Training Process
Improvements: Part 3

Lecture 9
Subir Varma

Overfitting and Underfitting

If the model never enters the
s Overfitting Zone, then that
also is a problem

Error

Overfitting zone

Validation

generalization

erroL_g_,.—_-./r — = = Training
generalization:gap

training

error i .
* optimal Capacity
capacity .

Model hasn’t modeled all

the relevant patterns in Model is learning patterns that

the Training Data are specific to the Training Data
but irrelevant to the Test Data

Detecting Overfitting

Training and validation loss

4 @ Training loss
- \/alidation loss

Overfitting

20 40 60 80 100
Epochs

Fashion Dataset using a
Dense Feed Forward Network

Training and validation accuracy

® Training acc
el | S Validation acc
0.950
09251 Overfitting
g 0.900 - d
- 0.875 1
0.850 -
0.825
0.800 -
@

0 20 40 60 80 100
Epochs

Improvement in Validation Accuracy

Single Hidden Layer with 512 nodes Stops wWhen overfitting starts.

Hence it is better to push out this
threshold further out.

Ways to improve Model
Generalization

» Add Regularization to the model
» Increase the amount of Training Data
» Decease Model Capacity

Data Pre-Processing

p—

Data Preprocessing =t mm=ton

original data zero-centered data normalized data

»

X
d s
) . i
= ~__’
! -t
-0 9 105 T 3 0 M = G i)
Subtract the Divide by Variance
Mean
P, M oxs)
25:1 x,-(S) xi(m) - ‘l\rl
xi(m) < x;(m) — xi(m) <
M O;
output layer '
input layer

hidden layer

X —= X.mean(axis=0)

oL _ o X /= x.std(axis=0)
ow
o~ Speeds up
Convergence Balances out the rates
Of SGD at which weights learn

How Does Data Normalization
Help?

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

o
)
® o\A
-

Image Pre-Processing

Consider CIFAR-10 images with [3, 32, 32] pixels per image

Subtract the Mean Image: Mean Image forms a [3,32,32] Tensor

For CH =R, G, B,

Yo X" ©
M

CH CH
X, (m) < x;7 (m) —

SLJESN,1<m<M

»

XN

Image N Mean
Image

Image Pre-Processing

Consider CIFAR-10 images with [3, 32, 32] pixels per image

Subtract the Per-Channel Mean: 3 Numbers

M N N
Zs:l Z::l Z;&:l xgll(s)

CH CH
x;; (m) < x;77 (m) — M

, 1<LjSN,1<m<M

» (MReda MGreen;MBIue)

XN

Image 1 Image N

Batch Normalization

p—

Batch Normalization

Problem: The Activations in the interior of the
network may become unbalanced as the training
progresses

Solution: Instead of Normalizing just the input, why
not normalize the per-layer activations in as well.

output layer
input layer
hidden layer

Z

X

Batch Normalization

Problem: Unlike the input, the activations change as
the training progresses

Solution: Do the normalization in batches, such that
during each batch, the weights remain fixed

a:ZWiZi a Z

Normalize Scale Activation | —»

A 4

|

A

a—Up

Ne)

_ S=1(a(s) — pup))? _ Ye-1a(s)
= B Hp = B

Backprop Gradient Calculations
with Batch Normalization

A C 2
a=2wizi a4 — g a ﬂ
»ld = » C = a+ » = —
+ a o 14 Z f(C)

(y,B) learnt using Backprop

New Variance New Mean

Activations no longer a function of a single training sample!

Backprop Gradient Calculations
with Batch Normalization

a=zWiZ a’ Z
> a = L » C=vya+ > —
+ (65 +¢) c=yat+p z=f(c) |—
oL 0L
da 0a oL L
/ %\ 0z
0L 0L
2 Yiri(a(s) — pup))? _ ds=qa(s) dy ap
% = m B m
e n_ 0c
B <P Uﬁ
0L

Batch Normalization: Forward Pass

1. Take a batch of size s, run it J
through the system, and compute
the following: FlC
1
#s=;”§=;a('") BlN
o} =% > (alm)- 1, RelU
2. Normalize all the pre-activations

using FC

() = a(m)—u, |
;;O’:'FC BN

c(m)=ya(m)+B :
This is done on a layer by layer basis RelU

so that the normalized output |

from layer r is fed into layer (r+1),
ich is then normalized.

Batch Normalization: Backward
Pass

3. Run backprop through each of the samples in the batch,
using the normalized activations. In addition to the
weights, also calculate the gradients for the batch
normalization parameters (y.8) for each node.

4. Average the gradients across the batch, and use it to
calculate the new weights and batch normalization
parameters.

5. Go back to step 1, and process the next batch.

During Testing:
The pre-activations are normalized using ALL the test data,
rather than just the batch

Benefits of Batch Normalization

» Enables higher Learning Rates: Higher rates speed up
convergence but can also lead to problems such as non-
convergence of the SGD algorithm

» Enables better gradient propagation through the network:
Leads to effective training of larger networks

» Helps to reduce strong dependencies on the parameter
initialization scheme

» Helps to regularize the model

Hyper-Parameter Optimization

p—

Hyper-Parameters

The following parameters have to be chosen:

» The number of Hidden Layers and the Number of Nodes per
Hidden layer

» The Learning Rate Parameter n
» The Regularization Parameter A
» The mini-batch size B

» The Dropout Rate p

How to find best value?

