
Lecture 9
Subir Varma

Model is learning patterns that
are specific to the Training Data
but irrelevant to the Test Data

Model hasn’t modeled all
the relevant patterns in
the Training Data

If the model never enters the
Overfitting Zone, then that

also is a problem

Validation

Training

Fashion Dataset using a
Dense Feed Forward Network

Single Hidden Layer with 512 nodes

Overfitting

Overfitting

Improvement in Validation Accuracy
stops when overfitting starts.
Hence it is better to push out this
threshold further out.

} Add Regularization to the model
} Increase the amount of Training Data
} Decease Model Capacity

Balances out the rates
at which weights learn

Speeds up
Convergence
Of SGD

x -= x.mean(axis=0) x /= x.std(axis=0)𝜕ℒ
𝜕𝑤

= 𝑥𝛿

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

Image 1 Image N Mean
Image

x1 xN

𝑥# +⋯+ 𝑥$
𝑁

Consider CIFAR-10 images with [3, 32, 32] pixels per image

Subtract the Mean Image: Mean Image forms a [3,32,32] Tensor

Image 1 Image N

x1 xN

Consider CIFAR-10 images with [3, 32, 32] pixels per image

Subtract the Per-Channel Mean: 3 Numbers

(MRed,MGreen,MBlue)

Problem: The Activations in the interior of the
network may become unbalanced as the training
progresses

Solution: Instead of Normalizing just the input, why
not normalize the per-layer activations in as well.

x z

Problem: Unlike the input, the activations change as
the training progresses

Solution: Do the normalization in batches, such that
during each batch, the weights remain fixed

Normalize+
𝑎 =(𝑤!𝑧! !𝑎

Scale Activation

zc

*𝑎 =
𝑎 − 𝜇%
(𝜎%& + 𝜀)

𝜇2 =
∑3452 𝑎(𝑠)

𝐵𝜎26 =
∑3452 (𝑎 𝑠 − 𝜇2))6

𝐵

+
𝑎 =(𝑤!𝑧! !𝑎 zc

z=f(c)𝑐 = 𝛾 ,𝑎 + 𝛽*𝑎 =
𝑎 − 𝜇%
(𝜎%& + 𝜀)

𝛾, 𝛽 learnt using Backprop

New MeanNew Variance

Activations no longer a function of a single training sample!

+
𝑎 =(𝑤!𝑧! !𝑎 zc

z=f(c)𝑐 = 𝛾 ,𝑎 + 𝛽*𝑎 =
𝑎 − 𝜇%
(𝜎%& + 𝜀)

𝜕ℒ
𝜕𝑧

𝜕ℒ
𝜕𝑐

𝜕ℒ
𝜕𝛾

𝜕ℒ
𝜕𝛽

𝜕ℒ
𝜕 !𝑎

𝜕ℒ
𝜕𝑎

𝜇! =
∑"#$% 𝑎(𝑠)

𝑚𝜎!& =
∑"#$% (𝑎 𝑠 − 𝜇!))&

𝑚
𝛽 ← 𝛽 − 𝜂

𝜕ℒ
𝜕𝛽

𝛾 ← 𝛾 − 𝜂
𝜕ℒ
𝜕𝛾

ReLU

ReLU

3. Run backprop through each of the samples in the batch,
using the normalized activations. In addition to the
weights, also calculate the gradients for the batch
normalization parameters for each node.

4. Average the gradients across the batch, and use it to
calculate the new weights and batch normalization
parameters.

5. Go back to step 1, and process the next batch.

During Testing:
The pre-activations are normalized using ALL the test data,

rather than just the batch

} Enables higher Learning Rates: Higher rates speed up
convergence but can also lead to problems such as non-
convergence of the SGD algorithm

} Enables better gradient propagation through the network:
Leads to effective training of larger networks

} Helps to reduce strong dependencies on the parameter
initialization scheme

} Helps to regularize the model

The following parameters have to be chosen:
} The number of Hidden Layers and the Number of Nodes per

Hidden layer
} The Learning Rate Parameter 𝜂
} The Regularization Parameter 𝜆
} The mini-batch size B
} The Dropout Rate p

How to find best value?

All these parameters influence Model Capacity

Model Capacity = Data Complexity

The following strategy can be used to do Manual Tuning, for all
parameters other than the Learning rate:

The primary goal of the manual tuning is to try to match the
effective capacity of the model with the complexity of the data

Monitor both the training and validation Loss to
figure out if the model is overfitting or underfitting

Change hyper-parameters to
increase Model Capacity

Change hyper-parameters to
reduce Model Capacity

High Training
Loss, Valid Loss

plateaus

Low Training Loss, but
big gap with Validation

Error

Number of Hidden Layers
Nodes per Hidden Layer

An increase causes the
Model Capacity to increase

Regularization Parameter
𝜆

An increase causes the
Model Capacity to decrease

Dropout Parameter p An increase causes the
Model Capacity to increase

Learning Rate
𝜂 ?

