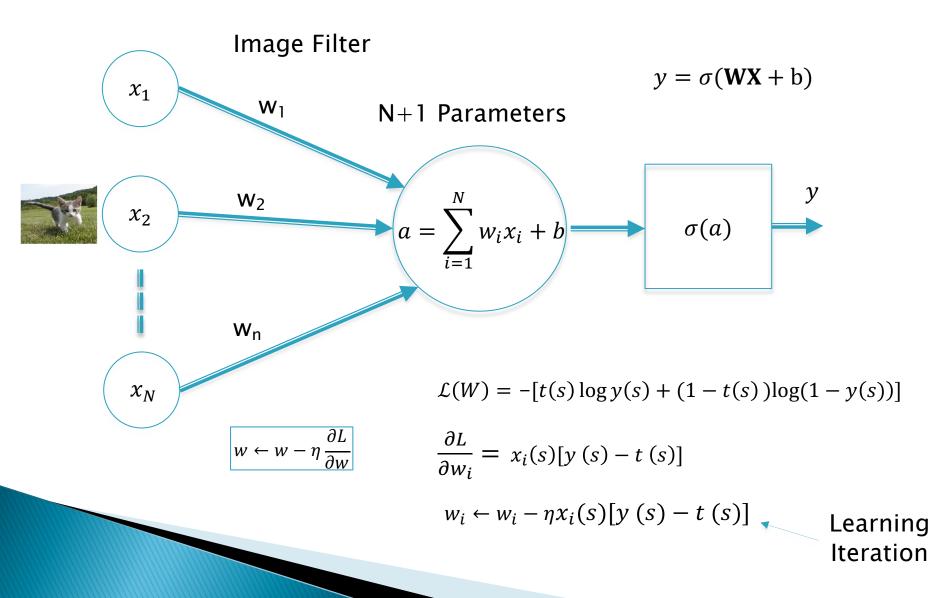
Dense Feed Forward Networks

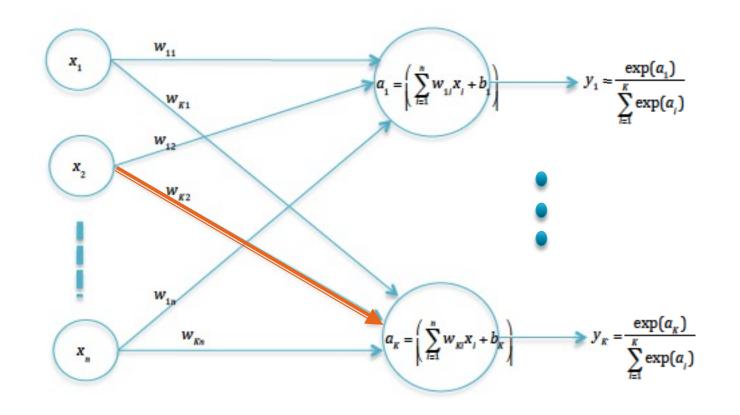
Lecture 4 Subir Varma

Linear System with Two Classes



Linear Classification Models with K Classes

K-ary Classification



Input

Predictions

K Filters operating in parallel

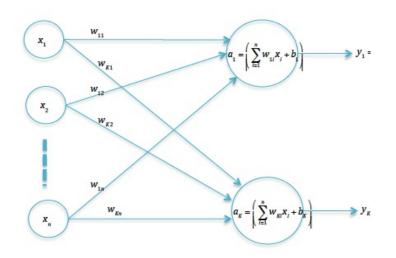
The SoftMax Classifier

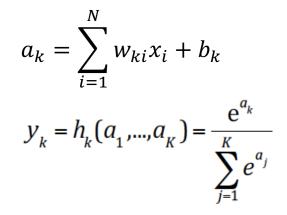
$$y_k = h_k(a_1, ..., a_K) = \frac{e^{a_k}}{\sum_{j=1}^{K} e^{a_j}}$$

Sum of all K outputs is 1 Results in a probability distribution

Appropriate for K-ary classification networks

K-ary Classification

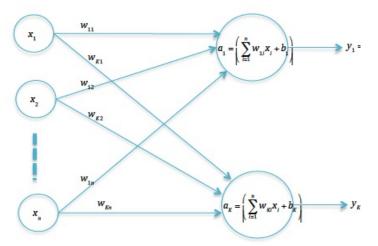




NK+K Parameters

$$\begin{pmatrix} a_1 \\ \vdots \\ a_K \end{pmatrix} = \begin{pmatrix} w_{11} & \cdots & w_{1N} \\ \vdots & \ddots & \vdots \\ w_{K1} & \cdots & w_{KN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_K \end{pmatrix}$$
$$A = WX + B$$
$$Y = h(A)$$

K-ary Classification with Input in Batches



K Filters operating in parallel

$$a_{k} = \sum_{i=1}^{N} w_{ki} x_{i} + b_{k}$$
$$y_{k} = h_{k} (a_{1}, \dots, a_{K}) = \frac{e^{a_{k}}}{\sum_{j=1}^{K} e^{a_{j}}}$$

Feed B inputs into the model together

$$\begin{pmatrix} a_1 & \dots & a_{1B} \\ \vdots & \\ a_K & \dots & a_{NB} \end{pmatrix} = \begin{pmatrix} w_{11} & \cdots & w_{1N} \\ \vdots & \ddots & \vdots \\ w_{K1} & \cdots & w_{KN} \end{pmatrix} \begin{pmatrix} x_{11} & \dots & x_{1B} \\ \vdots & \\ x_{N1} & \dots & x_{NB} \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_K \end{pmatrix}$$

