Introduction to
Reinforcement Learning

Lecture 1
Subir Varma

Class Information

» Class Time:

Sat, Feb 10: T0AM - 12 Noon, 2PM - 4PM
Sun, Feb 11: TOAM - 12 Noon

Mon, Feb 12 - Fri, Feb 16: 6:30PM - 8:30PM
Sat, Feb 17: 10AM - 12 Noon, 2PM - 4PM

» Classroom: Academic Block 3, FF216

» Lectures available at Website:
https://subirvarma.github.io/GeneralCognitics/Courses.html

» Contact Information: subir.varma®@iitgn.ac.in

Book

“Reinforcement Learning: An Introduction” by
Richard Sutton and Andrew Bartow.

2nd Edition: Available online at:
http://incompleteideas.net

Pre-Requisites

Knowledge of
» Introductory Machine Learning
» Basic Probability Theory, Markov Chains

» High school level Calculus (Partial
Differentiation)

Software Knowledge:
» Python Programming
» Keras, PyTorch

What is Reinforcement Learning?

Science of Making Decisions

By Interacting with the Environment

conseguences
observations

rewards

Many Faces of Reinforcement
Learning

Branches of Machine Learning

Detection of
Patterns in
Unstructured Data

Training Using
Labeled Examples

Supervised
Learning

Machine
Learning

Reinforcement
Learning

Training Using Rewards

Characteristics of RL

What makes reinforcement learning different from other machine
learning paradigms?

m [here is no supervisor, only a reward signal
m Feedback is delayed, not instantaneous
m Time really matters (sequential, non i.i.d data)

m Agent’s actions affect the subsequent data it receives

Examples of Reinforcement
Learning

« Playing Video Games such as Atari, Go or Chess

« Training an LLM: Reinforcement Learning based
on Human Feedback (RLHF)

* Optimizing Online Ads

« Making a Robot walk

« Managing an Investment Portfolio

p—

The RL Problem: Agent and
Environment

p—

Agent

5 P S
7 o s . G
/‘:/.:’/ ,_:*‘ |'/‘ 7/ \'__L y ‘\
. e RN W .
observaton Af (3 \. \ s\ [/& action
.""") ’ 2 g)
& : >

A

Agent and Environment

Agent

m At each step t the agent:

m Executes action A;
m Receives observation O;
m Receives scalar reward R;

m [he environment:

m Receives action A;
m Emits observation O;.1
m Emits scalar reward R; 1

m t increments at env. step

Environment
Agent has no control over the

Environment’s response

Atari Example

Agent: Player

State: observalion @ action

Last 4 =
Screens ' g \
- \\J/ 7\ m Rules of the game are

unknown

m Learn directly from
interactive game-play

m Pick actions on
joystick, see pixels
and scores

Environment: Game Software

Examples

Actions: motor current or torque Actions: what to purchase
2 . Observations: camera images Observations: inventory levels
Actions: muscle contractions '
Rewards: task success measure Rewards: profit

Observations: sight, smell

(e.g., running speed)
Rewards: food

Playing Atari with RL

Playing Atari Breakout

https://www.youtube.com/watch?v=V1eYniJOR
nk&vl=en

p—

https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en

The RL Problem: Rewards

p—

Rewards

m A reward R; is a scalar feedback signal
m Indicates how well agent is doing at step t
m [he agent’s job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

Examples of Rewards

m Defeat the world champion at Backgammon
m +/—ve reward for winning/losing a game

m Play many different Atari games better than humans
m +/—ve reward for increasing/decreasing score

m Manage an investment portfolio
m ve reward for each $ in bank

m Control a power station

m +ve reward for producing power
m —ve reward for exceeding safety thresholds

m Make a humanoid robot walk

m +ve reward for forward motion
m —ve reward for falling over

T —

Sequential Decision Making

m Goal: select actions to maximise total future reward
m Actions may have long term consequences
m Reward may be delayed

m |t may be better to sacrifice immediate reward to gain more
long-term reward

m Examples:

m A financial investment (may take months to mature)
m Refuelling a helicopter (might prevent a crash in several hours)

m Blocking opponent moves (might help winning chances many
moves from now)