¥

All these parameters influence Model Capacity

Model Capacity = Data Complexity

Manual Tuning

The following strategy can be used to do Manual Tuning, for all
parameters other than the Learning rate:

Monitor both the training and validation Loss to
figure out if the model is overfitting or underfitting

High Training Low Training Loss, but
Loss. Valid Loss big gap with Validation
plateaus Error
Change hyper-parameters to Change hyper-parameters to
increase Model Capacity reduce Model Capacity

The primary goal of the manual tuning is to try to match the
effective capacity of the model with the complexity of the data

Effect of Parameter Values on
Model Capacity

Number of Hidden Layers An increase causes the
Nodes per Hidden Layer ¥ | Model Capacity to increase
Regularization Parameter An increase causes the

A ¥ | Model Capacity to decrease

An increase causes the

Dropout Parameter p == | Model Capacity to increase

Learning Rate
n

Tuning the Learning Rate

loss

low learning rate

high learning rate

good learning rate

epoch

For Learning Rate and Regularization
Parameter, the search is done in the

logarithmic space

Example: 10A(-6) to 10A(-2) translates to

loss

0.9
0.8 4
0.7 4
0.6 4
0.5
0.4 -4
0.3 4
0.2 1
0.1+

(-6,-2)

10~ 1074 1073 1072 107! 10°
learning rate (log scale)

Automated Tuning

“brute-force” search in the hyper-parameter
space

—

Grid Search: This is an exhaustive search Random Search: Instead of doing an
in the parameter space in which all exhaustive evaluation all possible
possible combinations are tested hyper-parameter values,

choose a few random points

Grid Search vs Random Search

Grid Lavout Random Lavout

: 5] ‘,."“ ‘

| s g |l e o |
|| : £ ' ; ol -
| S | o §
| | ‘ 3
| o o o |5 [| o ° |E
| g £ ole |
\ - \ -
| H II .

Important Parameter

Important Parameter \

Works much better!

Model Ensembles

p—

Averaging

Logit Layer

Training
S e Model 1 —»

Average

Training — > — - »
Data —> Model 2 @

Training

Data | == Model 3 —>

Models are Different
Because they are
initialized differently

Training

Majority Vote

Training _ | Model 1 e | == | Model 1 | —p prediction 1
D Test s
Training | Model 2 b | = | Model 2 | _ prediction 2
o Test Model 3 ieti
raining _y Model 3 Data Prediction 3
Final

Models are Different
Because they are
initialized differently Majority Vote

Prediction

Training Testing

When do Ensembles Work?

» A necessary and sufficient condition for an ensemble of classifiers to be
more accurate than an?/ of its individual members is if the classifiers are
accurate and un-correlated
> Accurate: An accurate classifier is one that has an error rate of better than random guessing

> Un-Correlated: Two classifiers are un-corelated if they make different errors on new data
points

> 012 |]
§ 01
é 008 b
ol —‘ . Biased Coin
004 |] P(E) = 0.3, P(C) = 0.7
002 } H H_l*] If the coin is tossed 3
= . o e : times, what is the prob
0 5 10 15 20 . y
Number of clasifiers i error of getting 2 or more E’s?

Example: 3 classifiers, P(error) = 0.3. Using majority voting, if classification is done 21
Times, then the probability that 11 or more results will be in error is 0.026

CCC, CCE, CEC, ECC = Ensemble Prediction Correct
EEE, EEC, ECE, CEE - Ensemble Prediction Error

Why do Ensembles Work?

Random Initializations result in SGD based optimizations that

end up in different minima - Averaging smoothens out the
final result

From “Ensemble Methods in Machine Learning” by
Thomas Dietterich

A Training Example

p—

Universal Workflow for ML/DL
Problems

» Define the Problem:

- What is the input data? What are you trying to predict?
- What type of problem are you solving?
Binary Classification, Multiclass Classification,

Multiclass/Multi-object Classification, Scalar Regression,
Vector Regression

» Assumptions at this stage:

> Qutputs can be predicted given the inputs

- Available data is sufficiently informative to learn the
relationship between inputs and outputs

Collect the Data Set

How many Training Examples Needed?

» Not enough data = Overfitting

» In general: More parameters in the model (i.e., Bigger the
Model) > Larger the number of training examples needed

» For image processing problems: About 1000 samples per
category usually work.

» Annotate the Data
> Manually
> Use a crowd sourcing platform such as Mechanical Turk
> Use the services of a data-labeling company

Visualize the Data Set

Understand the Data

- Look at a few samples of the data and their labels

- If the data is a Table, plot a histogram of features, look at
range and the frequencies

- For classification compute the number of samples from each
class

Common Pitfalls

Common Cause of Model Failure: Non Stationary Problems!
The Mapping between the Input and Output changes
with time

Number of samples in each category should be close in number

« Both the Training Set and the Test Set should be representative
of the data

« |If the data samples are ordered by class, then make sure to
randomly shuffle the data before splitting it into training and test

« If you are trying to predict the future given the past, don’t
randomly shuffle the data

« |If data samples repeat, then make sure that the training and
validation/test sets are disjoint

Target
Leaking!

