
Lecture 7
Subir Varma

Input Output

Sequential Processing

Example: Majority Vote
models

Increases prediction accuracy

Multiple Predictions

The final decision is a
function of more than
one type of input data

Input

Output 1
Binary: Yes/No

Output 2
Binary: Yes/No

Output 3
Binary: Yes/No

For classifying more than one object per input

Input Output+

Residual Connection

Enables the training of models with hundreds of hidden layers

All these different topologies can be easily coded using the
Keras Functional API

} Model Checkpointing: Saving the current state of
the model at different points during training

} Early Stopping: Interrupting Training when the
Validation Loss is no longer improving (and saving
the best model)

} Dynamically adjusting hyper parameter values:
Example Learning Rate

} Logging Training and Validation Metrics

} We defined a Dense Feed Forward Network Model
that is a generalization of Linear Logistic
Regression Models

} We defined a Training Algorithm to iteratively
estimate model parameters using Stochastic
Gradient Descent

} We discussed the Backprop algorithm, which is a
fast and efficient way to compute the gradients
with respect to the model parameters

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

Training using Backpropagation was known by the mid-1980s
Yet it took 20+ years for the field to make progress

Why?

Backpropagation Did Not Work Very Well for Large Models

Culprit: The Vanishing Gradient Problem

1. Not all Activation Functions work well
2. Stochastic Gradient Descent can be

improved upon
3. How can a model’s generalization

capabilities be improved?
4. How to choose good values for hyper-

parameters?
5. How to initialize the weight parameters

properly?
6. The stopping problem: When to stop the

training process?

Training Set Test Set

Epoch 1 Epoch 2 Epoch 3
B1 B2 B3 B1 B2 B3 B1 B2 B3Test Test Test

Validation
Set

V V V

- Test Dataset:
- Not used for Training
- Not used for choosing model

parameters
- Validation Dataset:

- Not used for Training
- Used for choosing model

parameters

} Validation Data Set allows us to experiment with Hyper-
Parameter settings

} Why don’t we use the Test Data Set to experiment with
Hyper-Parameter values?
◦ By doing so, we may end up finding hyper-parameters which fit particular

peculiarities of the Test Data, but where the performance of the network
won't generalize to other Test data sets

.

.

.

y

.

.

.

.

.

.

x1

xN

Problem: The gradient
𝛿 would die to 0 after a
few layers

𝛿 =
𝜕𝐿
𝜕𝑎 = 𝑦 − 𝑡

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

𝜕ℒ
𝜕𝑤!"

= 𝑧"𝛿!

If a node is saturated (i.e. |a| >>0), then its gradient will go to zero,
and all the weights incident on that node will stop adapting.

z

𝜕ℒ
𝜕𝑧#ℒ

#%
= δ = 𝑧(1 − 𝑧) #ℒ

#&

Activation
Function𝑤!'𝑧'

𝑤!(𝑧(

𝑤!'
𝜕ℒ
𝜕𝑎

𝑤!(
𝜕ℒ
𝜕𝑎

+

𝑎 =0
")'

(

𝑤!"𝑧" + 𝑏

𝜎 .
sigmoid 𝑤!" ← 𝑤!" − 𝜂

𝜕ℒ
𝜕𝑤!"

𝜕ℒ
𝜕𝑤!"

= 𝑥"𝛿!

GeLU
𝑥Φ(𝑥)

} Squashes inputs into the range [-1,+1]
} Does not have the zero centering issue
} However, still saturates for values away from

zero

z = tanh a =
𝑒# − 𝑒$#

𝑒# + 𝑒$#

} Very computationally efficient
} Acts as a Gate: If a>0 then it passes gradient through, if a<0

then it kills the gradient.
} Leads to much faster convergence (by a factor of 6 in the

AlexNet case), Possible Reasons
◦ Does not saturate (for a>0) for half of the input range

} Issues:
◦ Not Zero Centered

Default Choice
For Activation Function

𝑧 = max(0, 𝑎)

a

z

z

𝜕ℒ
𝜕𝑧𝜕ℒ

𝜕𝑎 = <
𝜕ℒ
𝜕𝑧 ,

𝑖𝑓 𝑎 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Activation
Function𝑤!'𝑧'

𝑤!(𝑧(

𝑤!'
𝜕ℒ
𝜕𝑎

𝑤!(
𝜕ℒ
𝜕𝑎

+

𝑎 =0
")'

(

𝑤!"𝑧"

z=ReLU(a).
.
.

