
Lecture 6
Subir Varma



} High Level API for TensorFLow
} Can run on CPU/GPU/TPU
} Built in support for ConvNets, RNNs and 

Transformers 
} Supports arbitrary network architectures
} Can be freely used in commercial projects
} Over a million users



Import Dataset
(already in Tensor form)

Data Reshaping
+
Data Normalization

Label Conversion from Sparse to
Categorical (1–Hot Encoded)

Define the Network

Compile the Model

Learning Rate specified here



How can I import Raw Data
(Image, Text, Tabular)?



How can I feed in 2D/3D Tensor Data
directly without Reshaping?

How Can I define Other
Types of Networks
(ConvNets, RNNs, Transformers)?

- What are some Faster Optimizers?
- Specifying User Defined Metrics

How long should I run the Model?
How to interrupt the Execution?





Raw Image Data

Raw Tabular Data

Raw Text Data

How to convert all of
these into Tensors 
so that they can be 
fed into a DL Network?





} Read the picture files.
} Decode the JPEG content to RBG grids of pixels.
} Convert these into floating point tensors.

} Keras has utilities to take care of these steps automatically. 
◦ Keras has a module with image processing helper tools, located 

at keras.preprocessing.image. 
} In particular, it contains the utility image_dataset_from_directory

that can turn image files on disk into batches of pre-processed 
tensors. 



cats_and_dogs_smallcats_and_dogs

test train validationtrain test

cats
(1000 Images)

dogs
(1000 Images)

(label 1)    (label 2)

Create a hierarchical directory with
each image category in a separate directory

50,000 images evenly divided between cats and dogs





B .
.
.

Batch #1

Batch #100

Model

Image Tensors: Shape (20,150,150,3) per batch

Total of 2000 samples per epoch

20 
samples

20 
samples

Pre-Processing
Tensor

Conversion







} Map 10,000 most frequently occurring words to 
integers ! Each review becomes a vector (of variable 
length)

} Pad out the vectors with 0s so that they are of the same 
length

} Create Tensors of shape (samples, word_indices)
} Map each word_index to an embedding vector, so now 

the input Tensor has shape (samples, word_indices, 
embedding)

Keras contains the utility text_dataset_from_directory
that can turn image files on disk into batches of pre-

processed tensors. 



} 50,000 Reviews
} 25,000 Reviews for Training, 25,000 for Test
} 50% negative, 50% positive reviews



Aclimdb (50K Reviews)

Train (25K) Test (25K)

Neg (12.5K)   Pos(12.5K)
neg     pos

12,500 Positive Reviews
12,500 Negative Reviews



Each Review is paired up with the corresponding Label

(Review 1, Label 1)
.
.
.
(Review 32, Label 32)

But Data still in
Text stringsResult  "



Takes each review and converts it from text to integers. 
• It does so by cutting of the number of words in the reviews to the top 20,000 most frequently occurring words 

(specified by the parameter max_tokens), and then mapping each word to an unique integer in the 
range 0 to 20,000 (after removing all punctuation). 

• It furthermore truncates each review to a maximum of max_length = 600 words, and pads the 
reviews with less than 600 words with zeroes.



Review

Embedded
Representation with

1- Hot Encoding

E
Neural

Network

Embedding
Layer

Flattened
Vector

(60,000 D)

(3,7,21,…,5) "

A Single Review
(600 word vector)

600

.

.

.

0
0
1

0

Vector of size 20K Vector of size 100

.

.

.

E = Embedding Matrix

A better 
Embedded

Representation

20K
0    0    1



Top Level:   Image                          Sentence
2nd Level :   Pixels                           Words
3rd Level:     RGB                             Embedding

Word 1

Word 2

.

.

.

Depth = 3
(RGB)

Depth = 100
(Embedding)

3D Tensor 2D Tensor





} Structured Data Example: 
https://keras.io/examples/structured_data/structured_data_classification_from_scratch/

Cleveland Clinic Foundation Heart Disease Data

Predict this column

Number Category





The data is randomly split in validation and training sets

We start by downloading the data and storing it in a Pandas dataframe.

The following procedure invokes the Dataset.from_tensor_slices procedure in order to 
create labels for each input and pair it with the rest of the data in each row. 
This results in the formation of the training and validation datasets.



Model Target





14 quantities recorded every 10 minutes
from 2009-2016

Input 2D Tensor of shape (9,14)

Output Label



14 quantities recorded every 10 minutes
from 2009-2016

Input Batch: 3D Tensor of shape (2,9,14)



Outputs a count of 420,551 lines of data

Inspecting the data



Leave out the first row
and the first column



Data Normalization

Split samples into training validation and test



Sample once every hour

Equivalent to 5 days of measurements
Try to predict temperature 1 day into the future



Day 1

Day 2

.

.

.
Day 5

Depth = 14

Model

N = Lookback/step

Target: Temperature
on Day N + 24 hrs

Flatten

Flattened
Vector

(5x14 Size)

Generator





Input Output

Sequential Processing



Example: Majority Vote
models

Increases prediction accuracy

Multiple Predictions



The final decision is a 
function of more than
one type of input data



Input

Output 1
Binary: Yes/No

Output 2
Binary: Yes/No

Output 3
Binary: Yes/No

For classifying more than one object per input



Input Output+

Residual Connection

Enables the training of models with hundreds of hidden layers



All these different topologies can be easily coded using the 
Keras Functional API



} Model Checkpointing: Saving the current state of 
the model at different points during training

} Early Stopping: Interrupting Training when the 
Validation Loss is no longer improving (and saving 
the best model)

} Dynamically adjusting hyper parameter values: 
Example Learning Rate

} Logging Training and Validation Metrics



} Das and Varma: Chapter 6 – NNDeepLearning
} Keras Code Examples: https://keras.io/examples/

} Neural Network Playground
https://playground.tensorflow.org

https://keras.io/examples/

