Training Process
Improvements: Part 2

Lecture 8
Subir Varma

Improved SGD

Learning Rate Adaptation
» AdaGrad
» RMSProp

Faster Convergence
» Momentum

» Nesterov Momentum

Combination Technique
» Adam

https://cs231n.github.io/neural-networks-3/

Weight Initialization

p—

Weight Initialization

» A very important topic

» One of the reasons early Neural Networks did not work very
well was due to lack of understanding on how to initialize the
weights

Initializing all Weights to the Same
Value

output layer
input layer
hidden layer

All nodes compute to the same value, even after backprop

- Need to break symmetry y
a: = Wi . 7. + b
]]Zl 17]

S(r) _ frfan) (r+1) 5 (r+1)
o) = £'(@")(Fwy 8 ™)

Random Initialization o= Yo+

o)]))] AVl = WA" + B
» Initialize using the Gaussian distribution _whA 4

W',j ~N(0,0.01)
» Works ok for smaller networks, but as we add more layers,
- The activations converge to 0
- The gradients and weights converge to 0

layer mean e layer std

PO

tanh | ,
Activations giazal §

Random Initialization with Larger

Variance o =Y+
j=1
» Initialize using the Gaussian distribution
W, N(O,1)
» All the tanh units become saturated at +1 or -1 , gradients at
Zero .
tanh

Activations

Xavier Initialization

N
s : . L %=§}%%+@
» Initialize using the Gaussian distribution =

w,: MO,
’ v nm

tanh

Activations

Xavier-He Initialization: Works for ReLU

» Initialize using the Gaussian Distribution

W, : MO,)

layer std

ReLU halves e z
the variance. : '

In order to
compensate, ‘ |
increase the . A

InC0mIng " \"-\‘- ! -”’ R : «
variances by ' v
a factor of 2 ¥ P 3 T A ¥ B ¥
o 4 2500 o4
150 1 JJ 150 150000 1503 il 1)2 0 1
100 1 i 100 10000 U X 3] 1) o bl

Weight Initialization in Keras

model.add(Dense(64,
kernel_initializer='random_uniform’,
bias_initializer='zeros'))

Information available at:

https://keras.io/initializers/

Model Underfitting and Overfitting

p—

Underfitting and Overfitting

Underfitting “Just right”

d = 1 (under-fit) d = 6 (over-fit) d=2

price

Underfitting

Qverfitting

haus<e size

house size house size

Underfitting and Overfitting

Once the DLN model has been trained, its true test is how well it is able
to classify inputs that it has not seen before (i.e. Test Data),
which is also known as its Generalization Ability.

There are two kinds of problems that can afflict ML models in general:

1. Even after the model has been fully trained such that its training error
is small, it exhibits a high test error rate. This is known as the problem of Overfitting

2. The training error fails to come down in-spite of several epochs of training.
This is known as the problem of Underfitting.

Training Set Test Set

Data Complexity and Model
Capacity

Data Complexity: Degree of non-linearity in
the Data

Model Capacity

» Degree of non-linearity that the model can capture

» Model Capacity is proportional to the number of
layers (and nodes per layer). An increase in model
non-linearity increases capacity.

Data Complexity and Model
Capacity

ldeally: Data Complexity = Model Capacity

Data Complexity: Degree of non-linearity in
the Data

Model Capacity

» Degree of non-linearity that model can capture

» Model Capacity is proportional to the number of
layers (and nodes per layer)

Causes of Underfitting and
Overfitting

Underfitting:
Data Complexity > Model Capacity

Overfitting:
Data Complexity < Model Capacity, OR
In-sufficient Training Data

Overfitting and Underfitting

If the model never enters the
s Overfitting Zone, then that
also is a problem

Error

Overfitting zone

Validation

generalization

erroL_g_,.—_-./r — = = Training
generalization:gap

training

error i .
* optimal Capacity
capacity .

Model hasn’t modeled all

the relevant patterns in Model is learning patterns that

the Training Data are specific to the Training Data
but irrelevant to the Test Data

The Underfitting Problem

» Symptom: Model never enters the Overfitting Zone OR Low
Training Data Accuracy and/or High Loss, even after multiple
epochs of training.

» Cause: The degree of non-linearity in the training data is
higher than the amount of non-linearity the Network is
capable of capturing.

» Solution: The modeler can increase the model capacity by
increasing the number of hidden layers and/or adding more
nodes per hidden layer.

If these steps fail to solve the problem, then it points to bad
quality/mis-labeled training data.