The RL Problem: State

p—

History and State

m [he history is the sequence of observations, actions, rewards
Hy = O1.R1. A1, ..., A1, O, Ry
m i.e. all observable variables up to time t

m i.e. the sensorimotor stream of a robot or embodied agent

m What happens next depends on the history:

m [he agent selects actions
m The environment selects observations/rewards

m State is the information used to determine what happens next

m Formally, state is a function of the history:

Se = f(H,)

Agent State

agent state S?

m The agent state 57 is the
agent’s internal
representation

m i.e. whatever information
the agent uses to pick the
next action

m i.e. it is the information
used by reinforcement
learning algorithms

m It can be any function of
history:

5¢ = f(Hi)

Environment State

ACAY Y AR m The environment state 57 is

observation 4 5 AN action h . ,)

> LN AL) the environment's private
13 5% 0 (e, .
% A T 2 A, representation

L o m i.e. whatever data the

environment uses to pick the
s’ | A, next observation/reward

m [he environment state is not
usually visible to the agent

m Even if 57 is visible, it may
contain irrelevant
information

An Useful Property: Markov State

An information state (a.k.a. Markov state) contains all useful
information from the history.

A state S; is Markov if and only if

P[St+1 | St] = P[St41 | 51, ..., 5]

m ‘The future is independent of the past given the present”
Hi:t — St = Hii1:00
m Once the state is known, the history may be thrown away

m i.e. The state is a sufficient statistic of the future

m [he environment state 5S¢ is Markov
m The history H; is Markov

L

Fully Observable Environments

AT Full observability: agent directly
_— , o gor K peap observes environment state

0 =353 5

m Agent state = environment
state = information state

m Formally, this is a Markov
decision process (MDP)

m (Next lecture and the
majority of this course)

Partially Observable Environments

m Partial observability: agent indirectly observes environment:

m A robot with camera vision isn't told its absolute location
m A trading agent only observes current prices
m A poker playing agent only observes public cards

m Now agent state # environment state

m Formally this is a partially observable Markov decision process
(POMDP)

m Agent must construct its own state representation S7, e.g.
m Complete history: 57 = H,
m Beliefs of environment state: S? = (P[S¢ = s'],...,P[SE = s"])
m Recurrent neural network: S? = o(SZ2_;Ws + O:W,)

Components of an RL Agent

p—

RL Agent Components

m An RL agent may include one or more of these components:

m Policy: agent’'s behaviour function
m Value function: how good is each state and/or action
m Model: agent’s representation of the environment

Policy

m A policy is the agent’'s behaviour
m It is a map from state to action,

m Deterministic policy: a = 7(s)

m Stochastic policy: 7(als) = P[A; = a|S;: =]

p—

Value Function

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

Ve(S) = Ex [Res1 + YRes2 + VP Resz + . | St = 5]

A Value Function specifies what is good in the long run

It is better to make decisions on the basis of Value Functions
rather than Immediate Rewards

Model

m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

P:s’ — P[5t+1 = | S5t =5, A = a]
Rg :]E[Rt-l-l | St p— S:At — a]

The Agent’s Representation of the Environment

Central Problems of RL

Computation of the Value Function v(s)

Computation of the Policy Function m(s)

Example

Maze Example

Start

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

Goal

Maze Example: Policy

Iy
H_ 0
41— EE

“—

Start

——>

m Arrows represent policy 7(s) for each state s

Maze Example: Value Function

o]

Start
aE

OonD

Maze Example: Model

m Agent may have an internal
model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m [he model may be imperfect

m Grid layout represents transition model PZ,

m Numbers represent immediate reward R2 from each state s
(same for all a)

RL Agent Taxonomy

p—

Categorizing RL Agents

m Value Based

O
m Value Function

m Policy Based

m Policy
O

m Actor Critic

m Policy
m Value Function

Objective: Learn v(s)

