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Abstract

Making language models bigger does not inherently make them better at following
a user's intent. For le, large models can g outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAl API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show impi in truthful and reducti

in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a p ising direction for aligning
language models with human intent.

1 Introduction

Large language models (LMs) can be “prompted” to perform a range of natural language process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021: Bommasani et al., 2021; Kenton ct al., 2021; Weidinger ct al.,
2021; Tamkin et al., 2021; Gehman et al., 2020). This is because the language modeling objective

*Primary authors. This was a joint project of the OpenAl Alignment team. RL and JL are the team leads.
Corresponding author: love@openai.con.
"Work done while at OpenAl Current affili AA: Antk PC: Al Research Center.
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Inference: Text Completion

Completion Text

e, S

/ s o \
al””: the” |
P
Sample from Softmax (ol ) : (ol ) :
| .
linear layer X T 7 | X 1 y |
' :
Transformer : i
Blocks : :
: |
Input i :
Embeddings | !
| |
| |
So long and thanks for i al i _the
|/1 |.//7
N— /-
—_—
Prefix Text

« Sentences are generated one word at a time by sampling from the
output probability distribution

« Its thought that LLMs create some sort of model of the world from

the training data, which they use during prediction




Problems with LLMs (Pre Chat GPT)

» Mis-alignment between LLM generated text and generating
high—-quality text as determined by humans

» Reason for mis-alignment: LLM objective which is to predict
the next word is different from the objective “follow the users
instructions helpfully and safely”

» Another reason: The Cross Entropy Loss function does not
differentiate between important errors (like making up facts)
and un-important errors (selecting a precise word from a set
of synonyms)




RLHF Objective

» Solution using RLHF: Fine tune models from Human Feedback
using Reward Learning

» Make the LLM act according to the user’s intention, both
explicit instructions such as following instructions and
implicit instructions such as such as staying truthful, and not
being biased, toxic or otherwise harmful.
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Step 0: Choose an LM

As a starting point RLHF use a language model that has already been
pretrained with the classical pretraining objectives (see this blog
post for more details).

» OpenAl used a smaller version of GPT-3 for its first popular RLHF
model, [nstructGPT.

» Anthropic used transformer models from 10 million to 52 billion
parameters trained for this task.

» DeepMind used their 280 billion parameter model Gopher.

https://huggingface.co/blog/rlhf



https://huggingface.co/blog/how-to-train
https://huggingface.co/blog/how-to-train
https://openai.com/blog/instruction-following/
https://arxiv.org/abs/2112.11446
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Step 1: Fine Tuning

Train Language Model
Prompts & Text Dataset

Initial Language Model
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Human Augmented
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» This initial model can be fine-tuned on additional human generated
text.

» This is done using Supervised Learning (with Cross Entropy Loss
Function)




RLHF

» RLHF uses methods from Reinforcement Learning to directly
optimize a language model with human feedback.

» RLHF has enabled language models to begin to align a model
trained on a general corpus of text data to that of complex
human values.

Can you explain to me how RL with human feedback works for language models like | am
five?

Sure! So, imagine you have a robot named Rufus who wants to learn how to talk like a

human. Rufus has a language model that helps him understand words and sentences.

First, Rufus will say something using his language model. For example, he might say "l am

ChatGPTs explanation arobot."
For RLHF!

Then, a human will listen to what Rufus said and give him feedback on whether it sounded
like a natural sentence a human would say. The human might say, "That's not quite right,
Rufus. Humans don't usually say 'l am a robot.' They might say 'I'm a robot' or 'l am a
machine.""

Rufus will take this feedback and use it to update his language model. He will try to say
the sentence again, using the new information he received from the human. This time, he

might say "I'm a robot."

The human will listen again and give Rufus more feedback. This process will continue until

Rufus can say sentences that sound natural to a human.

Over time, Rufus will learn how to talk like a human thanks to the feedback he receives
from humans. This is how language models can be improved using RL with human
feedback.