$$A = WX + B$$
$$Y = h(A)$$

Loss Function

Loss Function for the sth Sample

$$\mathcal{L}(s) = -\sum_{k=1}^{K} t_k(s) \log y_k(s)$$

Loss Function for the Entire Training Set

$$L(W) = -\frac{1}{M} \sum_{s=1}^{M} \sum_{k=1}^{K} t_k(s) \log y_k(s)$$

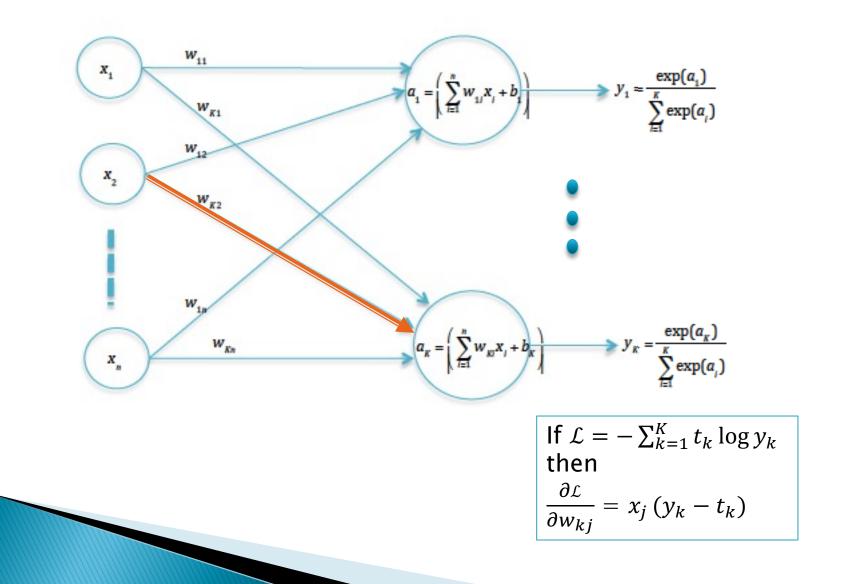
Gradient Calculation

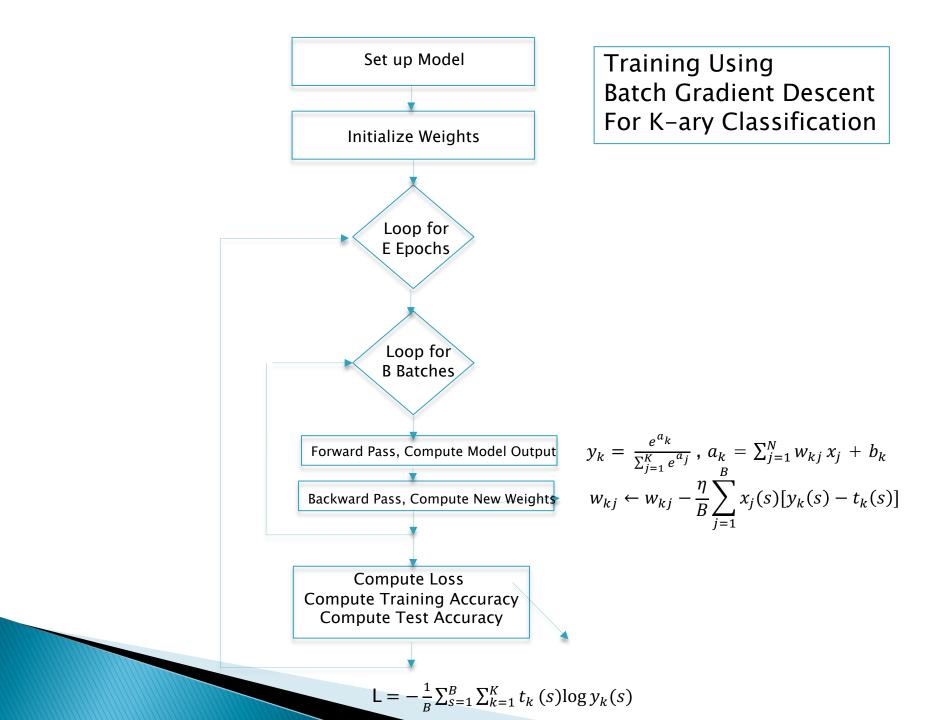
Evaluate
$$\frac{\partial \mathcal{L}}{\partial w_{kj}}$$
, where
 $\mathcal{L} = -\sum_{k=1}^{K} t_k \log y_k$, and
 $y_k = \frac{e^{a_k}}{\sum_{j=1}^{K} e^{a_j}}$, $a_k = \sum_{j=1}^{N} w_{kj} x_j + b_k$

 $\partial \mathcal{L}$

Answer: $\frac{\partial \mathcal{L}}{\partial w_{kj}} = x_j \left(y_k - t_k \right)$

K-ary Classification

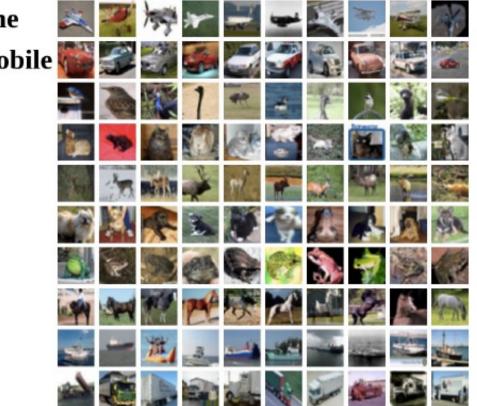




Interpretation of the Linear Classifier

Interpretations of the Linear Classifier (with CIFAR-10)

airplane automobile bird cat deer dog frog horse ship truck



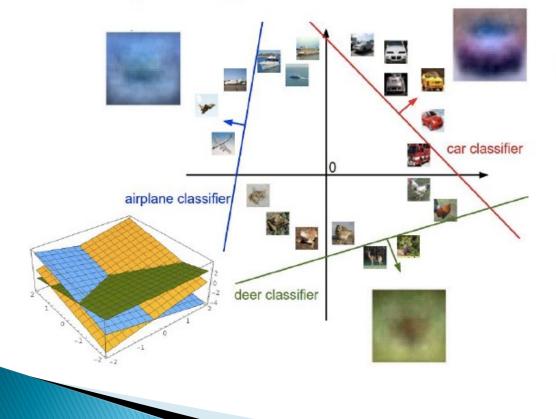
10 Categories

50,000 training images each image is 32x32x3

10,000 test images.

