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} Markov Processes

} Markov Decision Processes Part 1
◦ The Bellman Expectation Equation

} Markov Decision Processes Part 2
◦ The Bellman Optimality Equation

Given a Policy 𝜋 𝑠
find corresponding Value Function 𝑣!(𝑠) 

Find the Best Policy 𝜋∗(𝑠)
by Computing the Best Value Function 𝑣∗(𝑠) 



Fully Observable Partially Observable
Model Based Model Free



Model Free Model Based





The Agent does not have
any influence on the
evolution of the System
State







The Matrix P
completely characterizes

the model!
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Sample Episodes starting from state s0





The Agent is now able to
influence the evolution
of future states

The difference between
watching a Movie vs
playing a Video Game



A Markov Decision Process is a Markov Process with Actions and Rewards.
It is in an environment in which all states are Markov.
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This is an example of a Model based RL
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When in state s1
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If we take Action a0 If we take Action a1 If we take Action a2
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A Policy is a Mapping from State to Actions
that does not change with time



} Policy 1
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Resulting Markov
Chain Transition
Matrix

𝜋 𝑠+ = 𝑎+	
𝜋 𝑠- = 𝑎.	
𝜋 𝑠. = 𝑎-	

OR





} Policy: Random 

𝜋(𝑠) =
1/3 1/3 1/3
1/2 0 1/2
0 1 0

𝑃* = ?

𝑃*(𝑠+|𝑠) =0
,

𝜋 𝑎 𝑠 𝑃,( s+|s)
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Two ways of specifying Rewards

r(s1;s0,a1) 
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Rewards r(s,a) when transitioning from s0, s1 and s2 respectively
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Sample returns, starting from state s0 and 𝛾 = 1,

Sample returns computed from 1000 episodes and 100 steps per episode
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Answers the question: How good is it to be in state s, while following
Policy 𝜋



Answers the question: How good is it to take Action a in state s, 
and then follow Policy 𝜋

If 𝑞! 𝑠, 𝑎# > 𝑞! 𝑠, 𝑎$ ,	then choose Action 𝑎#	
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𝛾 = 0.9
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How to compute these?





Problem: Given a policy 𝜋, Compute the Value 
Functions 𝑣*(𝑠) and 𝑞*(𝑠, 𝑎)



The Next State The Next Action



Assume this is known



r

Assume this is known

Principle of Optimality
Decompose the problem into:
(1) A smaller problem that

is easy to solve, and
(2) A bigger problem, that

is assumed to be solved
(3) Put the 2 parts together

to solve original problem



r

A Set of Linear Equation for 𝑣!!



r
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The Bellman Expectation Equations evaluate how good a State is for
a particular Policy, but

They don’t tell us the Optimal Policy

How do we obtain the Optimal Policy?



v*(s) tells us the maximum reward that can be extracted from the system,
when starting in State s

It doesn’t tell us what Policy to follow



q*(s,a) tells us the maximum reward that can be extracted from the system,
If Action a is taken while in State s

Can we obtain the Optimal Policy from q*(s,a)?



In order to find optimal policy we have to define the notion of optimality

What does it mean for one policy to be better than another
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What is the Optimal Policy?



How do we compute q* values?

Choose the best
action

Assume this is known



r

Assume this is known



Putting the 2
pieces together

r

No dependency on the policy anymore, solely
a function of the environment randomness



r



21.89 1.17 53.87

a0

a1

a2

a0

a2

a1

0.2

0.8

0.3
0.7

1.0

1.0

1.0

0.1

0.8

0.1

R = +7
R = -50

R = +32

𝛾 = 0.95

21.89 = max(7 + 0.95(0.7 * 21.89 + 0.3 * (1.17)),
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𝑣∗ 𝑠+ = 21.89
𝑣∗ 𝑠- = 1.17
𝑣∗ 𝑠. = 53.87
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Bellman Expectation Equations

Bellman Optimality Equations



Finding the Optimal Policy

𝝅∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂(𝒒∗ 𝒔, 𝒂 )



Model Based, Lecture 3

Model Free, Lectures 4,5



Sutton and Barto:
- Chapter 3: Sections 3.5 – 3.10