Basic Idea behind RLHF Algorithm: Use Policy
Gradients on Generated Text

Use Human Preferences
as a reward signal to
fine tune the model
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« Treat the LLM as a Policy Function w(S) with words as Actions

« An episode corresponds to the text being generated by the LLM

« State S corresponds to the (incomplete) text that has been
generated so far

« Action A correspond to the choice of the next word to be added

« Reward R is for the entire text at the end of the episode <

« After each episode, modify the Policy (i.e. the LLM) so that in the

next iteration it generates text with a higher reward

Where did the reward come from?




RLHF Steps

» Step 1: Collect samples from existing policies and send comparisons

to humans: For each Reddit post, sample summaries from several sources
including the current policy, initial policy, original reference summaries and
various baselines. Send a batch of pairs of summaries to human evaluators,
who are tasked with selecting the best summary of a given Reddit post.

» Step 2: Learn a reward model from human comparisons: Given a post
and a candidate summary, train a reward model to predict the log odds that
this summary is the better one, as judged by human labelers.

» Step 3: Optimize a policy against the reward model: Treat the logit
output of the reward model as a reward that is used to optimize using
Reinforcement Learning, specifically with the PPO algorithm.




RLHF Steps

© Collect human feedback © Train reward model © Train policy with PPO
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Collect Human Feedback

© Collect human feedback Objective: Summarize a piece of text
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Collect Human Feedback (cont)
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Step 2: Train Reward Model

© Train reward model
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Step 2: Reward Model Training

The underlying goal is to get a model or system that takes in a
sequence of text, and returns a scalar reward which should numerically
represent the human preference. The system can be an end-to-end LM,
or a modular system outputting a reward (e.g. a model ranks outputs,
and the ranking is converted to reward). The output being

a scalar reward is crucial for existing RL algorithms being integrated
seamlessly later in the RLHF process.

These LMs for reward modeling can be both another fine-tuned LM or
a LM trained from scratch on the preference data. For example,
Anthropic uses a specialized method to train these models from scratch
because they found it be more sample efficient than fine-tuning, but no
one variation of reward modeling is considered the clear best choice
today.




Step 3: Train Policy (LLM) with
PPO

© Train policy with PPO
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RLHF Benefits

» The cost of increasing model alignment is modest relative to pretraining. The
cost of collecting data and the compute for training runs, including
experimental runs is a fraction of what was spent to train GPT-3

» OpenAl has seen some evidence that InstructGPT generalizes ‘following
instructions’ to settings that it is not supervised in, for example on non-
English language tasks and code-related tasks. This is an important property
because it’s prohibitively expensive to have humans supervise models on
every task they perform.

» RLHF able to mitigate most of the performance degradations introduced by
our fine-tuning. If this was not the case, these performance degradations
would constitute an alignment tax—an additional cost for aligning the model.




PPO

Proximal Policy Optimization

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propase a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to imp} more g 1, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

1 Introduction

In recent years, several different approaches have been proposed for reinforcement learning with
neural network function approximators. The leading contenders are deep Q-learning [Mni+15],
“vanilla" policy gradient methods [Mni416], and trust region / natural policy gradient methods
[Sch+415b]. However, there is room for improvement in developing a method that is scalable (to
large models and parallel implementations), data efficient, and robust (i.e., successful on a variety
of problems without hyperparameter tuning). Q-learning (with function approximation) fails on
many simple problems' and is poorly understood, vanilla policy gradient methods have poor data
effiency and robustness; and trust region policy optimization (TRPO) is relatively complicated,
and is not compatible with architectures that include noise (such as dropout) or parameter sharing
(between the policy and value function, or with auxiliary tasks).

This paper seeks to improve the current state of affairs by introducing an algorithm that attains
the data efficiency and reliable performance of TRPO, while using only first-order optimization.
We propose a novel objective with clipped probability ratios, which forms a pessimistic estimate
(i.e., lower bound) of the performance of the policy. To optimize policies, we alternate between
sampling data from the policy and performing several epochs of optimization on the sampled data.

Our experiments compare the performance of various different versions of the surrogate objec-
tive, and find that the version with the clipped probability ratios performs best. We also compare
PPO to several previous algorithms from the literature. On continuous control tasks, it performs
better than the algorithms we compare against. On Atari, it performs significantly better (in terms
of sample complexity) than A2C and similarly to ACER though it is much simpler.