Interpretation: Hyperplane Separators

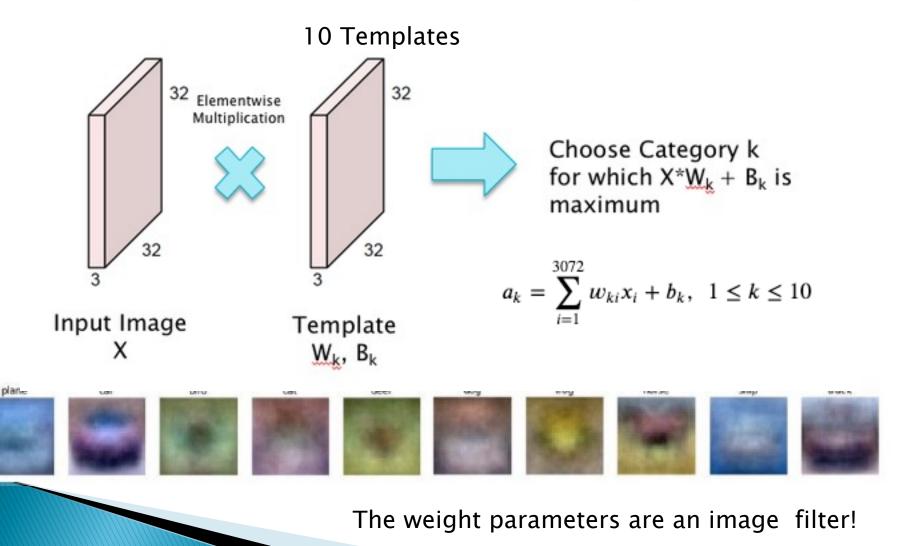
Interpreting a Linear Classifier



f(x,W) = Wx + b

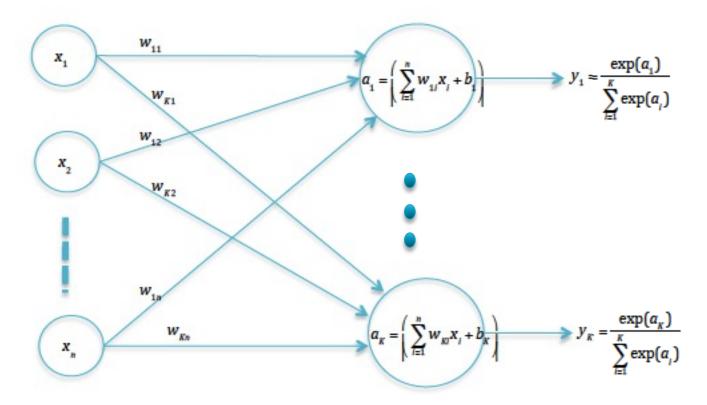
Array of **32x32x3** numbers (3072 numbers total)

Interpretation of Weights as a Filter – Template Matching



Dense Feed Forward Networks

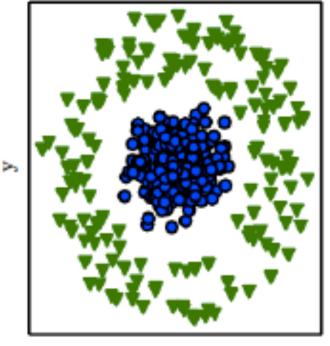
Logistic Regression – Multiple Classes



Works well only if the points $(x_1, ..., x_N)$ are approximately linearly separable

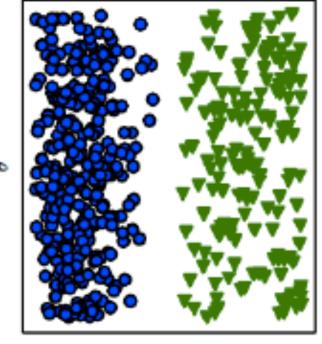
The Importance of Representations

Cartesian coordinates



х

Polar coordinates



7

From "Deep Learning" by Goodfellow et.al.

Hand Tailored Representations

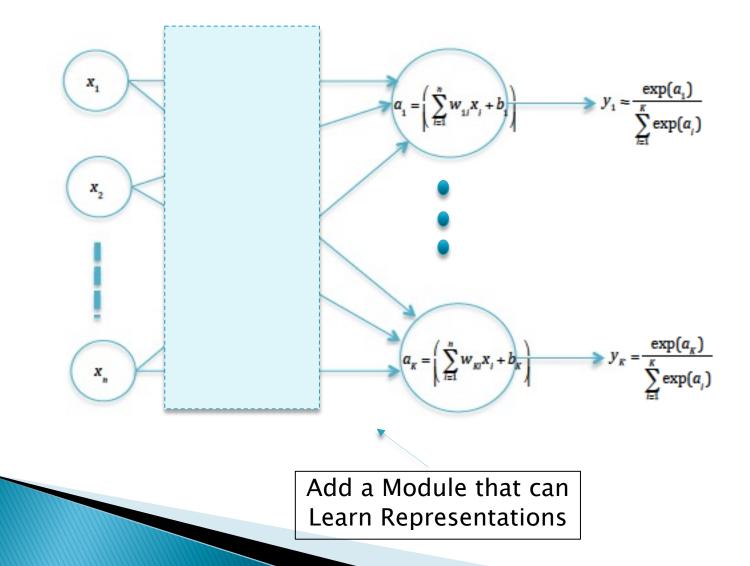
 $\gg h(\sum w_i z_i + b) \longrightarrow \mathbf{y}$

