
Lecture 5
Subir Varma

Ground Truth
or

Label

Model

ℎ!(𝑋,𝑊)

X(s)

X(s)

𝑇 = (𝑡", 𝑡#, … , 𝑡$)

Y=(𝑦", 𝑦#, … , 𝑦$)

(3) Compute
Model Prediction

(4) Compute Loss

(5) Change W to make the Loss smaller

(1) Collect Labeled Data
(2) Choose Model hk(X,W)

ℒ 𝑊

Need a way of Efficiently Computing for EVERY
Weight!!

𝜕ℒ
𝜕𝑤%&

𝑤!" ← 𝑤!" − 𝜂
𝜕ℒ
𝜕𝑤!"

224x224x3 image with a 100 node layer ! 15 million weights!

} By the late 1960s, people realized that hidden layers were
needed to increase the modeling power of Neural Networks.

} There was little progress in this area until the mid-1980s,
since there was no efficient algorithm for computing #ℒ

#%

} The Backprop algorithm (1986) met this need, and today
remains a key part of the training scheme for all kinds of new
deep architectures that have been discovered since then.

} Backprop requires only TWO passes to compute ALL the
derivatives, irrespective of the size of the network!

FORWARD PASS
Compute the Node
Activations z and
output y

𝜕ℒ
𝜕𝑤

= zδ

x1

x2

.

.

.
xN-1

xN

.

.

.

Y
.
.
.

.

.

.

Given an input vector X, compute the activations z for each
neuron in the network

Y= ℎ(𝑊 &'(𝑍(&))

𝑍(+) = 𝑓(𝑊 + 𝑍(+,())

𝑍(() = 𝑓(𝑊 (𝑋)

Logit

𝜕ℒ

𝜕𝑤12
(3) = 𝑧2

(3)𝛿1
(345)

𝛿 =
𝜕ℒ
𝜕𝑎

Logit

Backprop

1. Compute the gradients '(
')

at the
final Logit Layer

2. Figure out how the gradients
change as they traverse a single
node
in the network

3. Apply these rules to the whole
network, one node (layer) at
a time.

/0
/1=

/0
/2

/2
/1 =

/0
/2 ℎ′(𝑥)

𝒛 = 𝒉(𝒙)

L = f(z)
z = h(x)

By Chain Rule of Derivatives

/0
/1=k

/0
/2

𝒛 = 𝒌𝒙

Gradient Multiplied by same Constant

/0
/1=

/0
/2

/2
/1

/0
/1

=/0
/2

/2
/1

/0
/3=

/0
/2

/2
/3

𝒛 = 𝒉(𝒙, 𝒚)

/0
/1

=/0
/2

/0
/3=

/0
/2

𝒛 = 𝒙 + 𝒚

Gradient gets broadcast across
all branches

/0
/1=

/0
/2

/2
/1

/0
/1

=y /0
/2

/0
/3=x /0/2

𝒛 = 𝒙 ∗ 𝒚

/0
/1=

/0
/2

/2
/1

/0
/1

= /0
/2

/0
/3=0

𝒛 = 𝒎𝒂𝒙(𝒙, 𝒚)

If x > y Gradient routed to the branch
with the larger input

/0
/1=

/0
/2

/2
/1

𝜕𝐿
𝜕𝑥 = 6

𝜕𝐿
𝜕𝑧

𝑖𝑓 𝑥 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒛 = 𝒎𝒂𝒙(𝒙, 𝟎)

Gradient passes through if x > 0, otherwise it is suppressed

/0
/1

=/0
/2

/2
/1

Input x acts like a switch control

𝜕𝐿
𝜕𝑥 = 𝑧(1 − 𝑧)

𝜕𝐿
𝜕𝑧

𝒛 = 𝝈 𝒙 =
𝟏

𝟏 + 𝒆𝒙𝒑(−𝒙)

/0
/1=

/0
/2

/2
/1

Gradient flows through
only if x lies near the origin,
Otherwise it is suppressed.

5. Sigmoid Operation

𝛿-. =
𝜕𝐿

𝜕𝑎-
(.)

𝑎"* 𝛿"*

𝑎+* 𝛿+*

𝑎#* 𝛿#*

y1

y3

y2

𝜕ℒ
𝜕𝑦!

= −
𝑡!
𝑦!

ℒ = −K
!,"

$
𝑡! log 𝑦!

𝜕ℒ
𝜕𝑎!

= 𝑦! − 𝑡!

𝑧#
(+)=f(𝑎#

(+))

𝑎"
($) = ∑𝑤"&

($)𝑧&
(") +𝑏"

($)

𝛿!
(*) =

𝜕𝐿

𝜕𝑎#
(*) = 𝑦! − 𝑡!

