
Lecture 8
Subir Varma

Learning Rate Adaptation
} AdaGrad
} RMSProp

Faster Convergence
} Momentum
} Nesterov Momentum

Combination Technique
} Adam

https://cs231n.github.io/neural-networks-3/

} A very important topic
} One of the reasons early Neural Networks did not work very

well was due to lack of understanding on how to initialize the
weights

All nodes compute to the same value, even after backprop
- Need to break symmetry

𝑎! =#
!"#

$

𝑤%!𝑧! + 𝑏!

tanh
Activations

𝑎! =#
!"#

$

𝑤%!𝑧! + 𝑏!

𝐴&'# = 𝑊𝐴& + 𝐵
= 𝑊&𝐴 +..

} Initialize using the Gaussian distribution

} All the tanh units become saturated at +1 or -1, gradients at
zero

tanh
Activations

𝑎! =#
!"#

$

𝑤%!𝑧! + 𝑏!

} Initialize using the Gaussian distribution

tanh
Activations

𝑎! =#
!"#

$

𝑤%!𝑧! + 𝑏!

} Initialize using the Gaussian Distribution

ReLU halves
the variance.

In order to
compensate,
increase the
incoming
variances by
a factor of 2

Information available at:

https://keras.io/initializers/

Underfitting
Overfitting

Once the DLN model has been trained, its true test is how well it is able
to classify inputs that it has not seen before (i.e. Test Data),

which is also known as its Generalization Ability.

There are two kinds of problems that can afflict ML models in general:

1. Even after the model has been fully trained such that its training error
is small, it exhibits a high test error rate. This is known as the problem of Overfitting

2. The training error fails to come down in-spite of several epochs of training.
This is known as the problem of Underfitting.

Training Set Test SetValidation
Set

Model Capacity

} Degree of non-linearity that the model can capture

} Model Capacity is proportional to the number of
layers (and nodes per layer). An increase in model
non-linearity increases capacity.

Data Complexity: Degree of non-linearity in
the Data

Model Capacity

} Degree of non-linearity that model can capture

} Model Capacity is proportional to the number of
layers (and nodes per layer)

Data Complexity: Degree of non-linearity in
the Data

Ideally: Data Complexity = Model Capacity

Overfitting:
Data Complexity < Model Capacity, OR

In-sufficient Training Data

Underfitting:
Data Complexity > Model Capacity

Model is learning patterns that
are specific to the Training Data
but irrelevant to the Test Data

Model hasn’t modeled all
the relevant patterns in
the Training Data

If the model never enters the
Overfitting Zone, then that

also is a problem

Validation

Training

} Symptom: Model never enters the Overfitting Zone OR Low
Training Data Accuracy and/or High Loss, even after multiple
epochs of training.

} Cause: The degree of non-linearity in the training data is
higher than the amount of non-linearity the Network is
capable of capturing.

} Solution: The modeler can increase the model capacity by
increasing the number of hidden layers and/or adding more
nodes per hidden layer.

If these steps fail to solve the problem, then it points to bad
quality/mis-labeled training data.

CIFAR-10 Dataset using a Dense Feed Forward Model

} Overfitting is one of the major problems that plagues ML
models.

} When this problem occurs, the model fits the training data
very well, but fails to make good predictions in situations it
hasn’t been exposed to before, i.e. the test data.

} It can be triggered by causes such:
1. Lack of training data, or
2. The model being too complex for the given amount of training data.

Mis-Labeled MNIST Training Data

Ambiguous MNIST
Training Data

Fashion Dataset using a Dense Feed Forward Network
Single Hidden Layer with 512 nodes

Overfitting

Overfitting

Solutions
1. Decrease Model Capacity
2. Regularization: This is the most common, and

also a very effective technique to combat
Overfitting.

3. Increasing the amount and quality of training
data.
If this not possible, then

4. Data Augmentation: Increase the amount of
training data synthetically by doing various
transforms.

Early Stopping: Use the Validation Data Set to
compute the classification accuracy at the end of
each training epoch. Once the accuracy stops
increasing, stop the training.

Stop the training here

Validation

Training

Set up Model
(Define Computational Graph)

Initialize Weights

Loop for
E Epochs

Loop for
M/B Batches

Feed-in Next Training Batch
Compute Gradients

Compute New Weights

Compute Loss
Compute Training Loss

Compute Validation Loss

Process Batch
(B = batch size)

Backprop Forward Pass
Compute z’s

Backprop Backward Pass
Compute 𝛿!𝑠

Compute Gradients
𝜕ℒ
𝜕𝑤 = 𝑧𝛿

Interrupting
Training
in Keras

Use
Callbacks

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Interruption
Point

Callbacks_list = [
keras.callbacks.EarlyStopping(

monitor = ‘acc’,
patience = 1,

)
keras.callbacks.ModelCheckpoint(

filepath =‘my_model.h5’,
monitor = ‘val_loss’,
save_best_only = True

)
]

model.compile(optimizer = ‘rmsprop’,
loss = ‘binary_crossentropy’,
metrics = [‘acc’],)

model.fit(x,y,
epochs = 10,
batch_size = 32,
callbacks = callbacks_list,
validation_data = (x_val, y_val))

Interrupt training when accuracy
improvement stops

Interrupt training when accuracy stops
improving for more than one epoch

Save the model weights after every epoch

Don’t override the saved model file unless
val_loss has improved, i.e., keep the weights
of the best model seen during training

A set of techniques to improve Model
Generalization Ability ! Move the Overfitting
Threshold Further Out.

Prevents the Model from fitting the Training
Data too well, in the hope that it will work
better with the Test Data

Original Model: 2 Hidden Layers
with 16 nodes each

Smaller Model: 2 Hidden Layers
with 4 nodes each

Choose a model with High Capacity,
and then prevent overfitting by doing Regularization

Regularization reduces Model Capacity

L2/L1 were inherited from older ML systems and work for smaller models
Dropout and Batch Normalization were designed specifically for

Deep Learning systems

Regularization algorithms that reduce model complexity
by penalizing large weights

Examples: L2 or L1 Regularization

Regularization algorithms that introduce some randomness
during the training process, thus preventing the model from

fitting the training data too well.

Examples: Dropout Regularization, Batch Normalization, Dropconnect

Reduces
Model
Capacity

ℒ! = ℒ(𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) +
𝜆
21
"#$

!%$

1
&#$

'!"#

1
(#$

'!

(𝑤(&
("))+

𝑤 ← (1 − 𝜂𝜆)w - 𝜂 !ℒ
!#

𝜆: Regularization Parameter

What is the effect of 𝜆 on Model Capacity?

ℒ! = ℒ(𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) + 𝜆1
"#$

!%$

1
&#$

'!"#

1
(#$

'!

|𝑤(&
" |

𝑤 ← 𝑤 − 𝜂𝜆 𝑠𝑔𝑛 𝑤 − 𝜂
𝜕ℒ
𝜕𝑤

L1/L2 Regularizations work for
smaller models

L2 Regularization

L1 Regularization

L1 + L2 Regularization

A different subset of nodes is erased in
each iteration of training

retaining

Dropout Regularization

IMDB Input, 2 Hidden Layers with 16 Nodes each

L2 Regularization Dropout

} Chapters 8: ImprovingModelGeneralization

} Chapter 5 of Chollet