 $z_1 = f_1(w, x_1, ..., x_n)$

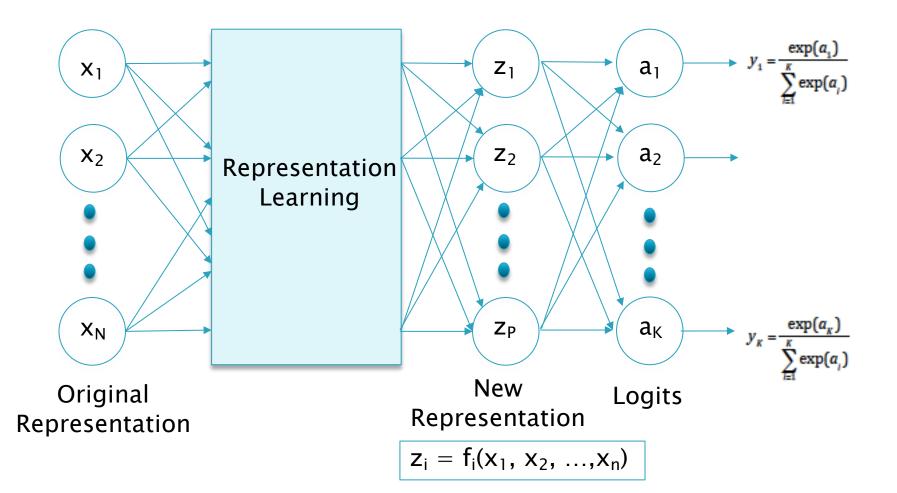
 $z_2 = f_2(w, x_1, ..., x_n)$

$$z_{N} = f_{N}(w, x_{1}, ..., x_{n})$$

Transition to Deep Learning

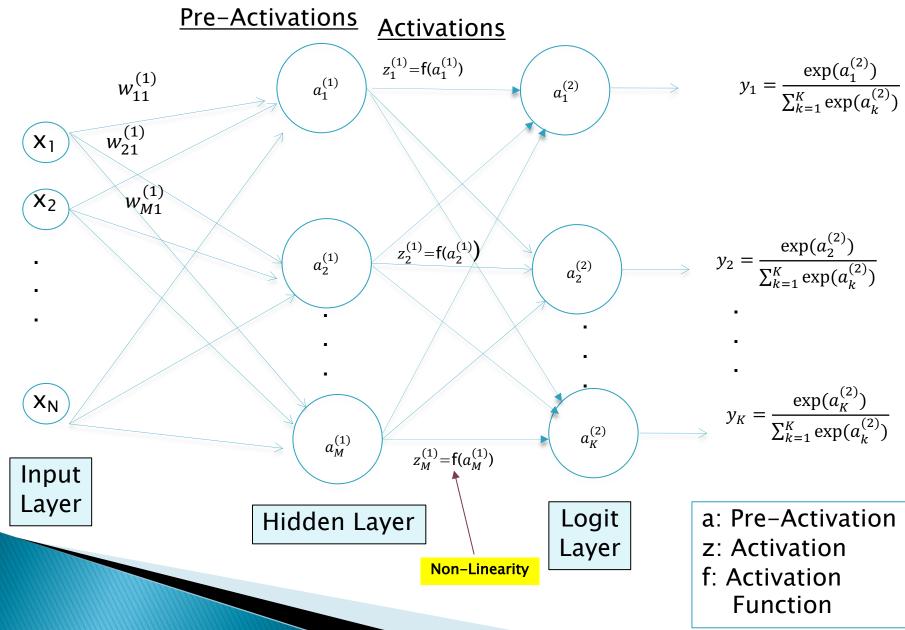


Transition to Deep Learning



What is a desirable property of a good representation?

A Dense Feed Forward Network

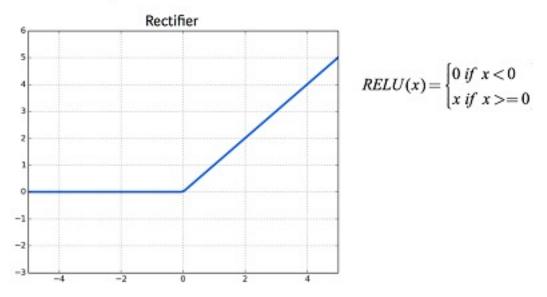


Benefits of Adding Hidden Layers

- Representations can be learnt as part of the training process, from the data itself
- The Classification problem is broken up into smaller parts, with each node in the Logit Layer responding to sub-parts of an image
- Provides a way to create more powerful models, by adding additional layers and/or additional hidden nodes per layer

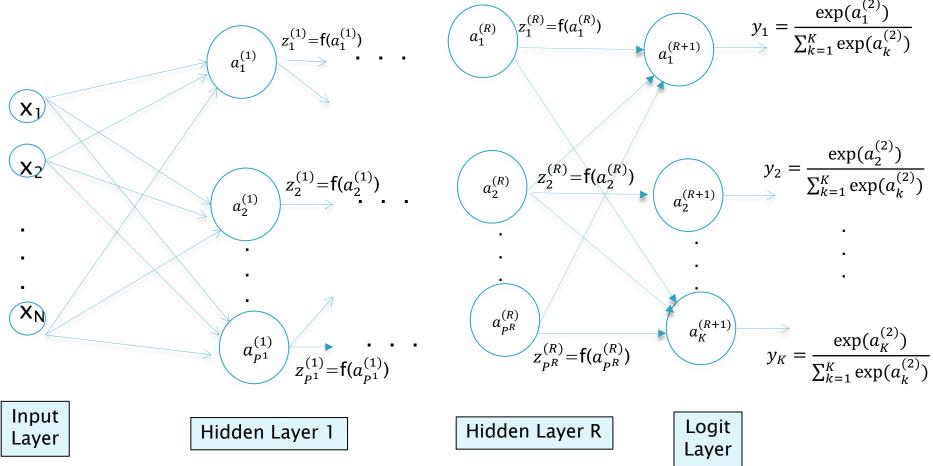
Activation Functions: ReLU

ReLU (Rectified Linear Activation)



