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Learning Rate Adaptation
} AdaGrad
} RMSProp

Faster Convergence
} Momentum
} Nesterov Momentum

Combination Technique
} Adam

https://cs231n.github.io/neural-networks-3/





} A very important topic
} One of the reasons early Neural Networks did not work very 

well was due to lack of understanding on how to initialize the 
weights



All nodes compute to the same value, even after backprop
- Need to break symmetry
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} Initialize using the Gaussian distribution

} All the tanh units become saturated at +1 or -1, gradients at 
zero
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} Initialize using the Gaussian distribution
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} Initialize using the Gaussian Distribution

ReLU halves
the variance.

In order to 
compensate,
increase the
incoming
variances by
a factor of 2



Information available at:

https://keras.io/initializers/





Underfitting
Overfitting



Once the DLN model has been trained, its true test is how well it is able 
to classify inputs that it has not seen before (i.e. Test Data), 

which is also known as its Generalization Ability. 

There are two kinds of problems that can afflict ML models in general:

1. Even after the model has been fully trained such that its training error 
is small, it exhibits a high test error rate. This is known as the problem of Overfitting

2. The training error fails to come down in-spite of several epochs of training. 
This is known as the problem of Underfitting.

Training Set Test SetValidation
Set



Model Capacity

} Degree of non-linearity that the model can capture

} Model Capacity is proportional to the number of 
layers (and nodes per layer). An increase in model 
non-linearity increases capacity.

Data Complexity: Degree of non-linearity in 
the Data



Model Capacity

} Degree of non-linearity that model can capture

} Model Capacity is proportional to the number of 
layers (and nodes per layer)

Data Complexity: Degree of non-linearity in 
the Data

Ideally: Data Complexity = Model Capacity



Overfitting:
Data Complexity < Model Capacity, OR

In-sufficient Training Data 

Underfitting:
Data Complexity > Model Capacity 



Model is learning patterns that
are specific to the Training Data
but irrelevant to the Test Data

Model hasn’t modeled all
the relevant patterns in
the Training Data

If the model never enters the
Overfitting Zone, then that

also is a problem

Validation

Training



} Symptom: Model never enters the Overfitting Zone OR Low 
Training Data Accuracy and/or High Loss, even after multiple 
epochs of training.

} Cause: The degree of non-linearity in the training data is 
higher than the amount of non-linearity the Network is 
capable of capturing. 

} Solution: The modeler can increase the model capacity by 
increasing the number of hidden layers and/or adding more 
nodes per hidden layer. 

If these steps fail to solve the problem, then it points to bad 
quality/mis-labeled training data. 



CIFAR-10 Dataset using a Dense Feed Forward Model



} Overfitting is one of the major problems that plagues ML 
models. 

} When this problem occurs, the model fits the training data 
very well, but fails to make good predictions in situations it 
hasn’t been exposed to before, i.e. the test data. 

} It can be triggered by causes such:
1. Lack of training data, or 
2. The model being too complex for the given amount of training data. 



Mis-Labeled MNIST Training Data

Ambiguous MNIST
Training Data



Fashion Dataset using a Dense Feed Forward Network 
Single Hidden Layer with 512 nodes

Overfitting

Overfitting



Solutions
1. Decrease Model Capacity
2. Regularization: This is the most common, and 

also a very effective technique to combat 
Overfitting. 

3. Increasing the amount and quality of training 
data. 
If this not possible, then

4. Data Augmentation: Increase the amount of 
training data synthetically by doing various 
transforms.



Early Stopping: Use the Validation Data Set to 
compute the classification accuracy at the end of 
each training epoch. Once the accuracy stops 
increasing, stop the training.

Stop the training here

Validation

Training



Set up Model
(Define Computational Graph)

Initialize Weights

Loop for
E Epochs

Loop for
M/B Batches

Feed-in Next Training Batch
Compute Gradients

Compute New Weights

Compute Loss 
Compute Training Loss

Compute Validation Loss

Process Batch
(B = batch size)

Backprop Forward Pass
Compute z’s

Backprop Backward Pass
Compute 𝛿!𝑠

Compute Gradients
𝜕ℒ
𝜕𝑤 = 𝑧𝛿

Interrupting
Training
in Keras

Use
Callbacks

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Interruption
Point



Callbacks_list =   [
keras.callbacks.EarlyStopping(

monitor = ‘acc’,
patience = 1,

)
keras.callbacks.ModelCheckpoint(

filepath =‘my_model.h5’,
monitor = ‘val_loss’,
save_best_only = True

)
]

model.compile(optimizer = ‘rmsprop’,
loss = ‘binary_crossentropy’,
metrics = [‘acc’],)

model.fit(x,y,
epochs = 10,
batch_size = 32,
callbacks = callbacks_list,
validation_data = (x_val, y_val))

Interrupt training when accuracy
improvement stops

Interrupt training when accuracy stops
improving for more than one epoch

Save the model weights after every epoch

Don’t override the saved model file unless
val_loss has improved, i.e., keep the weights
of the best model seen during training





A set of techniques to improve Model 
Generalization Ability ! Move the Overfitting 
Threshold Further Out.

Prevents the Model from fitting the Training 
Data too well, in the hope that it will work 
better with the Test Data



Original Model: 2 Hidden Layers
with 16 nodes each

Smaller Model: 2 Hidden Layers
with 4 nodes each



Choose a model with High Capacity, 
and then prevent overfitting by doing Regularization

Regularization reduces Model Capacity



L2/L1 were inherited from older ML systems and work for smaller models
Dropout and Batch Normalization were designed specifically for 

Deep Learning systems

Regularization algorithms that reduce model complexity 
by penalizing large weights

Examples: L2 or L1 Regularization

Regularization algorithms that introduce some randomness 
during the training process, thus preventing the model from 

fitting the training data too well.

Examples: Dropout Regularization, Batch Normalization, Dropconnect



Reduces
Model
Capacity
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𝜆: Regularization Parameter

What is the effect of 𝜆 on Model Capacity? 
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L1/L2 Regularizations work for 
smaller models



L2 Regularization

L1 Regularization

L1 + L2 Regularization



A different subset of nodes is erased in
each iteration of training

retaining









Dropout Regularization



IMDB Input, 2 Hidden Layers with 16 Nodes each

L2 Regularization Dropout







} Chapters 8: ImprovingModelGeneralization

} Chapter 5 of Chollet


