Markov Decision Processes

Lecture 2
Subir Varma

Contents

» Markov Processes

» Markov Decision Processes Part 1
> The Bellman Expectation Equation\

Given a Policy n(s)
find corresponding Value Function v,(s)

» Markov Decision Processes Part 2
> The Bellman Optimality Equation

N

Find the Best Policy m,(s)
by Computing the Best Value Function v,(s)

Partially Observable

Model Free

Model Free vs Model Based

Model Free Model Based

Markov Processes

p—

Markov Process

The Agent does not have
any influence on the

evolution of the System
State

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[5t+1 | St] —]P[St+1 | 513"'7St]

m [he state captures all relevant information from the history

m Once the state is known, the history may be thrown away

m i.e. [The state is a sufficient statistic of the future

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S,P)

m S is a (finite) set of states

m P is a state transition probability matrix,
Psst = P[Sty1=5"| St = 5]

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

pgg’ =P [St+1 - 5’ | St = S]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

to
P11 ... Pin The Matrix P
B _ completely characterizes
P = from : the model!
Pnl . Pnn

where each row of the matrix sums to 1.

Example of a Markov Chain

\%

Example: Sate Transition
Representation

Smom @

\ / 1.0
07 02 O
10 _

0 09
O 1.0 O
0 0 0

01
0.1
0
1

Example: Tree Representation
(Time Evolution)

Example: Computing Episodes

import numpy as np
import random as rnd
transition_probabilities = [
(0.7, 0.2, 0.0, 0.1), # from sO0 to s0, s1, s2, s3
(0.0, 0.0, 0.9, 0.1), # from sl to ...
(0.0, 1.0, 0.0, 0.0), # from s2 to ...
(0.0, 0.0, 0.0, 1.0), # from s3 to ...

]
n_max_steps = 50

def print_ sequence(start_state=0):
current_state = start_state

print(“States:", end=" ")
for step in range(n_max_steps):

print(current_state, end=" ")

if current_state == 3:

break

current_state = np.random.choice(range(4), p=transition_probabilities[current_state])
else:

print("...", end="")
print()

for _ in range(10):
print_sequence()

Example: Episodes

0.7
0.2 O.g
g
‘E
1.0
0.1 0.1

w] 0 Sample Episodes starting from state s
States: 0 0 0 3
States: 0000000 01212121213
States: 0 1 2 12 21212121213
States: 0 0 3
States: 0012121213
States: 000 000000O0O0 3
States: 012 121212121212121213
States: 001212121213
States: 0 0 3
States: 01 21...

Markov Decision Processes

p—

Markov Decision Process

The Agent is now able to
influence the evolution
of future states

The difference between
watching a Movie vs
playing a Video Game

Markov Decision Processes

A Markov Decision Process is a Markov Process with Actions and Rewards
It is in an environment in which all states are Markowv.

A Markov Decision Process is a tuple (S, A,P,R,~)
m S is a finite set of states

m A is a finite set of actions

m P is a state transition probability matrix,
Pss/—P[St+1—S | St—S At—c'?]

m R is a reward function, R = E[Ri+1 | St = 5, Ar = 3]
m 7 is a discount factor v € [0,1].

Example of a MDP

This is an example of a Model based RL

p—

MDP Matrix Representation

R=+10j| 0.8

0.7

When in state s,
So

Sy S?

do

0.7 03 0
a1 1.0 0 0
08 0.2 0

d)

0.
0.
R=+32 0.1
S — S5
1.0
i 1.0
P2, =P[Sey1 =5 | St = s, At = 3]
When in state s; When in state s,
S50 S1 S So S S5
do ao . . -
0O 1.0 O
. . (08 01 01
O 0 1.0 - — —
d> a

)

MDP: Matrix Representation

0.7
If we take Action a, If we take Action a; If we take Action a,
S50 51 52 So S S> So S1 Sy
0.7 0.3 0\s 1.0 O 0 \s 0.8 0.2 0\)50
Ao — 0 a; — 0 a —
g (0 1.0 0) s (0.8 0.1 0.1)52 P (0 0 1.0)51

MDP Tree Representation
(RO”OUtS) Q State Nodes
t=20

R=10
/I Action Nodes
do

dj

Policies

A policy m is a distribution over actions given states,

m(a|s) =P[A; = a | S; = s]

m A policy fully defines the behaviour of an agent

m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ ﬂ'("St),Vt = 0

A Policy is a Mapping from State to Actions
that does not change with time

MDP: Examples of Policies

» Policy 1 ag a; a
Y S50 1 0 0 7T(So) = QA
Policy Matrix (s) = (0 0 1) orR 7(s1) = az
N0 1 0 n(sy) = ay
.. So S

Chain Transition
Matrix

Resulting Markov 0.7 0.3
P™ = s,
s

MDP: Examples of Policies
» Policy: Safe

10 0
n(s) = (1 0 0) 51
0 1 0/.

