s)) = va(s)

m It therefore improves the value function, v,/(s) > v, (s)
Vr(5) < Gr(s,7'(5)) = Enr [Res1 + Va(Se41) | St =]
<Ep [Re+1 4+ YGx(St41, 7' (Se41)) | St = s
<Ep [Rep1 4+ YReg2 + V2 Gr(Ser2. 7 (Sex2)) | St = s]
< Eux [Rea1 +YRexo + ... | St = 5] = v ()

W —

Policy Improvement (2)

m |If improvements stop,
Gr (s, 7' (s)) = max gx(s, a) = gz (s, 7(s)) = vx(s)
acA
m [hen the Bellman optimality equation has been satisfied

Vr(S) = max g(s, a)
ac A

m [herefore vz(s) = vi(s) foralls € S

m so 7 is an optimal policy

p—

Generalized Policy Iteration

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation How many times do we need
Repzat(_o To iterate before going on to
= / The Policy Improvement step?
v+ V(s)

V(s) X, . p(s',7|s,7(s)) [r + 7V (s")]
A + max(A, |v -V (s)|)
until A < # (a small positive number)

3. Policy Improvement
policy-stable + true
For each s € 8:
old-action + m(s)
T((S) ¢ argmax, Zs'.r p(S’, TlS, a) [1‘ + "fV(S’)]
If old-action # m(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 =~ 7, else go to 2

IR T~ Ty

Generalized Policy Iteration

m Does policy evaluation need to converge to v?

Do we need to iterate to k = infinity

m Why not update policy every iteration? i.e. stop after k =1

This is equivalent to Value Iteration

Use approximate policy evaluation rather than exact policy evaluation

Generalized Policy Iteration (GPI)

1-step Policy Evaluation:

/ Update ALL states, once

starting
V,

(eI Policy improvement Generate 7/ > «
Greedy policy improvement

Policy evaluation Estimate v,

Find Heuristics to be able
to solve Problems with huge
number of states and/or actions

Any policy evaluation algorithm

Policy improvement Generate 7/ >
Any policy improvement algorithm

GPl with k =1

0.0/ 00|/ 00|00 lebiels

=0 00/00[00[00 K B L . random
00{00[{00]|00 Pl policy
00/00|/00]/ 00 clale el

Evaluate
Policy 0.0{-1.0/-1.0/-1.0 — |l

E_q -1.0/-1.0/-10/-1.0 » ' =‘>=;><:>
-1.0/-1.0/-1.0[-1.0 |
-1.0(-1.0/-10(00 cheeta

Improve Policy

’ 1-step Policy Evaluation

starting
V,n

is

" M\\l\
=2 __ Policy improvement Generate >
" Greedy policy improvement

~

Value Iteration

p—

Value Iteration

Vi(s) = maax[Ri + Z Pz v*(s’)l

s'eS

vit1(8) s Full Sweep

Full Backup

Turn the Bellman
Optimality Equation
into an lterative

/ /
V(S)< S
k(s) Update

A

— Ra a, /
vir1(s) m(249> Paw(s))

s'eS

Value Iteration

m If we know the solution to subproblems v.(s’)
m [hen solution v,(s) can be found by one-step lookahead

Vi (S) < maxEZi + 7 z P v*(s')]

acA
s’eS

m [he idea of value iteration is to apply these updates iteratively

m Intuition: start with final rewards and work backwards

I Vk+1(5) = Te%c)l((Rg + 7y S,EE;S'P:SI Vk(S,)>

Example: Shortest Path

- - 0 0 o . -1 -1] 1 . -1 -2 -2
0 0 0 0 A1 1] A 4| 2| 2|2

0 0 0 0 A1 1] A 2| 2| 2|2

0 0 0 0 A4 1] A 2| 2| 2|2

Problem V1 V2 V3

. _1 -2 -3 . -1 _2 -3 - -1 -2 -3 - -1 -2 _3
4|2 3|3 4| 2| 3| 4 4| 2| 3| 4 4| 2| 3|4
2| 3| 3|3 2| 3| 4| 4 2| 34| 5 2| 3| 4|5
3| 3| 3|3 3| 4| 4| -4 3| 4| 5|5 3| 4| 5| -6

Vs V7

Vk+1(8) = max (R;’ +7 Z P vk(s’))

s'eS

Value Iteration

Problem: find optimal policy 7
Solution: iterative application of Bellman optimality backup

Vi =7 Vo — ... = Vi
Using synchronous backups

m At each iteration k + 1
m For all states s € S
m Update vy 1(s) from vi(s’)

m Convergence to v, will be proven later
m Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Value Iteration Algorithm

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8*)

Repeat
A+0
For each s € &:
v+ V(s)
V(s) < max, Y _, . p(s',r|s,a)[r +V(s')]
A « max(A,|v—V(s)|)
until A < @ (a small positive number)

Output a deterministic policy, ™ =~ m,, such that
7(s) = argmax, Zs,’rp(s’, r|s,a) [r -+ 'yV(s’)]

Contrasting Policy Iteration with
Value Iteration

» In Policy Iteration we used the Bellman Expectation
equation to find the Value Function for a given

policy, and then iterate to find the optimal policy.
> We alternate between Value Functions and Policies