Default Choice For Activation Function

Deep Feed Forward Network with Multiple Hidden Layers



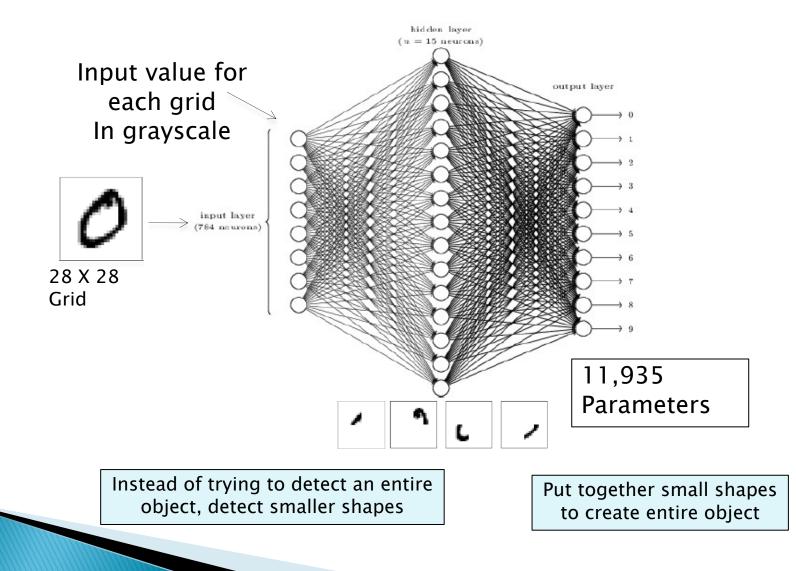
 $Z^{(1)} = f(W^{(1)}X)$

More layers increase the power of the representation learning But: Training becomes harder

 $Z^{(r)} = f(W^{(r)}Z^{(r-1)})$

 $\mathbf{Y} = h(W^{(R+1)}Z^{(R)})$

MNIST Classification: By Composition



Add Layers or Nodes?

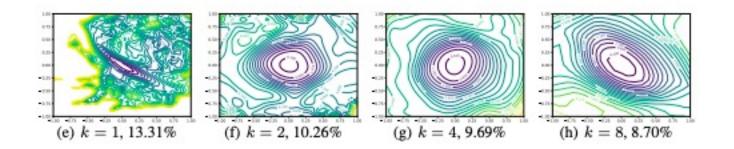
- It is better add additional layers to make the network more powerful (as opposed to increasing the nodes per layer)
 - Results in a network with a smaller number of nodes
 - Increases the network non-linearity
 - Allows the network to develop better hierarchical representations

How Deep can the Network Be?

- Stochastic Gradient Descent runs into computational problems, which were only solved in the last 10 years.
 - <u>Vanishing Gradient Problem</u>

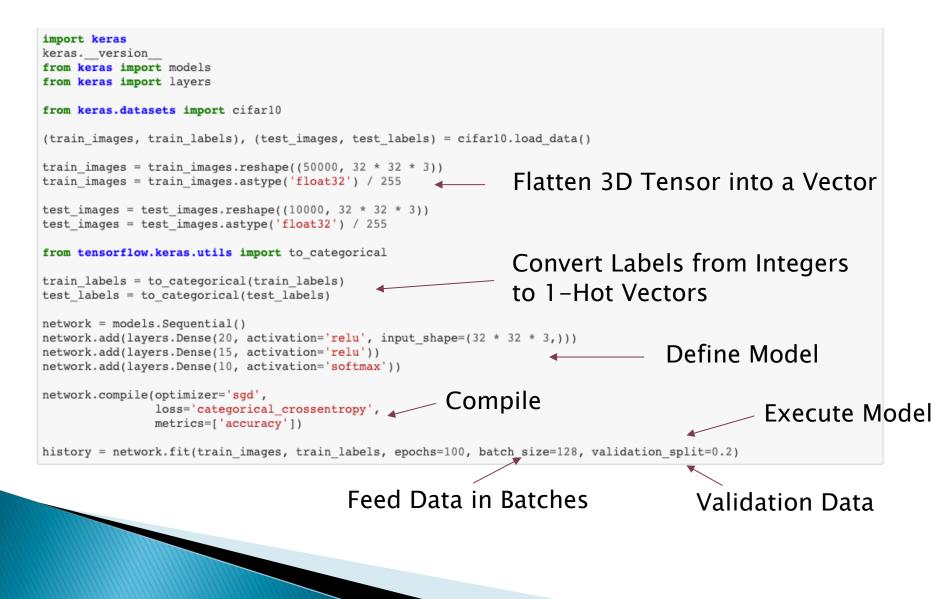
In practice the number of hidden layers is limited to 20 or less

How Wide Should the Network Be?



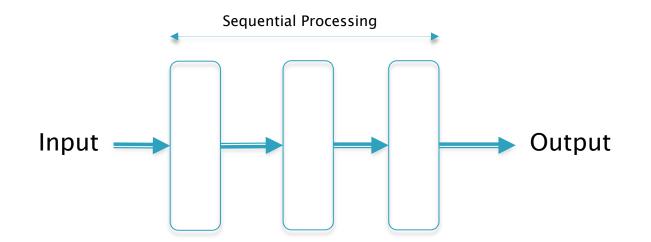
- The width of the network has a critical effect on the smoothness of its Loss Function
- Loss Function landscape becomes progressively smoother as we make network wider. This makes the optimization task much easier
- Effect more pronounced in networks with hundreds of layers