For Learning Rate and Regularization
Parameter, the search is done in the

logarithmic space

Example: 10^(-6) to 10^(-2) translates to
(-6,-2)

“brute-force” search in the hyper-parameter
space

Grid Search: This is an exhaustive search
in the parameter space in which all
possible combinations are tested

Random Search: Instead of doing an
exhaustive evaluation all possible
hyper-parameter values,
choose a few random points

Works much better!

Training

Logit Layer

Average

Training Testing

} A necessary and sufficient condition for an ensemble of classifiers to be
more accurate than any of its individual members is if the classifiers are
accurate and un-correlated
◦ Accurate: An accurate classifier is one that has an error rate of better than random guessing
◦ Un-Correlated: Two classifiers are un-corelated if they make different errors on new data

points

Example: 3 classifiers, P(error) = 0.3. Using majority voting, if classification is done 21
Times, then the probability that 11 or more results will be in error is 0.026

CCC, CCE, CEC, ECC ! Ensemble Prediction Correct
EEE, EEC, ECE, CEE ! Ensemble Prediction Error

Biased Coin
P(E) = 0.3, P(C) = 0.7
If the coin is tossed 3
times, what is the prob
of getting 2 or more E’s?

From “Ensemble Methods in Machine Learning” by
Thomas Dietterich

Random Initializations result in SGD based optimizations that
end up in different minima ! Averaging smoothens out the
final result

} Define the Problem:
◦ What is the input data? What are you trying to predict?
◦ What type of problem are you solving?

Binary Classification, Multiclass Classification,
Multiclass/Multi-object Classification, Scalar Regression,
Vector Regression

} Assumptions at this stage:
◦ Outputs can be predicted given the inputs
◦ Available data is sufficiently informative to learn the

relationship between inputs and outputs

How many Training Examples Needed?

} Not enough data ! Overfitting
} In general: More parameters in the model (i.e., Bigger the

Model) ! Larger the number of training examples needed

} For image processing problems: About 1000 samples per
category usually work.

} Annotate the Data
◦ Manually
◦ Use a crowd sourcing platform such as Mechanical Turk
◦ Use the services of a data-labeling company

Understand the Data
" Look at a few samples of the data and their labels
" If the data is a Table, plot a histogram of features, look at

range and the frequencies
" For classification compute the number of samples from each

class

Common Cause of Model Failure: Non Stationary Problems!
The Mapping between the Input and Output changes
with time

• Both the Training Set and the Test Set should be representative
of the data

• If the data samples are ordered by class, then make sure to
randomly shuffle the data before splitting it into training and test

• If you are trying to predict the future given the past, don’t
randomly shuffle the data

• If data samples repeat, then make sure that the training and
validation/test sets are disjoint

Number of samples in each category should be close in number

Target
Leaking!

Pre-process the data so that it can be fed into the model,
usually Domain Specific
- Convert into tensors
- Normalize: Zero center and/or scale
- For NLP Data: Convert into vectors

• If the input data is such that the various classes are approximately linearly separated
then a linear model will work

• Deep Learning Networks are needed for more complex datasets with non-linear boundaries
between classes. If the input data has a 1-D structure, then a Dense Feed Forward Network will suffice

• If the input data has a 2-D structure (such as black and white images), or a 3-D structure
(such color images), then a Convolutional Neural Network or ConvNet is called for. ConvNets excel
at object detection and recognition in images

• If the input data forms a sequence with dependencies between the elements of the sequence,
then a Recurrent Neural Network or a Transformer is required.
Typical examples of this kind of data include:
Speech waveforms, natural language sentences, stock prices etc.
RNNs/Transformers are ideal for tasks such as speech recognition, machine translation, captioning

(e) Transformers

" Choose Last Layer Activation: Sigmoid, Softmax, tanh, None
" Choose Loss Function:

Binary Classification ! Binary Crossentropy,
Multiclass, Single Label Classification ! Categorical Crossentropy
Multiclass, Multi Label Classification ! Binary Crossentropy
Regression ! MSE

" Choose Optimizers: rmsprop, Adam

Choose Learning
Rate: The most
important hyper
parameter
(keep regularization
low while doing this)

Choose other
hyper-parameters by
checking for overfit/
underfit – change model
capacity to improve
generalization

} Models are typically deployed as part of Web Servers, Mobile
Apps, Web Pages, Embedded Devices etc
◦ Keras and Tensorflow have support for deploying models in these

environments ! Example: TensorFlow.js is a JavaScript library that
implements most of the Keras API, TensorFLow Lite for embedded devices

} Monitor performance after deployment
} Collect data for next generation model: Some models need to

be updated frequently
◦ Data changes over time: Example Credit Card fraud detection

model, has to be updated every few days

Model Overfitting can be caused due to
insufficient Training Data

Symptom: Model Overfits even after application
of Regularization

Main Idea: Expand the training data by
applying operations that reflect real world
variation, such that
The Training Label does not change.

Is Data Augmentation also a type of Regularization?

} Chapter: GradientDescentTechniques
} Chapter: HyperParameterSelection
} Chollet Chapter 6

