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(3) Compute
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Need a way of Efficiently Computing           for EVERY 
Weight!!
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224x224x3 image with a 100 node layer ! 15 million weights!





} By the late 1960s, people realized that hidden layers were 
needed to increase the modeling power of Neural Networks. 

} There was little progress in this area until the mid-1980s, 
since there was no efficient algorithm for computing #ℒ

#%

} The Backprop algorithm (1986) met this need, and today 
remains a key part of the training scheme for all kinds of new 
deep architectures that have been discovered since then.



} Backprop requires only TWO passes to compute ALL the 
derivatives, irrespective of the size of the network!
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Given an input vector X, compute the activations z for each
neuron in the network
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Backprop





1. Compute the gradients '(
')

at the
final Logit Layer

2. Figure out how the gradients
change as they traverse a single
node
in the network

3. Apply these rules to the whole
network, one node (layer) at
a time.
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L = f(z)
z = h(x)

By Chain Rule of Derivatives
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𝜕𝐿
𝜕𝑧

𝑖𝑓 𝑥 > 0
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𝒛 = 𝒎𝒂𝒙(𝒙, 𝟎)

Gradient passes through if x > 0, otherwise it is suppressed
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Input x acts like a switch control
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Gradient flows through
only if x lies near the origin,
Otherwise it is suppressed.





5. Sigmoid Operation
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1. Forward Pass

2. Backward Pass

3. Gradient Computation



Set up Model
(Define Computational Graph)

Initialize Weights

Loop for
E Epochs

Loop for
M/B Batches

Feed-in Next Training Batch
Compute Gradients

Compute New Weights

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy

Process Batch
(B = batch size)

Backprop Forward Pass
Compute z’s

Backprop Backward Pass
Compute 𝛿)𝑠

Compute Gradients
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𝐵
/
234

5
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Training
Algorithm
Keras





} Mid-Term Exam: Nov 9, 7:35-9:10PM
◦ Syllabus: Lectures 1 to 14

} Project Proposal Due: Nov 2
◦ Once you have settled on a Project Idea, talk to me (before 

starting work)!

} Project Presentations (Dec 7): 
◦ 15 minutes per presentation + 2 minutes Q&A



} Popular Open Data Repositories
◦ Kaggle: www.kaggle.com
◦ Amazon’s AWS datasets: aws.amazon.com/fr/datasets/
◦ UC Irvine ML Repository: archive.ics.uci.edu/ml/

} Meta Portals (list of open data repositories)
◦ dataportals.org
◦ opendatamonitor.eu
◦ quandl.com

} Other pages
◦ Wikipedia’s List of ML Datasets: 
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

◦ Quora.com question: goo.gl.zDR78y/
◦ Datasets subreddit: www.reddit.com/r/datasets

} Your own:
◦ With Transfer Learning you can reuse parts of existing trained models, 

and train your datasets using smaller samples (1000 vs a million)

http://www.kaggle.com/
http://www.reddit.com/r/datasets


} Quality and definition of the project idea: 
scored as 1,2,3

} Execution of the idea, i.e., coding, results. 
1,2,3

} Quality of presentation and how much the 
others learned from the presentation: 1,2,3



} Marathi to English Translator
} Dog Breed Classifier
} Fashion Item Classifier
} X-Ray Image Classifier
} Quora Classifier
} Time Series Analysis using RNNs
} Question Answering System
} VIX Prediction



} Chapters 8: TrainingNNsBackprop
https://srdas.github.io/DLBook2/

https://srdas.github.io/DLBook2/

