
Lecture 4
Subir Varma

𝑥!

𝑥"

𝑥#

𝑎 =$
$%!

#

𝑤$𝑥$ + 𝑏 𝜎(𝑎)

w1

w2

wn

𝑦

𝑦 = 𝜎(𝐖𝐗 + b)

ℒ 𝑊 = -[𝑡 𝑠 log 𝑦 𝑠 + (1 − 𝑡 𝑠)log(1 − 𝑦 𝑠)]

!"
!#!

= 𝑥" 𝑠 [𝑦 𝑠 − 𝑡 𝑠]

𝑤" ← 𝑤" − 𝜂𝑥$ 𝑠 [𝑦 𝑠 − 𝑡 𝑠] Learning
Iteration

N+1 Parameters

𝑤 ← 𝑤 − 𝜂
𝜕𝐿
𝜕𝑤

Image Filter

Input Logits Predictions

K Filters operating in parallel

} Appropriate for K-ary classification networks

Sum of all K outputs is 1
Results in a probability
distribution

𝐴 = 𝑊𝑋 + 𝐵
𝑌 = ℎ(𝐴)

𝑎4
⋮
𝑎5

=
𝑤44 ⋯ 𝑤46
⋮ ⋱ ⋮

𝑤54 ⋯ 𝑤56

𝑥4
⋮
𝑥6

+
𝑏4
⋮
𝑏5

𝑎& =$
$%!

#

𝑤&$𝑥$ + 𝑏&

NK+K Parameters

𝐴 = 𝑊𝑋 + 𝐵
𝑌 = ℎ(𝐴)

𝑎4 … 𝑎47
⋮

𝑎5 … 𝑎67
=

𝑤44 ⋯ 𝑤46
⋮ ⋱ ⋮

𝑤54 ⋯ 𝑤56

𝑥44 … 𝑥47
⋮

𝑥64 … 𝑥67
+

𝑏4
⋮
𝑏5

K Filters operating in parallel

𝑎& =$
$%!

#

𝑤&$𝑥$ + 𝑏&

Feed B inputs into the model
together

𝐿 𝑊 = − 4
8
∑9:48 ∑;:45 𝑡; 𝑠 log 𝑦;(s)

Loss Function for the Entire Training Set

ℒ(𝑠) = −=
;:4

5
𝑡; (s)log 𝑦;(𝑠)

Loss Function for the sth Sample

Evaluate			 "ℒ
"#56

,	where

ℒ = −∑$%&' 𝑡$ log 𝑦$, and

𝑦$ =
(75

∑689
: (76

, 𝑎$ = ∑*%&+ 𝑤$* 𝑥* + 𝑏$

Answer:
!ℒ
!"!"

= 𝑥* (𝑦$ − 𝑡$)

𝑤$% ← 𝑤$% − 𝜂
𝜕ℒ
𝜕𝑤$%

If ℒ = −∑&%!' 𝑡& log 𝑦&
then
!ℒ
!##$

= 𝑥) (𝑦& − 𝑡&)

Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
B Batches

Compute Loss
Compute Training Accuracy

Compute Test Accuracy

𝑤!" ← 𝑤!" −
𝜂
𝐵
(
"#$

%

𝑥"(𝑠)[𝑦! 𝑠 − 𝑡! 𝑠]

Training Using
Batch Gradient Descent
For K-ary Classification

L = − $
%
∑&#$% ∑!#$' 𝑡! (𝑠)log 𝑦!(𝑠)

Backward Pass, Compute New Weights

Forward Pass, Compute Model Output 𝑦! =
(!"

∑#$%
& (!#

, 𝑎! = ∑"#$* 𝑤!" 𝑥" + 𝑏!

<Karpathy Lecture>

10 Categories

10 Templates

The weight parameters are an image filter!

Works well only if the points (x1,…,xN) are approximately linearly separable

From “Deep Learning” by Goodfellow et.al.

Add a Module that can
Learn Representations

x1

x2

xN

z1

z2

zP

a1

a2

aK

Representation
Learning

Original
Representation

New
Representation
zi = fi(x1, x2, …,xn)

Logits

What is a desirable property of a good representation?

x1

x2

.

.

.

xN

.

.

.

Hidden Layer

Input
Layer Logit

Layer

𝑎!
(#)

𝑎#
(#)

𝑎%
(#)

𝑎!
(!)

𝑎#
(!)

𝑎&
(!)

𝑧!
(!)=f(𝑎!

(!))

𝑧#
(!)=f(𝑎#

(!))

𝑧&
(!)=f(𝑎&

(!))

.

.

.

𝑤''
(')

𝑤*'
(')

𝑤+'
(')

𝑦+ =
exp(𝑎+

(+))
∑!#$' exp(𝑎!

(+))

𝑦$ =
exp(𝑎$

(+))
∑!#$' exp(𝑎!

(+))

𝑦' =
exp(𝑎'

(+))
∑!#$' exp(𝑎!

(+))

ActivationsPre-Activations

a: Pre-Activation
z: Activation
f: Activation

Function

.

.

.

Non-Linearity

} Representations can be learnt as part of the
training process, from the data itself

} The Classification problem is broken up into
smaller parts, with each node in the Logit Layer
responding to sub-parts of an image

} Provides a way to create more powerful models, by
adding additional layers and/or additional hidden
nodes per layer

Default Choice
For Activation Function

x1

x2

.

.

.
xN

.

.

.

Hidden Layer 1
Input
Layer Logit

Layer

𝑎!
('(!)

𝑎#
('(!)

𝑎%
('(!)