S0

0.7 03 0
P”=(0 1.0 o>s

08 0.1 0.1

MDP: Examples of Policies

» Policy: Random

1/3 1/3 1/3*
Policy Matrix | 17(s) = (1/2 0 1/2)51
0 1 0

P (s'|s) = z m(als)P4(s’|s)

a

MDP: Rewards

I Two ways of specifying Rewards

Example: Specifying Rewards

@

F

‘ 1.0

Rewards r(s,a) when transitioning from sg, s; and s, respectively

So
do dj dp
So /+10 0 0
S (0 0 —50)
S> 0 +32 0

MDP: Return

The return G; is the total discounted reward from time-step t.

o

Gt = Rey1 + YR + ... = Z’Yth+k+1
k=0

m [he discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is Y¥R.

m [his values immediate reward above delayed reward.

m 7 close to 0 leads to " myopic” evaluation
m y close to 1 leads to "far-sighted” evaluation

Why Discount?

m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

m |t is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.

Example: MDP Returns

Sample returns, starting from state so and y =1,

Sample returns computed from 1000 episodes and 100 steps per episode

G =Ry + 7R3 + - T 7T—2RT

policy fire

States (+rewards):
States (+rewards):
States (+rewards):
States (+rewards):
States (+rewards):

1 (-50) 2 (32) 0 (10) 0 (10) 0 (10) 0 1 (-50) 2 (32) O ... Total rewards = -220

(10) 0 (10) 0 (10) 0 (10) O (10) O (10) O (10) 0 (10) O (10) O ... Total rewards = 40
(10) 0 (10) 0 (10) 0 1 (=-50) 2 (32) O (10) 0 1 (-50) 2 (32) ... Total rewards = 160
(10) 0 (10) 0 (10) O (10) O (10) 0 1 (-50) 2 (32) O (10) O (10) ... Total rewards = 280
(10) 0 1 (=50) 2 1 (-50) 2 (32) 0 (10) 0 (10) O (10) O (10) ... Total rewards = 190

OO O OO

Summary: mean=122.2, std=134.956674, min=-340, max=490

State Value Function: v,(s)

The state-value function vx(s) of an MDP is the expected return
starting from state s, and then following policy =

VatS)=Er |G |'Se = 5]

Answers the question: How good is it to be in state s, while following
Policy =

Action Value Function: q,(s,a)

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

gx(S;a)=Ex |G | S¢ =5 Ar= al

Answers the question: How good is it to take Action ain state s,
and then follow Policy n

If q,(s,a,) > q,(s,a,), then choose Action a,

State Value Function: Policy 1

’ 0.8
ao 0.3 ag 1.0
0-7 v.(50) = 9.8
— v.(s1) = —12.5
y =09 v.(s,) = 41.7

Markov Decision Processes:
The Bellman Expectation Equation

p—

Bellman Expectation Equation

Problem: Given a policy m, Compute the Value
Functions v.(s) and g,(s,a)

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

v(8) &« 8

Va(S) = Ex [Req1 + 7V (St41) | St = 5]

The action-value function can similarly be decomposed,

Gr(s,a) = Ex [Re41 + vGr(St41, At41) | St =5, Ar = 4
/

S

The Next State The Next Action

Bellman Expectation Equation for
le’

Ur(8) <= s

Gr(s,a) < a

acA

p—

va(s) = 3 w(als)g(s. 2
AN

Assume this is known

Bellman Expectation Equation

forq,,

gr(s,a) <= s,a

Gr(s,3) =R2+7 Y P va(s)

s'eS \

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that
is easy to solve, and
(2) A bigger problem, that
is assumed to be solved
(3) Put the 2 parts together
to solve original problem

Assume this is known

Bellman Expectation Equation for

U

ve(s) = 3 7(als)qx(s,)
acA

G(5,3) = R2 + Z P ve(s)

s’'eS

U (8") 1 &

va(s) =) _ m(als) (

acA

p—

R2I+7 Y Pava(s

SS)
s’eS

A Set of Linear Equation for v,!

Bellman Expectation Equation for
r

gr(s,a) =R+~ Z Plais)

s’eS

ve(s) = 3 m(als)ar(s 2)
acA

g-(s',a") — d

Gr(s.3) =R2+7) _ P Y m(d|s)gx(s",d)

s'eS a'eA

.