Prepare the Data

original data zero-centered data normalized data

R

. ——

19 R

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0) |

Pre-process the data so that it can be fed into the model,
usually Domain Specific

- Convert into tensors

- Normalize: Zero center and/or scale

— For NLP Data: Convert into vectors

Choose the Model

(a) Linear Model (b) Deep Feed Forward Network
» “ — ;] 7|] - (e) Transformers
(c) Convolutional Neural Network (d) Recurrent Neural Network

If the input data is such that the various classes are approximately linearly separated

then a linear model will work

Deep Learning Networks are needed for more complex datasets with non-linear boundaries
between classes. If the input data has a 1-D structure, then a Dense Feed Forward Network will suffi
If the input data has a 2-D structure (such as black and white images), or a 3-D structure

(such color images), then a Convolutional Neural Network or ConvNet is called for. ConvNets excel
at object detection and recognition in images

If the input data forms a sequence with dependencies between the elements of the sequence,

then a Recurrent Neural Network or a Transformer is required.

Typical examples of this kind of data include:

Speech waveforms, natural language sentences, stock prices etc.

RNNs/Transformers are ideal for tasks such as speech recognition, machine translation, captioning

Model (cont)

Choose Last Layer Activation: Sigmoid, Softmax, tanh, None
Choose Loss Function:
Binary Classification - Binary Crossentropy,

Multiclass, Single Label Classification = Categorical Crossentropy
Multiclass, Multi Label Classification = Binary Crossentropy
Regression > MSE

Choose Optimizers: rmsprop, Adam

Train the Model

loss

low learning rate

high learning rate

good learning rate

Random Lavout

Important Parameter \

+ Original model + +
® Dropout-regularized model +
07 1 .
+
A 06 -
2 +
5 + ®e
= +
gosy oo
P + ®
+ +
0.4 - +, ee
Y [J
+ + P
+ o
03 + ’ ‘ e ® ®
25 50 75 100 125 150 175 200
Epochs

i

Unimportant Parameter

Choose Learning
Rate: The most
important hyper
parameter

(keep regularization
low while doing this)

Choose other
hyper-parameters by
checking for overfit/
underfit - change model
capacity to improve
generalization

Deploy the Model

» Models are typically deployed as part of Web Servers, Mobile
Apps, Web Pages, Embedded Devices etc

- Keras and Tensorflow have support for deploying models in these
environments - Example: TensorFlow.js is a JavaScript library that
implements most of the Keras API, TensorFLow Lite for embedded devices

» Monitor performance after deployment
» Collect data for next generation model: Some models need to
be updated frequently

- Data changes over time: Example Credit Card fraud detection
model, has to be updated every few days

Expanding the Dataset Artificially

p—

Data Augmentation

Model Overfitting can be caused due to
insufficient Training Data

Symptom: Model Overfits even after application
of Regularization

Artificially Expanding Training
Data (For Images)

Main lIdea: Expand the training data by
applying operations that reflect real world

variation, such that
The Training Label does not change.

Data Augmentation
Horizontal Flips

Data Augmentation

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation

Color Jitter

Simple: Randomize
contrast and brightness

Data Augmentation

Random mix/combinations of :
- translation

- rotation

- stretching

- shearing,

- |lens distortions, ...

Is Data Augmentation also a type of Regularization?

Data Augmentation Using Keras

datagen = ImageDataGenerator(
rotation_range=40,
width_shift range=0.2,
height_shift range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal flip=True,
fill mode='nearest')

These are just a few of the options available (for more, see the Keras documentation). Let's quickly go over what we just wrote:

» rotation_range is a value in degrees (0-180), a range within which to randomly rotate pictures.

« width_shift and height_shift areranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally.
« shear range is for randomly applying shearing transformations.

« zoom_range is for randomly zooming inside pictures.

« horizontal flip is for randomly flipping half of the images horizontally -- relevant when there are no assumptions of horizontal asymmetry (e.qg. real-
world pictures).

£i11 mode is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.

Loss

Loss Functions

With and Without Data Augmentation

2.0 1

15 1

10 1

0.5 1

Training and validation loss

® Training loss
- Validation loss

0 20 40 60 80 100

0.72 |

0.70 |

0.66 -

0.64 -

Training and validation loss

® ® Training loss

- \falidation loss

0 20 40 60 80 100

Accuracy
With and Without Data Augmentation

Training and validation accuracy Training and validation accuracy
s} 'ﬁqnmgau 0,62 - ® Training acc)
0.9 1 —— Validation acc) — Validation acc

0.8 1 f
0.58 1
~ 4
0.7 1 g 0.56 1

0.6 1 o

Loss

051 o 0501 o

0 20 40 60 80 100 0 20 0 &0 80 100
Epochs Epochs

Further Reading

» C
» C
» C

Nd
Nd

N0

oter: GradientDescentTechniques
oter: HyperParameterSelection

let Chapter 6