Objective: Learn m(s)

Objective: Learn Both
v(s) and m(s)

Categorizing RL Agents (cont)

m Model Free

m Policy and/or Value Function
O

m Model Based

m Policy and/or Value Function
m Model

Take Action and proceed
by Trial and Error

Plan ahead before
taking Action

Model Free RL

The Agent does
not have any
visibility into how
reward | R, the next State and
Reward are being
generated by the
environment

Model based RL

Agent

AT N T

The Agent has a
Model for the
environment

Agent’s World Model

RL Agent Taxonomy

Sub-Problems within RL

p—

Learning and Planning

Two fundamental problems in sequential decision making

m Reinforcement Learning:

m [he environment is initially unknown Model Free

m [he agent interacts with the environment
m [he agent improves its policy

m Planning:

m A model of the environment is known
m The agent performs computations with its model (without any
external interaction)

m The agent improves its policy Model Based

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

Atari Example: Reinforcement
Learning

m Rules of the game are
unknown

m Learn directly from
interactive game-play

m Pick actions on
joystick, see pixels
and scores

Atari Example: Planning

m Rules of the game are known

m Can query emulator
m perfect model inside agent's brain
m If | take action a from state s:

m what would the next state be?
m what would the score be?

m Plan ahead to find optimal policy
m e.g. tree search

Exploration and Exploitation

m Reinforcement learning is like trial-and-error learning
m [he agent should discover a good policy
m From its experiences of the environment

m Without losing too much reward along the way

m Exploration finds more information about the environment
m Exploitation exploits known information to maximise reward

m It is usually important to explore as well as exploit

Examples

m Restaurant Selection

Exploitation Go to your favourite restaurant
Exploration Try a new restaurant

m Online Banner Advertisements

Exploitation Show the most successful advert
Exploration Show a different advert

m Oil Drilling

Exploitation Drill at the best known location
Exploration Drill at a new location

m Game Playing

Exploitation Play the move you believe is best
Exploration Play an experimental move

Prediction and Control

m Prediction: evaluate the future
m Given a policy

m Control: optimise the future
m Find the best policy

p—

Example: Driving to Work
Everyday

» Environment: All the roads between Home
and Work, with random traffic loads

» Action: At each Intersection - Go Straight, Go
Left, Go Right

» Reward: —(Time elapsed)

» State: What we see in Front (+Side and
Backview mirrors)

Example: How to Find the Best
Route to Work

» Algorithm 1: Trial and Error

- Repeat N Times
- Try out a route - i.e. choose a Policy
- Keep track of delays while carrying out Policy

- Choose optimal route based on delays observed
while following the N Routes

» Algorithm 2: Model Based

- Before starting commute, consult Google Maps. Run
some scenarios based on the traffic.

- Choose Route with least traffic.

Deep Reinforcement Learning

p—

Deep Reinforcement Learning

Two Types of Reinforcement Learning Algorithms:
1. Tabular Reinforcement Learning

Q61,A1) Q(S1,A2) Q(S1,A3) Q(51,A9)
SZ Q(S2,A1) Q(S2,A2) Q(S2,A3) Q(S2,A4)
S3 Q(S3,A1) Q(S3,A2) Q(S3,A3) Q(S3,A9)
S4 Q(S4,A1) Q(S4,A2) Q(S4,A3) Q(S4,A4)

This approach does not scale if the number of
states is very large (in the multiple millions)

2. Deep Reinforcement Learning

= Q(5,A))

"""" e (S, A)

fw is represented using
a multilayer Neural Network

Deep RL : Atari Example

Agent: Player

State: observation e eun
Last 4

Screens

action

et arat
) {3 ()

o, A

Agent is implemented
using a Neural Network

Environment: Game Software

Deep Reinforcement Learning

Convolution Convolution Fully connected Fully connected
v v v v
o
"E: Czr]
] €N
==
B8]
®© = o