» In Value lteration: We take the Bellman Optimality
Equation and iterate, which gives us the optimal
Value Function

- We go directly from Value Function to Value Function, there is no
explicit policy

So Far: Synchronous Dynamic
Programming Algorithms

Problem Bellman Equation Algorithm
lterative
Policy Evaluation

Prediction | Bellman Expectation Equation

Bellman Expectation Equation

. Policy lterati
+ Greedy Policy Improvement olicy freration

Control

Control Bellman Optimality Equation Value lteration

m Algorithms are based on state-value function v (s) or vi(s)

m Complexity O(mn?) per iteration, for m actions and n states

m Could also apply to action-value function gr(s, a) or g.(s, a)

m Complexity O(m?n?) per iteration

Asynchronous Dynamic
Programming

p—

Asynchronous Dynamic
Programming

m DP methods described so far used synchronous backups

m i.e. all states are backed up in parallel

m Asynchronous DP backs up states individually, in any order

m For each selected state, apply the appropriate backup

m Can significantly reduce computation

m Guaranteed to converge if all states continue to be selected

p—

Way to do Asynchronous Dynamic
Programming

Different ways to choose which states to update:

* In Place Dynamic Programming
« Real Time Dynamic Programming
« Prioritized Sweeping

Moving away from Full Sweep technique

In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function

forall sin S

ac A
s'eS

Vold < Vnew

m In-place value iteration only stores one copy of value function
forallsin$§

v(s)(—max (Ra—l—vz 2v(s)
\

s'eS
Plug in the latest value

Incorporates the latest information hence can be
much more efficient

In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function

forall sinS

Vnew (S) = max (R? +7) _ P Vold(S/)>

acA
s’'eS
Vold <~ Vnew
m In-place value iteration only stores one copy of value function

forall sin S

v(s) < max (RS" + v Z P;’S,v(s’))

eA
? s'eS

States can be updated in any order you like, but then
Which states should be updates first?

Prioritized Sweeping

m Use magnitude of Bellman error to guide state selection, e.g.

max (’Rg + v Z ’P;}v(s’)) —v(s)

s'eS

m Backup the state with the largest remaining Bellman error
m Update Bellman error of affected states after each backup
m Requires knowledge of reverse dynamics (predecessor states)

m Can be implemented efficiently by maintaining a priority queue

Instead of naively updating every state, select the states whose Value
Functions are changing the most, ignore static states

Real-Time Dynamic Programming

m ldea: only states that are relevant to agent

m Use agent’s experience to guide the selection of states
m After each time-step 5S¢, As, Rei1

m Backup the state S;

v(S;:) < max (s, +7 Z ’Psats,v(s’))

acA
s'eS

Instead of naively updating every state, run the agent in the real
World and select the states that the agent actually visits

Model Free and Approximate
Dynamic Programming

p—

Full-Width Backups

m DP uses full-width backups

Problems

vk4+1(8) s
m For each backup (sync or async)
m Every successor state and action is "
considered
m Using knowledge of the MDP transitions r
and reward function vk(s') =+ 8

m DP is effective for medium-sized problems

(millions of states)
m For large problems DP suffers Bellman's

Example: An Atari screen with

curse of dimensionality 170 pixels has 10179 states!

m Even one backup can be too expensive

m Number of states n = |S| grows
exponentially with number of state

variables . . ,
v(S;) « max Rs, +v Z Ps.sv(s)

s'eS

/

This does not
scale

ldea 2: Sample Backups

Sample a State > Q

Sample an Action and Reward — |, @

Sample the next State
Don’t need Model anymore! O
And then Simply Update the Sampled State!
L
m In subsequent lectures we will consider sample backups
m Using sample rewards and sample transitions
(S5,A,R,S")

m Instead of reward function R and transition dynamics P o

m Advantages:

m Model-free: no advance knowledge of MDP required
m Breaks the curse of dimensionality through sampling
m Cost of backup is constant, independent of n = |S]|

ldea 1: Approximate Dynamic
Programming

Function Approximator

S — fi () b V(S, W)

The Dynamic Programming Equations are used to update the
weights in the Function Approximator

Basic Idea: Don’t update all the States. The Value Function for the
non-updated states can be approximated using a Function Approximator

Approximate Dynamic
Programming

m Approximate the value function
m Using a function approximator vV (s, w)

m Apply dynamic programming to V(-, w)

m e.g. Fitted Value lteration repeats at each iteration k,

m Sample states S C S
m For each state s € §, estimate target value using Bellman
optimality equation,

Vk(s) = max (Rg + Z Psas,\?(s',wk)>

acA vy

m Train next value function V(-,wg.1) using targets {(s, i(s))}

Code Examples

https://github.com/dennybritz/reinforcement-
learning/tree/master/Introduction

https://qgithub.com/ShangtongZhang/reinforcement-learning-an-
introduction/tree/master

https://github.com/dennybritz/reinforcement-learning/tree/master/Introduction
https://github.com/dennybritz/reinforcement-learning/tree/master/Introduction
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/tree/master
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/tree/master

Further Reading

Sutton and Barto:
- Chapter 4

p—