Detecting Underfitting

Training and validation loss Training and validation accuracy
221 e ® Training loss 0501 @ Training acc
21 - —— Validation loss —— Validation acc
0.45 -
2.0 4
0.40 -
19 -
“ v 0.35 1
§1s] g
17 A 0.30 1
167 0.25
15 1
0.20
14 - ®
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

CIFAR-10 Dataset using a Dense Feed Forward Model

Overfitting

» Overfitting is one of the major problems that plagues ML
models.

» When this problem occurs, the model fits the training data
very well, but fails to make good predictions in situations it
hasn’t been exposed to before, i.e. the test data.

» It can be triggered by causes such:

1. Lack of training data, or
2. The model being too complex for the given amount of training data.

Error

Underfitting zone : Overfitting zone

' . .
! generalization
error

-
training
error

e el o e B SN

3 optimal Ca?)acity
Q$§§§§ii capacity

Overfitting due to Ambiguous or
Mis-Labeled Training Data

Ambiguous MNIST
n

Mis-Labeled MNIST Training Data

Loss

Detecting Overfitting

0.8 -

0.7 -

0.6 1

0.5 1

0.4 -

0.3 1

0.2 1
0.1 1

Training and validation loss

® Training loss

- \/alidation loss

Loss

Overfitting

40 60 80 100
Epochs

Training and validation accuracy

0.975 -
0.950 A
0.925
0.900 A
0.875 A1
0.850 -
0.825

0.800

® Training acc
- Validation acc

Overfitting
vaw
@

0 20 10 60 80 100

Epochs

Fashion Dataset using a Dense Feed Forward Network
Single Hidden Layer with 512 nodes

Finding Better Models: Pushing
Out the Overfitting Threshold

Solutions

1.
2.

Decrease Model Capacity
Regularization: This is the most common, and
also a very effective technique to combat
Overfitting.

Increasing the amount and quality of training
data.

If this not possible, then

Data Augmentation: Increase the amount of
training data synthetically by domg various
transforms.

Avoiding an Overfitted Model

Early Stopping: Use the Validation Data Set to
compute the classification accuracy at the end of
each training epoch. Once the accuracy stops
increasing, stop the training.

Erro))
s r‘ = Validation

— = = Training

Underfitting zone E Overfitting zone

'
' - -
' generalization

— - error . :
training S generalization:gap
error 3 SN '
.. Jl ! -’
optimal Capacity

capacity

M\ \ Stop the training here

Interrupting
Training
in Keras

Set up Model
(Define Computational Graph)

A 4

Initialize Weights

Use
Callbacks

Interruption
Point

Feed-in Next Training Ba
Compute Gradients
Compute New Weights

Y

|
v

Compute Loss
Compute Training Loss
Compute Validation Loss

'

llllll neralization:gap

il e Y

optimal Capacity

capacity

rocess Batc

A

= batch si

.

Backprop Forward Pass
Compute z’s

\4

Backprop Backward Pass
Compute §'s

v

Compute Gradients
aL

aw

=z0

network.fit(train_images, train_labels, epochs=5, batch_size=128)

The Early Stopping Callback

Interrupt training when accuracy

Callbacks_list = [improvement stops
keras.callbacks.EarlyStopping(“
monitor = ‘acc’,

Interrupt training when accuracy stops

patience = 1, 4 . .
improving for more than one epoch

)
keras.callbacks.ModelCheckpoint (

filepath ='my model.h5’, Save the model weights after every epoch
monitor = ‘val_ loss’,
save_best only = True ¥
) Don’t override the saved model file unless
] val_loss has improved, i.e., keep the weights
of the best model seen during training
model .compile (optimizer = ‘rmsprop’,
loss = ‘binary crossentropy’,
metrics = [‘acc’],) o

H
:
Underfitting zone i Overfitting zone

model.fit(x,y,

epochs = 10,

. - Sl | generalization
batch_SlZe = 32 7 !r;r:;r:g o . error eraizatonigep
callbacks = callbacks_list, e g

capacity

validation data = (x_val, y val))

Regularization

p—

What is Regularization

A set of techniques to improve Model
Generalization Ability > Move the Overfitting
Threshold Further Out.

Prevents the Model from fitting the Training
Data too well, in the hope that it will work
petter with the Test Data

Reducing Model Capacity to
Improve Generalization

+ Original model o
® Smaller model +
0.7 1 +
. + Original Model: 2 Hidden Layers
-0 + with 16 nodes each
= + *
5051 4 " '
3 N o' Smaller Model: 2 Hidden Layers
. . 7 oo with 4 nodes each
o * o ® °
+ o + ° ®
03 + 4+ ® : - o ©® *

25 50 75 100 125 150 175 200
Epochs

Introducing Regularization

Choose a model with High Capacity,
and then prevent overfitting by doing Regularization

.