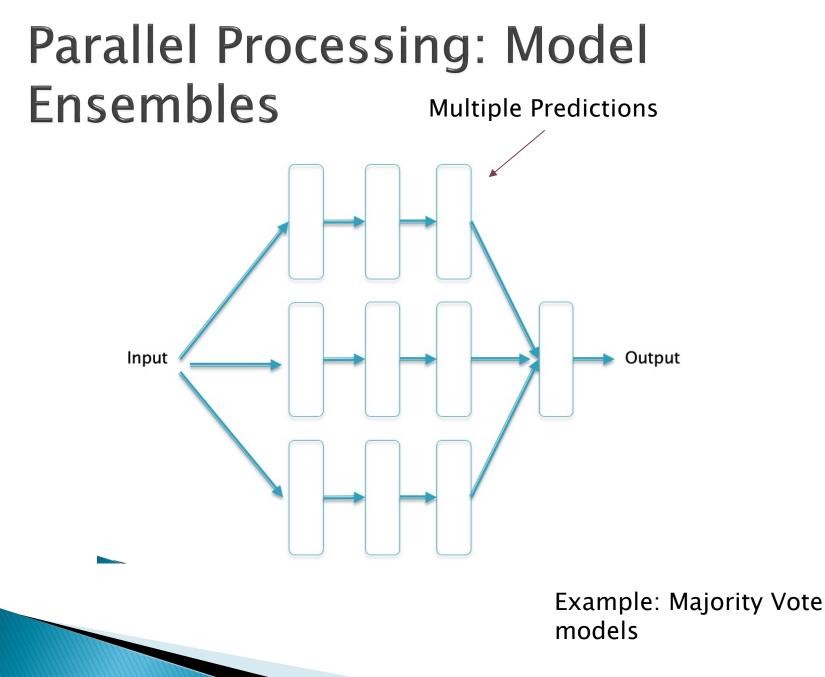
Keras Model for CIFAR-10



Network Topologies for Deep Networks

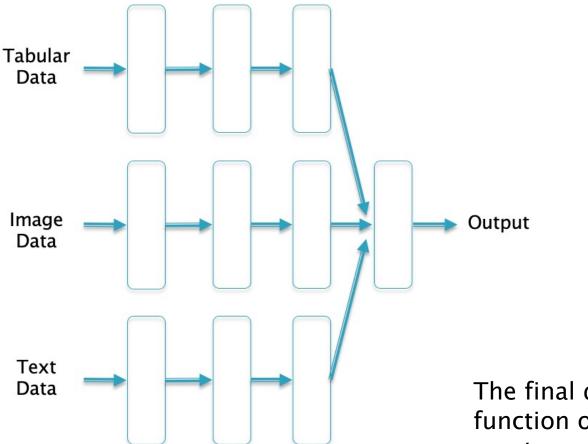
Sequential Processing





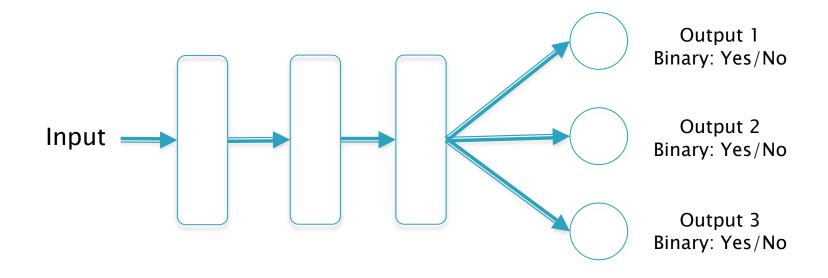
Increases prediction accuracy

Multi-Input Models



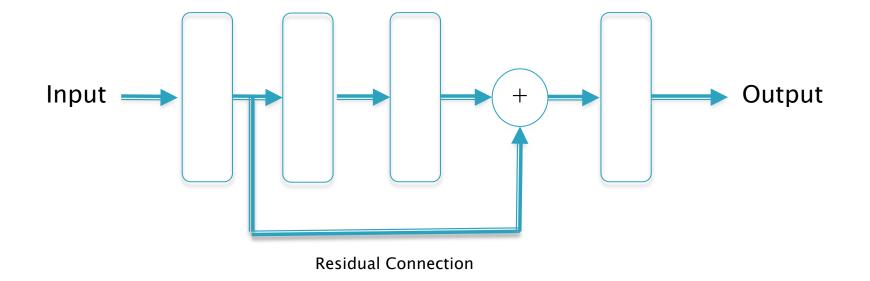
The final decision is a function of more than one type of input data

Multi-Label Classification



For classifying more than one object per input

Residual Connections



Enables the training of models with hundreds of hidden layers

Keras Sequential vs Functional API

All these different topologies can be easily coded using the Keras Functional API

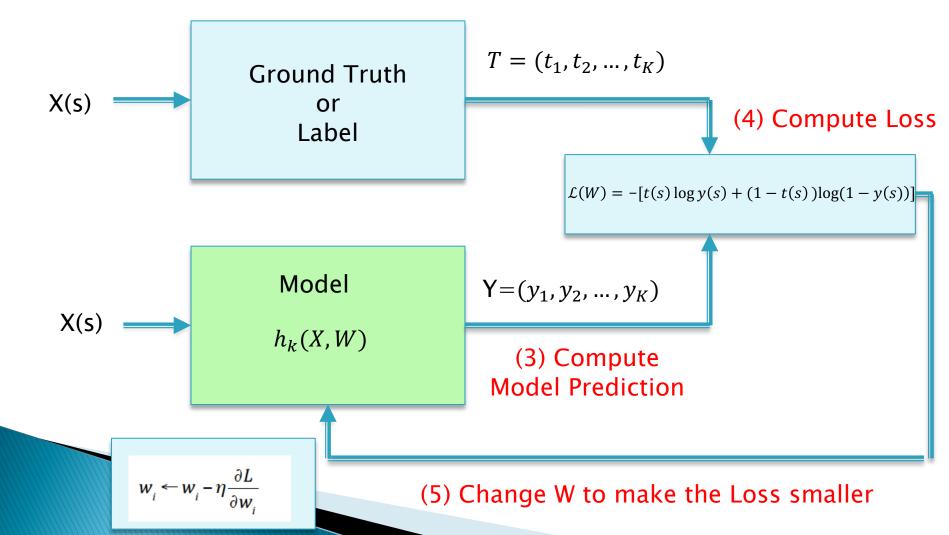
```
import keras
keras. version
from keras import Sequential, Model
from keras import layers
from keras import Input
from keras.datasets import cifar10
(train images, train labels), (test images, test labels) = cifar10.load data()
train images = train images.reshape((50000, 32 * 32 * 3))
train images = train images.astype('float32') / 255
test images = test images.reshape((10000, 32 * 32 * 3))
test images = test images.astype('float32') / 255
from tensorflow.keras.utils import to categorical
train labels = to categorical(train labels)
test labels = to categorical(test labels)
input tensor = Input(shape=(32 * 32 * 3,))
x = layers.Dense(20, activation='relu')(input tensor)
y = layers.Dense(15, activation='relu')(x)
output tensor = lavers.Dense(10, activation='softmax')(v)
model = Model(input tensor, output tensor)
model.compile(optimizer='sqd',
                loss='categorical crossentropy',
                metrics=['accuracy'])
history = model.fit(train images, train labels, epochs=10, batch size=128, validation split=0.2)
```