𝑎!
(!)

𝑎#
(!)

𝑎.%
($)

𝑧!
(!)=f(𝑎!

(!))

𝑧+
($)=f(𝑎+

($))

𝑧.%
($)=f(𝑎.%

($))

.

.

.

.

.

.

𝑎!
(') 𝑧!

(')=f(𝑎!
('))

𝑎#
(') 𝑧+

(/)=f(𝑎+
(/))

𝑎)!
(')

𝑧.'
(/)=f(𝑎.'

(/))

Hidden Layer R

. . .

. . .

. . .

.

.

.

More layers increase the power of the representation learning
But: Training becomes harder

𝑍(') = 𝑓(𝑊 ' 𝑋) 𝑍()) = 𝑓(𝑊) 𝑍()*')) Y= ℎ(𝑊 +,' 𝑍(+))

𝑦$ =
exp(𝑎$

(+))
∑!#$' exp(𝑎!

(+))

𝑦' =
exp(𝑎'

(+))
∑!#$' exp(𝑎!

(+))

𝑦+ =
exp(𝑎+

(+))
∑!#$' exp(𝑎!

(+))

28 X 28
Grid

Input value for
each grid

In grayscale

11,935
Parameters

Instead of trying to detect an entire
object, detect smaller shapes

Put together small shapes
to create entire object

} It is better add additional layers to make the
network more powerful (as opposed to
increasing the nodes per layer)
◦ Results in a network with a smaller number of

nodes
◦ Increases the network non-linearity
◦ Allows the network to develop better hierarchical

representations

} Stochastic Gradient Descent runs into
computational problems, which were only solved in
the last 10 years.
◦ Vanishing Gradient Problem

In practice the number of hidden layers is limited to
20 or less

} The width of the network has a critical effect on the smoothness of
its Loss Function

} Loss Function landscape becomes progressively smoother as we
make network wider. This makes the optimization task much easier

} Effect more pronounced in networks with hundreds of layers

https://arxiv.org/pdf/1712.09913.pdf

https://arxiv.org/pdf/1712.09913.pdf

Feed Data in Batches Validation Data

Flatten 3D Tensor into a Vector

Convert Labels from Integers
to 1-Hot Vectors

Define Model

Execute ModelCompile

Input Output

Sequential Processing

Example: Majority Vote
models

Increases prediction accuracy

Multiple Predictions

The final decision is a
function of more than
one type of input data

Input

Output 1
Binary: Yes/No

Output 2
Binary: Yes/No

Output 3
Binary: Yes/No

For classifying more than one object per input

Input Output+

Residual Connection

Enables the training of models with hundreds of hidden layers

All these different topologies can be easily coded using the
Keras Functional API

Ground Truth
or

Label

Model

ℎ&(𝑋,𝑊)

X(s)

X(s)

𝑇 = (𝑡!, 𝑡", … , 𝑡')

Y=(𝑦!, 𝑦", … , 𝑦')

(3) Compute
Model Prediction

(4) Compute Loss

(5) Change W to make the Loss smaller

(1) Collect Labeled Data
(2) Choose Model hk(X,W)

ℒ 𝑊 = -[𝑡 𝑠 log 𝑦 𝑠 + (1 − 𝑡 𝑠)log(1 − 𝑦 𝑠)]

Need a way of Efficiently Computing for EVERY
Weight!!

ℒ = −$
:;'

<
𝑡: log 𝑦:

𝜕ℒ
𝜕𝑤$)

𝑤-% ← 𝑤-% − 𝜂
𝜕ℒ
𝜕𝑤-%

The training algorithm
stays the same:

} By the late 1960s, people realized that hidden layers were
needed to increase the modeling power of Neural Networks.

} There was little progress in this area until the mid-1980s,
since there was no efficient algorithm for computing !ℒ

!#

} The Backprop algorithm (1986) met this need, and today
remains a key part of the training scheme for all kinds of new
deep architectures that have been discovered since then.

} Backprop requires only TWO passes to compute ALL the
derivatives, irrespective of the size of the network!

FORWARD PASS
Compute the Node
Activations z

𝜕ℒ
𝜕𝑤

= zδ

x1

x2

.

.

.
xN-1

xN

.

.

.

Y
.
.
.

.

.

.

Given an input vector X, compute the activations z for each
neuron in the network

Y= ℎ(𝑊 +,' 𝑍(+))

𝑍()) = 𝑓(𝑊) 𝑍()*'))

𝑍(') = 𝑓(𝑊 ' 𝑋)

Logit

f: ReLu Function
h: Softmax Function

𝜕ℒ

𝜕𝑤;*
(<) = 𝑧*

(<)𝛿;
(<=&)

𝛿 =
𝜕ℒ
𝜕𝑎

Logit

𝑎!
(!)

𝑎"
(!)

𝑎!
(")

𝑎"
(")

Δ(/) = Y-T

Δ(0) = 𝑓1 𝐴 0 ⨀(𝑊(/))2∆(/)Δ(') = 𝑓1 𝐴 ' ⨀(𝑊(0))2∆(0)

y

Logit
𝛿"
(")

𝛿 =
𝜕𝐿
𝜕𝑎

Δ(+,') = Y-T

Δ()) = 𝑓1 𝐴) ⨀(𝑊(),'))2∆(),')

Logit

} Chapters 5: Linear Learning Models
} Chapter 6: NNDeep Learning

https://srdas.github.io/DLBook2/
} First few Sections of Chapter 7:

TrainingNNsBackprop

https://srdas.github.io/DLBook2/