Regularization reduces Model Capacity

Ways to Reduce Model Capacity with
Regularization

Regularization algorithms that reduce model complexity
by penalizing large weights

Examples: L2 or L1 Regularization

Regularization algorithms that introduce some randomness
during the training process, thus preventing the model from
fitting the training data too well.

Examples: Dropout Regularization, Batch Normalization, Dropconnect

L2 /L1 were inherited from older ML systems and work for smaller models
Dropout and Batch Normalization were designed specifically for
Deep Learning systems

L2 Regularization

A: Regularization Parameter
» L2 Regularization

R+1 nr_l nr

A
— - ()2
Lp = L(cross entropy) + > ; ; ;‘(Wl-j)

r=1 j=1 i=1

» The effect of regularization is to make the
network prefer to learn smaller weights

» The weight update rule becomes\ Reduces

Model
w e (1—n)w- 772_5, Capacity

What is the effect of 2 on Model Capacity?

Effect of L2 Regularization

-==Validation loss of original model 7
0.7 41 — Validation loss of L2-regularized model /
0.6
v
v
S 0.5-
0.4
5 B

r

25 5.0 i, 10.0 12.5 15.0 17:5 20.0
Epochs

Filgure 5.19 Effect of L2 welght regularization on valldation loss

L1 Regularization

» L1 Regularization

R+1 nr 1 nr

Lr = L(cross entropy) + A 7 7 7 |W(T)|

r=1 j=1 i=1

results in the gradient update rule:

oL
w e« w—nisgn(w) — Ui

» Results in networks in which the weights are
concentrated in a relatively small number of
high importance connections, while the other
weights are driven towards zero.

L1/L2 Regularizations work for
smaller models

Adding Regularization in Keras

from keras import regularizers

12_model = models.Sequential()

12_model.add(layers.Dense(16, kernel regularizer=regularizers.12(0.001), L2 Regularization
activation='relu', input_shape=(10000,)))

12_model.add(layers.Dense(16, kernel regularizer=regularizers.12(0.001),
activation='relu'))

12_model.add(layers.Dense(1l, activation='sigmoid'))

from keras import regularizers

L1 regularization L] Regu|al‘i2ati0n

regularizers.11(0.001)

L1 and L2 regularization at the same time LT + L2 Regularization
regularizers.ll 12(11=0.001, 12=0.001)

Dropout Regularization

In each forward pass, randomly set some neurons to zero
Probability of retaining |s a hyperparameter; 0.5 is common

A different subset of nodes is erased in
each iteration of training

Dropout Regularization: Test Time

Present with Always

probability p present
(a) At training time (b) At test time

Figure 8.8: Weight Adjustment at Test time

At test time all neurons are active always
=> \WWe must scale the activations so that for each neuron:
output at test time = expected output at training time

Dropout Regularization:
Interpretation 1

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

O— hasanear —»—_
C'—' has a tail —_

O—’ is furry —%———_ cat
PN ____— score

has claws

O— mischievous —X%—

look

Dropout Regularization:
Interpretation 2

» Heuristically when we dropout different sets of neurons, its like we
are testing different neural networks

» Hence the dropout procedure is like averaging the effect of a very
large number of different networks

» Different networks will overfit in different ways, so the net effect of
dropout is to reduce overfitting

Adding Dropout Regularization in
Keras

dpt_model = models.Sequential()

dpt_model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
dpt_model.add(layers.Dropout(0.5))

dpt_model.add(layers.Dense(1l6, activation='relu'))

dpt_model.add(layers.Dropout(0.5)) DI‘OpOUt Regularization

dpt_model.add(layers.Dense(l, activation='sigmoid'))

dpt_model.compile(optimizer='rmsprop',
loss='binary crossentropy',
metrics=['acc'])

Validation loss

0.7 1

0.6 4

0.5 A

0.4 4

0.3

Model Results

L2 Regularization

+ Original model
® L2-regularized model +

100 125 150 175 200

Epochs

25 50 75

Validation loss

0.7 |

0.6 1

0.5 A1

0.4 1

0.3 1

Dropout
+ Original model + +
® Dropout-regularized model +
+
+
- ®e
+ °
[
Il N °
+ +
+ N o0
[o =
" + ° ¢
+ * ‘ o L
25 50 75 100 125 150 175 200
Epochs

IMDB Input, 2 Hidden Layers with 16 Nodes each

Drop Connect Regularization

al.)
OO

Regularization: A Common Pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
-ractional Max Pooling
Stochastic Depth

Further Reading

» Chapters 8: ImprovingModelGeneralization

» Chapter 5 of Chollet