𝑎!
(#)

𝑎%
(#)

𝑎&
(#)

𝑎#
(+) 𝑧"

($)

.

.

.

𝑦! =
exp(𝑎!

(#))
∑%&'(exp(𝑎%

(#))

𝑦' =
exp(𝑎'

(#))
∑%&'(exp(𝑎%

(#))

𝑦(=
exp(𝑎(

(#))
∑%&'(exp(𝑎%

(#))

𝛿"
(*)

𝛿#
(*)

𝛿$
(*)

𝛿#
(+) =

𝜕𝐿

𝜕𝑎#
(+) = f′(𝑎#

(+))K
!,"

$

𝑤!#
(*)𝛿!

(*)

𝛿!
(*) =

𝜕𝐿

𝜕𝑎#
(*) = 𝑦! − 𝑡!

𝑓(𝑎#
(+))

𝑤"#
(*)

𝑤##
(*)

𝑤$#
(*)

𝜕𝐿

𝜕𝑧#
(+) = K

!,"

$

𝑤!#
(*)𝛿!

(*)

.

.

.

𝑎%
(') = ∑𝑤%(

(') 𝑧(
(%) +𝑏%

(')

.

.

. 𝛿#
(+)

𝑎!
(#) = ∑𝑤!(

(#) 𝑧(
(') +𝑏%

(#)

𝑧%
(') 𝑎'

(#)

𝑎!
(#) = 𝑤!%

(#)𝑧%
(')

𝛿 =
𝜕𝐿
𝜕𝑎

𝑎"* 𝛿"*

𝑎+* 𝛿+*

𝑎#* 𝛿#*

y1

y3

y2

𝜕ℒ
𝜕𝑦!

= −
𝑡!
𝑦!

ℒ = −K
!,"

$
𝑡! log 𝑦!

𝜕ℒ
𝜕𝑎!

= 𝑦! − 𝑡!

Δ(&'() = Y-TΔ(+) = 𝑓/ 𝐴 + ⨀𝑊0∆(+'()

=ℒ

=>!!
(!) =

=ℒ

=?!
(!)

=?!
(!)

=>!!
(!) = =ℒ

=?!
(!) 𝑧@

(5)
= 𝛿@

(@)𝑧@
(5)

𝑎#
(#) = ∑𝑤#&

(#)𝑧&
(") +𝑏#

(#)

1. Forward Pass

2. Backward Pass

3. Gradient Computation

Set up Model
(Define Computational Graph)

Initialize Weights

Loop for
E Epochs

Loop for
M/B Batches

Feed-in Next Training Batch
Compute Gradients

Compute New Weights

Compute Loss
Compute Training Accuracy

Compute Test Accuracy

Process Batch
(B = batch size)

Backprop Forward Pass
Compute z’s

Backprop Backward Pass
Compute 𝛿)𝑠

Compute Gradients
𝜕ℒ
𝜕𝑤 = 𝑧𝛿

𝑤&1 ← 𝑤&1 −
𝜂
𝐵
/
234

5
𝜕ℒ(𝑠)
𝜕𝑤&1

Training
Algorithm
Keras

} Mid-Term Exam: Nov 9, 7:35-9:10PM
◦ Syllabus: Lectures 1 to 14

} Project Proposal Due: Nov 2
◦ Once you have settled on a Project Idea, talk to me (before

starting work)!

} Project Presentations (Dec 7):
◦ 15 minutes per presentation + 2 minutes Q&A

} Popular Open Data Repositories
◦ Kaggle: www.kaggle.com
◦ Amazon’s AWS datasets: aws.amazon.com/fr/datasets/
◦ UC Irvine ML Repository: archive.ics.uci.edu/ml/

} Meta Portals (list of open data repositories)
◦ dataportals.org
◦ opendatamonitor.eu
◦ quandl.com

} Other pages
◦ Wikipedia’s List of ML Datasets:
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

◦ Quora.com question: goo.gl.zDR78y/
◦ Datasets subreddit: www.reddit.com/r/datasets

} Your own:
◦ With Transfer Learning you can reuse parts of existing trained models,

and train your datasets using smaller samples (1000 vs a million)

http://www.kaggle.com/
http://www.reddit.com/r/datasets

} Quality and definition of the project idea:
scored as 1,2,3

} Execution of the idea, i.e., coding, results.
1,2,3

} Quality of presentation and how much the
others learned from the presentation: 1,2,3

} Marathi to English Translator
} Dog Breed Classifier
} Fashion Item Classifier
} X-Ray Image Classifier
} Quora Classifier
} Time Series Analysis using RNNs
} Question Answering System
} VIX Prediction

} Chapters 8: TrainingNNsBackprop
https://srdas.github.io/DLBook2/

https://srdas.github.io/DLBook2/