2R € VIN]E>
+1+0+0+0+0+-0+0+
@] (@] (@] (@] (@] (@] (@) (¢

Deep Models allows RL algorithms to solve Complex Decision Making
Problems End-to-End

State Space
Training Episodes

Neural Network approximates the
Value Function for parts of the State
space outside the sample episodes

Deep Reinforcement Learning

* Deep = can process complex sensory input
= _.and also compute really complex functions

* Reinforcement learning = can choose complex actions

4

Deep Reinforcement Learning: Can Solve Complex
Decision Making Problems with Complex Sensory Input

Recent Successes of Deep RL

Atari games: Real-world robots: Beating Go champions:
Q-learning: Guided policy search: Supervised learning + policy
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. S.Levine®, C. Finn*, T. Darrell, P. Abbeel. “End-to-end gradients + value functions +
I l. “Playi i with ini i icies”. 1

An-tonog ou,eta !aylgg Atari with Deep training of deep visuomotor policies”. (2015) T e [e e e 1
Reinforcement Learning”. (2013). Q-learning: ¥ A

5 g : D. Silver, A. Huang, C. J. Maddison, A. Guez,
Policy gradients: S. Gu*, E. Holly*, T. Lillicrap, S. Levine. “Deep L. Sifre, et al. “Mastering the game of Go
J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Reinforcement Learning for Robotic Manipulation with deep neural networks and tree
Abbeel. “Trust Region Policy Optimization”. (2015). with Asynchronous Off-Policy Updates”. (2016). search”. Nature (2016).

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
et al. “Asynchronous methods for deep reinforcement
learning”. (2016).

Lecture Schedule

» Lecture 1 - Introduction to Reinforcement Learning: Introduction to Reinforcement Learning and
discussion of important applications, An historical overview of the development of this topic.

» Lecture 2 - Markov Decision Processes: Markov Processes, Markov Reward Process, Value Function,
Markov Decision Processes, Policies, Bellman Expectation Equation, Optimal Value Function, Optimal
Policies, Bellman Optimality Equation.

» Lecture 3 - Planning by Dynamic Programming: Estimating the Value Function of a known MDP by
Dynamic Programming, Policy Evaluation, Policy Iteration, Value Iteration.

» Lecture 4 - Model Free Prediction: Estimating the Value Function of an unknown MDP, Monte Carlo
(MC) based Policy Evaluation, Temporal Difference (TD) Learning, Comparison of MC and TD Methods.

» Lecture 5 - Model Free Control: Optimizing the Value Function of an Unknown MDP, Epsilon Greedy
Policies, On Policy Monte Carlo Control, On Policy Temporal Difference Control, SARSA Control, Off
Policy Learning, Q-Learning.

» Lecture 6 - Overview of Deep Learning Neural Networks: Supervised Learning, Function
Approximations using Deep Learning, Training Algorithms, Convolutional and Recurrent Neural
Networks

» Lecture 7 - Value Function Approximation using Deep Learning: Large Scale Reinforcement Learning,
Types of Value Function Approximations (VFA), VFA using Deep Learning Networks, Monte Carlo based
VFA, Temporal Difference based VFA, Deep O Networks (DQN), Advanced DQN Algorithms.

» Lectures 8 - Policy Gradient Methods: Policy based Reinforcement Learning, Policy Optimization,
Policy Gradient, Monte Carlo based Policy Gradient (REINFORCE), Actor-Critic Algorithms.

» Lectures 9 - Integrating Learning and Planning: Model based Reinforcement Learning, Learning
Models from experience, Planning with a Model, Integrated Learning and Planning, Dyna-Q Algorithm,
Monte Carlo Tree Search (MCTS) Algorithm, AlphaGo Zero Algorithm

Lectures 10 - RLHF: Reinforcement Learning based on Human Feedback, Large Language Models,
Models, Proximal Policy Optimization (PPO) Algorithm

Further Reading

Sutton and Barto:
- Chapter 1
- Chapter 3: Sections 3.1 - 3.4