Example: Bellman Expectation
Equation for Policy 1 (Value Functions)

— O .9 7 (so) i Qo
y n(sy) = az O . 8

' 0.8
: 1.0
0.3
W - - v.(50) = 9.8
' v.(s1) = —12.5
v.(s,) = 41.7

9.8 =7+ 0.9(0.7 * 9.8 + 0.3 * (-12.5))

acA s’eS

Example: Bellman Expectation
Equation for Policy 1 (Action Value
Functions)

D

8

9.8) -11 25

ao 0.3 ao 1.0

0.7

Gr(s,3) =R2+7 Y P2va(s)

- s'eS

Bellman Expectation Equation
(Matrix Form)

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = Rﬂ. + ’)/p"rVﬂ

with direct solution

Ve = (I —4P™)'R”

p—

Markov Decision Processes:
The Bellman Optimality Equation

p—

Next Step

The Bellman Expectation Equations evaluate how good a State is for
a particular Policy, but
They don’t tell us the Optimal Policy

How do we obtain the Optimal Policy?

Optimal State Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Ve(S) = max Vre(S)

v:«(s) tells us the maximum reward that can be extracted from the system,
when starting in State s

It doesn’t tell us what Policy to follow

Optimal Action Value Function

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

G«(s,a) = max gq(s, a)

g-(s,a) tells us the maximum reward that can be extracted from the system,
If Action a is taken while in State s

Can we obtain the Optimal Policy from g«(s,a)?

Optimal Policy

In order to find optimal policy we have to define the notion of optimality

What does it mean for one policy to be better than another

Define a partial ordering over policies

> 7 if ve(s) > vp(s), Vs

Optimal Policy

Define a partial ordering over policies

> 7 if ve(s) > ver(s), Vs

For any Markov Decision Process

m [here exists an optimal policy m, that is better than or equal
to all other policies, 7, > 7,V

m All optimal policies achieve the optimal value function,
Vr, (5) = Va(s)

m All optimal policies achieve the optimal action-value function,
qﬂ*(S, a) — q*(s, a)

Finding an Optimal Policy

An optimal policy can be found by maximising over g.(s, a),

acA

(als) 1 if a = argmax q.(s, a)
TT«(d|S) =
0 otherwise

m [here is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy

p—

Example: Given v, and gq.

(L=

16.86

ao 0.3 ao 1.0

What is the Optimal Policy?

0.7

p—

Bellman Optimality Equation for

D,

The optimal value functions are recursively related by the Bellman
optimality equations:

Ve(s) <= s

action

Choose the best

g« (s,a) < a

Vi (S) = max g, (s, a)
d

N

Assume this is known

How do we compute g- values?

Bellman Optimality Equation for
q.-

gx(s,a) <= s, a

a

Uy (8") ¢ 8

0.(5,3) = R2+7 Y PLwi(s)

s'eS \

Assume this is known

Bellman Optimality Equation for

v, (2)

Vi(S) = max g«(s, a)

Gu(5,3) =R2+7 Y PLu(s)

=)

v.(s') 1§

Putting the 2
pieces together

Vi (S) = max[PZ +*yZ 2 V(s)]

s’'eS

No dependency on the policy anymore, solely
a function of the environment randomness

Bellman Optimality Equation for
q. (2)

g«(s,a) < s,a

Gu(s,3) =R2+7 Y Pau(s)

s'eS

Vi(S) = max g«(s. a)

q.(s',ad') < a

g.«(s,a) =R2+~ E Pz, max q.(s’,a")
al
s'eS

p—

Example: Optimal Value Function

y = 0.95

— EH
0.8
' o ‘ 1.0 U*(So) = 21.89
- ' 20 v.(s1) = 1.17
0.7 v,(s,) = 53.87

21.89 = max(7 + 0.95(0.7 * 21.89 + 0.3 * (1.17)),

0 + 0.95(21.89), S— -
0 + 0.95(0.8%21.89 + 0.2 *(1.17))) (8) = mp(RE £ 3 o)

Example: Optimal Action-Value
Function

C ”

16.86

ao 0.3 ao 1.0
0.7
I g«(s,a) =R+~ Z Pvi(s)
s'eS

Summary

Bellman Expectation Equations

vr(s) = Z w(a|s) (’Rj + Z P_,f’s,v?r(s'))

acA s'eS

ar(s,3) =R2+7 > P2 Y w(d|s')ax(s’,)

s'eS a'cA

Bellman Optimality Equations

— a /
vi(s) = m;:x[mg + Z Piiv.(s)B va(s) = max q.(s, a)
s'eS a
g«(s,a) =R+~ Z Piymax q.(s',a") g«(s,a) = RI +~ Z Pvi(s)
s'eS ° s'eS

Summary

Finding the Optimal Policy

vi(s) = max[[Rs + Z Piova(s]

s'eS

g«(s,a) = R2 + Z P ve(s)

s'eS

T, = argmax,(q.(s,a))

Solving the Bellman Optimality
Equation

m Bellman Optimality Equation is non-linear

m No closed form solution (in general)
m Many iterative solution methods

Value lteration
") . Model Based, Lecture 3
Policy lteratior
Q-learning
Model Free, Lectures 4,5
m Sarsa

p—

Further Reading

Sutton and Barto:
- Chapter 3: Sections 3.5 - 3.10

p—

