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} RLHF: Reinforcement Learning based on 
Human Feedback

} PPO: Proximal Policy Optimization





• Trained to predict the next word in a sentence using the Cross
entropy Loss function

• Massive amount of text used for Training
• Some LLMs have hundreds of billions of parameters



• Sentences are generated one word at a time by sampling from the
output probability distribution

• Its thought that LLMs create some sort of model of the world from
the training data, which they use during prediction



} Mis-alignment between LLM generated text and generating 
high-quality text as determined by humans

} Reason for mis-alignment: LLM objective which is to predict 
the next word is different from the objective “follow the users 
instructions helpfully and safely”

} Another reason: The Cross Entropy Loss function does not 
differentiate between important errors (like making up facts) 
and un-important errors (selecting a precise word from a set 
of synonyms)



} Solution using RLHF: Fine tune models from Human Feedback 
using Reward Learning

} Make the LLM act according to the user’s intention, both 
explicit instructions such as following instructions and 
implicit instructions such as such as staying truthful, and not 
being biased, toxic or otherwise harmful.

Make the LLM
- Helpful: Help the user
- Honest: No hallucinations
- Harmless: Don’t cause harm



As a starting point RLHF use a language model that has already been 
pretrained with the classical pretraining objectives (see this blog 
post for more details). 
} OpenAI used a smaller version of GPT-3 for its first popular RLHF 

model, InstructGPT. 
} Anthropic used transformer models from 10 million to 52 billion 

parameters trained for this task. 
} DeepMind used their 280 billion parameter model Gopher.

https://huggingface.co/blog/rlhf

https://huggingface.co/blog/how-to-train
https://huggingface.co/blog/how-to-train
https://openai.com/blog/instruction-following/
https://arxiv.org/abs/2112.11446


SFT: Supervised 
Fine Tuning

RLHF



} This initial model can be fine-tuned on additional human generated 
text. 

} This is done using Supervised Learning (with Cross Entropy Loss 
Function)



} RLHF uses methods from Reinforcement Learning to directly 
optimize a language model with human feedback. 

} RLHF has enabled language models to begin to align a model 
trained on a general corpus of text data to that of complex 
human values.

ChatGPTs explanation
For RLHF!



• Treat the LLM as a Policy Function 𝜋(𝑆) with words as Actions
• An episode corresponds to the text being generated by the LLM
• State S corresponds to the (incomplete) text that has been 

generated so far
• Action A correspond to the choice of the next word to be added
• Reward R is for the entire text at the end of the episode
• After each episode, modify the Policy (i.e. the LLM) so that in the

next iteration it generates text with a higher reward

Where did the reward come from?

Use Human Preferences
as a reward signal to
fine tune the model



} Step 1: Collect samples from existing policies and send comparisons 
to humans: For each Reddit post, sample summaries from several sources 
including the current policy, initial policy, original reference summaries and 
various baselines. Send a batch of pairs of summaries to human evaluators, 
who are tasked with selecting the best summary of a given Reddit post.

} Step 2: Learn a reward model from human comparisons: Given a post 
and a candidate summary, train a reward model to predict the log odds that 
this summary is the better one, as judged by human labelers.

} Step 3: Optimize a policy against the reward model: Treat the logit 
output of the reward model as a reward that is used to optimize using 
Reinforcement Learning, specifically with the PPO algorithm.





Collect Summaries: These are sampled from
the LLM, by varying the temperature etc

Objective: Summarize a piece of text



Score the summaries
from 1 to 7

This information is 
used to rank pairs
of summaries.
A>B>C>D results in
6 ranked pairs
A>B, A>C, A>D
B>C, B>D
C>D

The Reward Model
only uses the

relative ranking
between any two

summaries



(𝑟! − 𝑟")

𝜎(𝑟! − 𝑟") When 𝑟! > 𝑟" then
Loss is higher

Hence the Reward
model is Trained
to predict higher
reward for 𝑟!

Objective: Maximize Loss

For ChatGPT the
Reward model was

an LLM with 6B 
parameters



The underlying goal is to get a model or system that takes in a 
sequence of text, and returns a scalar reward which should numerically 
represent the human preference. The system can be an end-to-end LM, 
or a modular system outputting a reward (e.g. a model ranks outputs, 
and the ranking is converted to reward). The output being 
a scalar reward is crucial for existing RL algorithms being integrated 
seamlessly later in the RLHF process.

These LMs for reward modeling can be both another fine-tuned LM or 
a LM trained from scratch on the preference data. For example, 
Anthropic uses a specialized method to train these models from scratch 
because they found it be more sample efficient than fine-tuning, but no 
one variation of reward modeling is considered the clear best choice 
today.



This term ensures that the RL model predicted
probabilities are not too different from those 

predicted by the SFT model

SFT: Supervised Fine Tuning



} The cost of increasing model alignment is modest relative to pretraining. The 
cost of collecting data and the compute for training runs, including 
experimental runs is a fraction of what was spent to train GPT-3

} OpenAI has seen some evidence that InstructGPT generalizes ‘following 
instructions’ to settings that it is not supervised in, for example on non-
English language tasks and code-related tasks. This is an important property 
because it’s prohibitively expensive to have humans supervise models on 
every task they perform.

} RLHF able to mitigate most of the performance degradations introduced by 
our fine-tuning. If this was not the case, these performance degradations 
would constitute an alignment tax—an additional cost for aligning the model.





Problem: Disconnect between the changes in
Policy Function weight values and the resulting
change in the actual policy



s 𝑣! 𝑆,𝑊′
Critic

S

Actor 𝜋 𝑎&, 𝑆,𝑊

𝜋 𝑎', 𝑆,𝑊

In state S
Run Actor to Generate next Action A 

Take a step in the environment
to generate reward R and next state S’ 

Use (S,A,R,S’) to update the Critic’s 
Neural Network parameters.

Use 𝑉! 𝑆,𝑊" 	to update the Actor’s
neural Network Parameters

Set S’  S

𝒕𝒂𝒓𝒈𝒆𝒕 = 𝑹 + 𝑽𝝅(𝑺",𝑾")

𝑨𝝅 𝑺, 𝒂 = 𝑹 + 𝑽𝝅 𝑺",𝑾′ − 𝑽𝝅(𝑺,𝑾")

J(W) = 𝐥𝐨𝐠𝝅𝒘 𝑺, 𝒂 	𝑨𝝅(𝑺,𝑾")





An equivalent equation for the Loss Function



We maximize L by maximizing
the min, i.e., by making 𝜋# larger.
However when 𝜋# becomes larger
than  (1 + 𝜖)𝜋#!, then the maximization 
stops



We maximize L by minimizing
the max, i.e., by making 𝜋# smaller.
However when 𝜋# becomes smaller
than (1 + 𝜖)𝜋#!, then the minimization 
stops




