
Lecture 3
Subir Varma



r

Value Function for State s = One Step Reward +Value Function for Next State s’

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that

is easy to solve, and
(2) A bigger problem, that

is assumed to be solved
(3) Put the 2 parts together

to solve original problem

If 𝑣!!(𝑠) ≥ 𝑣!"	(s) for all s, then 𝜋" ≥ 𝜋# 



r

The Policy 𝜋∗ corresponding to 𝑣∗ is the Optimal Policy



𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂(𝒒∗ 𝒔, 𝒂 )



} Last Lecture: We set up equations for MDPs but did not 
show how to solve them

} Today’s Lecture: Solution Methods – Dynamic 
Programming

} These methods have limited utility in RL
◦ They assume a perfect model
◦ Computational expense

} However they are important theoretically since they 
provide a foundation for RL methods in rest of course

Rest of Course: Turn these methods onto scalable RL Algorithms



We will discuss two types of Planning 
Algorithms:
1. Policy Evaluation: Given an MDP and a 

Policy, find the Value Function v(S)
2. Optimal Control: Given an MDP, find the 

Optimal Policy 𝜋(𝑆)
a. Policy Iteration
b. Value Iteration

Dynamic Programing





How to Solve:
- Matrix Inversion
- Iterative Methods

MDP known
Policy known
Question: What are the Value 
Functions



Bellman
Expectation 
Equation

Every state gets
its turn being the

root

Full Backup

Full Sweep

𝑣&'" s : Value	function	at	the	next	iteration
	 𝑣& s : Value	function	at	the	previous	iteration













Basic Idea: It is possible to find a Better Policy , while following 
another Policy



𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂(𝒒∗ 𝒔, 𝒂 )



We evaluated a Random
Policy 𝜋", but at the
same time we were
able to compute the
Optimal Policy 𝜋#



Compute



This process is
guaranteed to converge
to optimal Value Function
V* and thus the optimal
policy 𝜋∗

,









How many times do we need
To iterate before going on to
The Policy Improvement step?



Do we need to iterate to k = infinity

Use approximate policy evaluation rather than exact policy evaluation

This is equivalent to Value Iteration



1-step Policy Evaluation:
Update ALL states, once

Find Heuristics to be able
to solve Problems with huge
number of states and/or actions

,



Evaluate 
Policy

Improve Policy





Turn the Bellman
Optimality Equation

into an Iterative
Update

Full Backup

Full Sweep











} In Policy Iteration we used the Bellman Expectation 
equation to find the Value Function for a given 
policy, and then iterate to find the optimal policy.
◦ We alternate between Value Functions and Policies

} In Value Iteration: We take the Bellman Optimality 
Equation and iterate, which gives us the optimal 
Value Function
◦ We go directly from Value Function to Value Function, there is no 

explicit policy









Different ways to choose which states to update:

• In Place Dynamic Programming
• Real Time Dynamic Programming
• Prioritized Sweeping

Moving away from Full Sweep technique



Plug in the latest value

Incorporates the latest information hence can be
much more efficient



States can be updated in any order you like, but then
Which states should be updates first?



Instead of naively updating every state, select the states whose Value
Functions are changing the most, ignore static states



Instead of naively updating every state, run the agent in the real
World and select the states that the agent actually visits





Example: An Atari screen with
170 pixels has 10170 states!

This does not
scale

Problems



Sample a State

Sample an Action and Reward

Sample the next State
Don’t need Model anymore!

And then Simply Update the Sampled State!



s v(s, w)fW(.)

Function Approximator

The Dynamic Programming Equations are used to update the
weights in the Function Approximator 

Basic Idea: Don’t update all the States. The Value Function for the
non-updated states can be approximated using a Function Approximator





https://github.com/dennybritz/reinforcement-
learning/tree/master/Introduction

https://github.com/ShangtongZhang/reinforcement-learning-an-
introduction/tree/master

https://github.com/dennybritz/reinforcement-learning/tree/master/Introduction
https://github.com/dennybritz/reinforcement-learning/tree/master/Introduction
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/tree/master
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/tree/master


Sutton and Barto:
- Chapter 4