𝑎 =0𝑤!𝑧! > 0

𝑎 =0𝑤!𝑧! < 0

𝑎 =0𝑤!𝑧! > 0

𝑎 =0𝑤!𝑧! < 0

Data
Cloud

} Has all the advantages of ReLU + Does not saturate

Leaky ReLU
f(a) = max(ca,a)

f(a)

𝜕ℒ
𝜕𝑎

=

𝜕ℒ
𝜕𝑧 ,

𝑖𝑓 𝑎 ≥ 0

𝑐
𝜕ℒ
𝜕𝑧 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The parameter beta is learnt during the training
process using backprop

𝑧! = max(𝛽!𝑎! , 𝑎!)

𝜕ℒ
𝜕𝛽 = I

0 𝑖𝑓 𝛽 ≤ 1

𝑎
𝜕ℒ
𝜕𝑧
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛽 ← 𝛽 − 𝜂
𝜕ℒ
𝜕𝛽

z

Activation
Function𝑥'

𝑥(

+

𝑎 =0
")'

(

𝑤!"𝑥"

z=f(a).
.
.

Activation
Function𝑥'

𝑥(

+

𝑧 =0
")'

(

𝑤!"𝑦"

.

.

.

𝑦'

𝑦(
𝑓(𝑥()

𝑓(𝑥')

𝑦 = 𝑓 𝑥 = K𝑥 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 Φ(𝑥)
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − Φ(𝑥)

Standard Normal Distribution for N(0,1)

z is a probabilistic function

} Use ReLU or GeLU
} Try out Leaky ReLU, PreLU, MaxOut
} Don’t use Sigmoid
} Try out tanh but don’t expect much

improvement

Information available at:

https://keras.io/activations/

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

Choosing a good
Learning Rate 𝜂

Saddle Points

Loss changes quickly in one direction and slowly in another
Slow progress in shallow direction, Jitter along steep direction

𝐿(𝑤', 𝑤*)

𝜕𝐿
𝜕𝑤'
𝜕𝐿
𝜕𝑤*

Large

Small

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

Benefits:
} Adapts update step on a per-direction basis, such that
◦ Steep gradients lead to smaller updates
◦ Shallow gradients lead to larger updates

} Updates decay over time – a desirable property, but can also
be a problem

- Builds Learning Rate Adaptation into SGD
- Every parameter gets its own Learning Rate

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

} Low Pass Filter has a windowing effect: Forgets gradients that
are far back in time.

} Retains the benefits of ADAGRAD while avoiding the decay of
the Learning Rate to zero.

w(0) w(1) ….. w(n-i) w(n-(i+1)) …. w(n)

window

Learning Rate Adaptation
} AdaGrad
} RMSProp

Faster Convergence
} Momentum
} Nesterov Momentum

Combination Technique
} Adam

Main Idea: Accelerate progress along dimensions in which gradient
consistently points in the same direction and slow progress along
dimensions where the sign of the gradient continues to change

𝑤 𝑛 + 1 = 𝑤 𝑛 − 𝜂(
OPQ

R

𝜌RSO
𝜕ℒ(𝑖)
𝜕𝑤

𝜐 𝑛 = 𝜌𝜐 𝑛 − 1 − 𝜂
𝜕ℒ(𝑛)
𝜕𝑤

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜐(𝑛)
𝜌: Momentum Coefficient

𝑤(𝑛 + 1) ← 𝑤(𝑛) − 𝜂
𝜕ℒ
𝜕𝑤

New Parameter

The ball accumulates momentum as it rolls downhill, becoming faster
and faster along the way

Helps with both Local Minima as well as Saddle Points

𝜌 = 0: Defaults to SGD, only the latest gradient used -> No momentum

𝜌 = 1: All of the last n gradients used, large momentum

𝜌: Momentum Co-efficient

} Nesterov Momentum works better

Look Ahead
Gradient
Step

𝜐 𝑛 = 𝜌𝜐 𝑛 − 1 − 𝜂
𝜕ℒ(𝑤(𝑛))

𝜕𝑤

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜐(𝑛)

𝜐 𝑛 = 𝜌𝜐 𝑛 − 1 − 𝜂
𝜕ℒ(𝑤 𝑛 + 𝜌𝜐(𝑛 − 1))

𝜕𝑤

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜐(𝑛)

Λ 𝑛 ←
Λ 𝑛
1 − 𝛽+

∆(𝑛) ←
∆(𝑛)
1 − 𝛼+

Information available at:

https://keras.io/optimizers/

f: ReLu Function
h: Softmax Function

𝑎'
(')

𝑎*
(')

𝑎'
(*)

𝑎*
(*)

Δ(&) = Y-T

Δ(() = 𝑓) 𝐴 (⨀(𝑊(&))*∆(&)Δ(+) = 𝑓) 𝐴 + ⨀(𝑊(())*∆(()

y

Logit

𝛿*
(*)

} Chapters 7: GradientDescentTechniques