The Backprop Algorithm

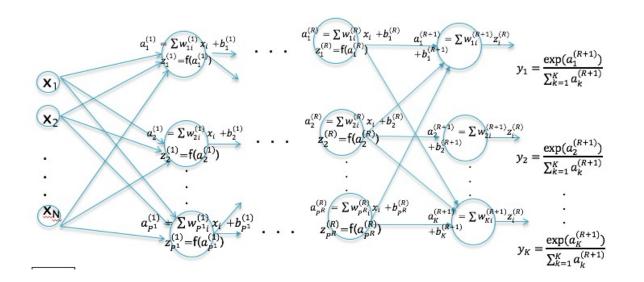
Framework for Supervised Learning

(1) Collect Labeled Data

(2) Choose Model h_k(X,W)



What Problem are we Solving?



The training algorithm stays the same:

$$\mathcal{L} = -\sum_{k=1}^{K} t_k \log y_k$$
$$w_{ij} \leftarrow w_{ij} - \eta \frac{\partial \mathcal{L}}{\partial w_{ij}}$$

Need a way of Efficiently Computing $\frac{\partial \mathcal{L}}{\partial w_{ij}}$ for EVERY Weight!!

Historical Context

- By the late 1960s, people realized that hidden layers were needed to increase the modeling power of Neural Networks.
- There was little progress in this area until the mid-1980s, since there was no efficient algorithm for computing $\frac{\partial \mathcal{L}}{\partial w}$
- The Backprop algorithm (1986) met this need, and today remains a key part of the training scheme for all kinds of new deep architectures that have been discovered since then.

Numerical Differentiation

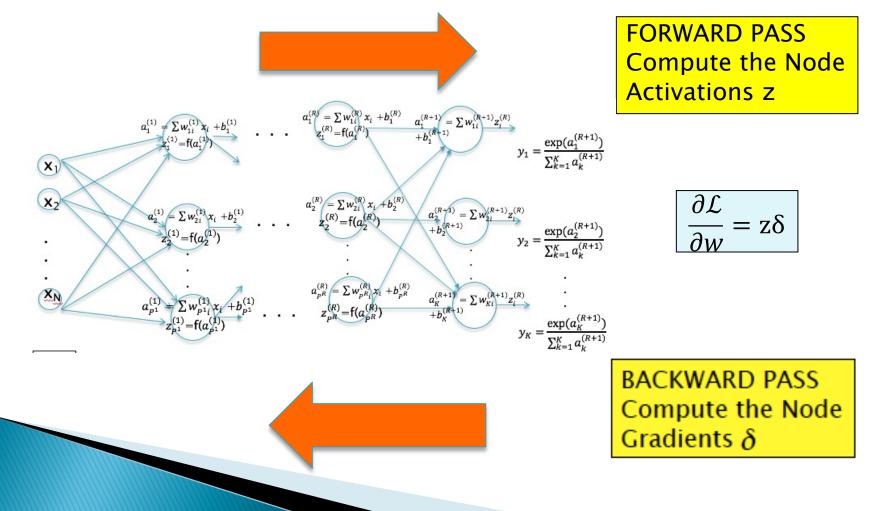
$$\frac{\partial L(w_1, w_2, \cdots, w_i, \cdots, w_n)}{\partial w_i} \approx \frac{L(w_1, w_2, \cdots, w_i + \Delta w_i, \cdots, w_n) - L(w_1, w_2, \cdots, w_i, \cdots, w_n)}{\Delta w_i}$$

What is wrong with this??

With a million weights, need million and one passes through the network to compute all the derivatives!!!

Using Backprop

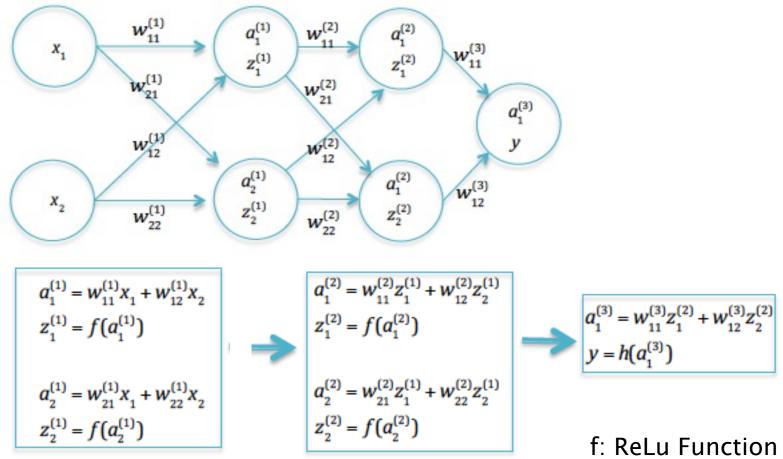
Backprop requires only TWO passes to compute ALL the derivatives, irrespective of the size of the network!