"While DQN works well on game environments like the Arcade Learning Environment [Bel+15] with discrete
action spaces, it has not been demonstrated to perform well on continuous control benchmarks such as those in
OpenAl Gym [Bro+16] and described by Duan et al. [Dua+16].

W -



The idea with Proximal Policy Optimization (PPO) is that we want to improve the training stability

of the policy by limiting the change you make to the policy at each training epoch: we want to

avoid having too large policy updates.

For two reasons:

»  We know empirically that smaller policy updates during training are more likely to converge

to an optimal solution.

» Atoo big step in a policy update can result in falling “off the cliff” (getting a bad policy) and

having a long time or even no possibility to recover.

Problem: Disconnect between the changes in
Policy Function weight values and the resulting
change in the actual policy




Online Actor Critic
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PPO

Key Equations
PPO-clip updates policies via

Or+1 = argmax E [L(s,a,00)],

f 8,a~Tg,

typically taking multiple steps of (usually minibatch) SGD to maximize the objective. Here [, is
given by

. me(als) : (Wo(aIS) ) )
L(s,a,0r,0) = min | ———=A"(s,a), clip| ——=,1—¢,1+¢€) A™(s,a) |,
5.0.0,0) = min (ZEES A 0.t (F2E (%)

in which ¢ is a (small) hyperparameter which roughly says how far away the new policy is
allowed to go from the old.




PPO

An equivalent equation for the Loss Function

L(S:a: 91(9) = min (Wa(a.lS) AT (S,a.), g(e, A" (Sra))) ’

76y (a.|s)

where

(I +€eA A>0
g(G’A)_{(l—e)A A<




The Case A > 0

Advantage is positive: Suppose the advantage for that state-action pair is positive, in which case
its contribution to the objective reduces to

. [ mlals)
L(s,a,0;,0) = ——~ (1+¢€) ) A™(s,a).
(s,a,b,0) mm(m&(als),( +€)) (s,a)

Because the advantage is positive, the objective will increase if the action becomes more likely—
that is, if p(a|s) increases. But the min in this term puts a limit to how much the objective can
increase. Once myp(a|s) > (1 + €)my, (a|s), the min kicks in and this term hits a ceiling of

(1 + e)A""k- (s, a.). Thus: the new policy does not benefit by going far away from the old policy.

Al‘(',‘l)'n .‘1 > ()

; We maximize L by maximizing
1 the min, i.e., by making my larger.
However when my becomes larger

than (1 + e)my,, then the maximization
stops




The Case A < 0

Advantage is negative: Suppose the advantage for that state-action pair is negative, in which
case its contribution to the objective reduces to

L(s, a, 0k, ) = max (M (1- e)) A" (s, a).

7‘—0k(a|3)’

Because the advantage is negative, the objective will increase if the action becomes less likely—
that is, if 7rp(a|s) decreases. But the max in this term puts a limit to how much the objective can
increase. Once 7y(a|s) < (1 — €)my, (a|s), the max kicks in and this term hits a ceiling of

(1 — €)A™% (s, a). Thus, again: the new policy does not benefit by going far away from the old
policy.

? 1l —€11+e
p—t—p » T

We maximize L by minimizing

4 ) the max, i.e., by making my smaller.
However when m, becomes smaller
than (1 + e)my,, then the minimization
stops




PPO Algorithm

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6, initial value function parameters ¢y
2: for k=0,1,2,... do

3:

b

ot

Collect set of trajectories Dy = {7;} by running policy 7 = 7(6x) in the environment.
Compute rewards-to-go R,.

Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V, .

Update the policy by maximizing the PPO-Clip objective:

1 . mo(az|st)
Orrq = E E AN Ay LI A0 (s, ’
k1 argmgxx DAT A mm( Bk(at|3t)A k(s ae), g(e, k(8y,a4))

typically via stochastic gradient ascent with Adam.
Fit value function by regression on mean-squared error:

T
¢k+l = arg IIlq)iIl |'D1|T TZ Z (Vé(st) - Rt)2 )

typically via some gradient descent algorithm.

8: end for