Backprop – Forward Pass $Z^{(1)} = f(W^{(1)}X)$ $Z^{(r)} = f(W^{(r)}Z^{(r-1)})$ Z_1^2 Z_1^1 Z_1^3 $\mathsf{Y} = h(W^{(R+1)}Z^{(R)})$ X_1 **X**₂ Z_{2}^{1} Z_{2}^{2} Z_{2}^{3} a_{1}^{4} > Y X_{N-7} Logit X_N Z_0^2 Z_R^3 Z_P^1

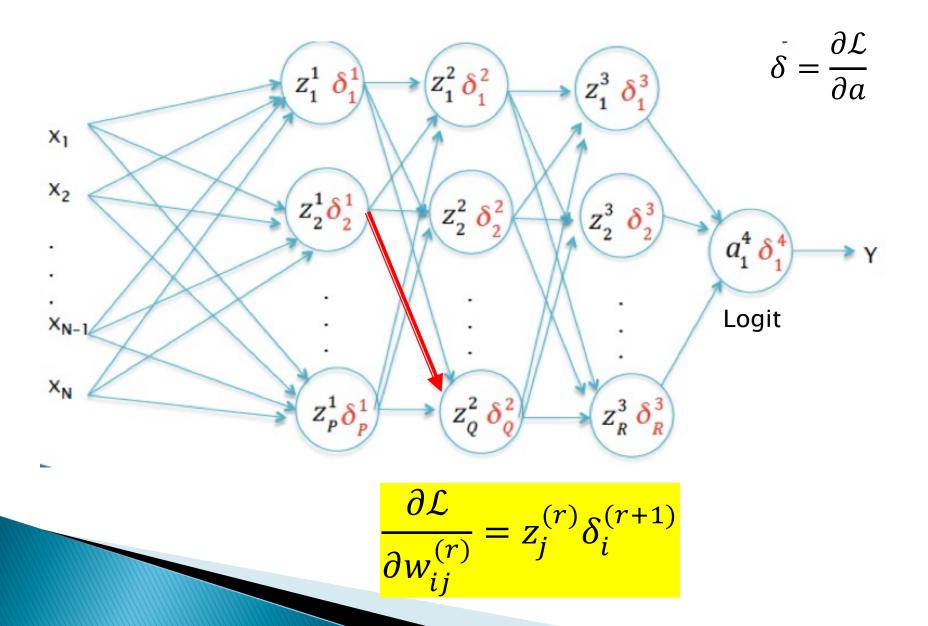
Given an input vector X, compute the activations z for each neuron in the network

Example: Forward Pass

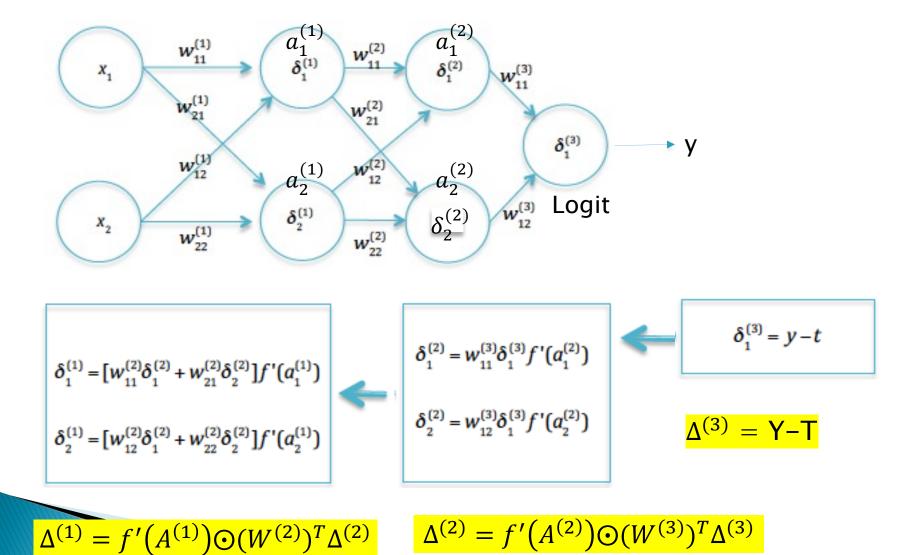


h: Softmax Function

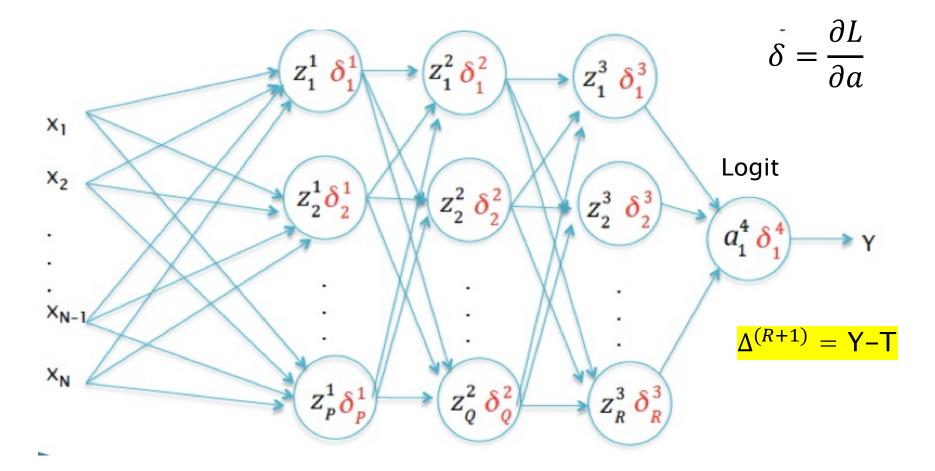
Backprop – Backward Pass



Example: Backward Pass



Backprop – Backward Pass



 $\Delta^{(r)} = f'(A^{(r)}) \Theta(W^{(r+1)})^T \Delta^{(r+1)}$

Supplementary Reading

- Chapters 5: Linear Learning Models
- Chapter 6: NNDeep Learning <u>https://srdas.github.io/DLBook2/</u>
- First few Sections of Chapter 7: TrainingNNsBackprop