
Lecture 4
Subir Varma



𝑥!

𝑥"

𝑥#

𝑎 =$
$%!

#

𝑤$𝑥$ + 𝑏 𝜎(𝑎)

w1

w2

wn

𝑦

𝑦 = 𝜎(𝐖𝐗 + b)

ℒ 𝑊 = -[𝑡 𝑠 log 𝑦 𝑠 + (1 − 𝑡 𝑠 )log(1 − 𝑦 𝑠) ]

!"
!#!

= 𝑥" 𝑠 [𝑦 𝑠 − 𝑡 𝑠 ]

𝑤" ← 𝑤" − 𝜂𝑥$ 𝑠 [𝑦 𝑠 − 𝑡 𝑠 ] Learning
Iteration

N+1 Parameters

𝑤 ← 𝑤 − 𝜂
𝜕𝐿
𝜕𝑤

Image Filter





Input Logits Predictions

K Filters operating in parallel



} Appropriate for K-ary classification networks

Sum of all K outputs is 1
Results in a probability
distribution
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Set up Model

Initialize Weights

Loop for
E Epochs

Loop for
B Batches

Compute Loss 
Compute Training Accuracy

Compute Test Accuracy
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Training Using
Batch Gradient Descent
For K-ary Classification
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<Karpathy Lecture>

10 Categories





10 Templates

The weight parameters are an image  filter!





Works well only if the points (x1,…,xN) are approximately linearly separable



From “Deep Learning” by Goodfellow et.al.





Add a Module that can
Learn Representations
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Representation
Learning

Original
Representation

New
Representation
zi = fi(x1, x2, …,xn)

Logits

What is a desirable property of a good representation?
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} Representations can be learnt as part of the 
training process, from the data itself

} The Classification problem is broken up into 
smaller parts, with each node in the Logit Layer 
responding to sub-parts of an image

} Provides a way to create more powerful models, by 
adding additional layers and/or additional hidden 
nodes per layer



Default Choice
For Activation Function
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28 X 28 
Grid

Input value for 
each grid

In grayscale 

11,935 
Parameters

Instead of trying to detect an entire
object, detect smaller shapes

Put together small shapes
to create entire object



} It is better add additional layers to make the 
network more powerful (as opposed to 
increasing the nodes per layer)
◦ Results in a network with a smaller number of 

nodes
◦ Increases the network non-linearity 
◦ Allows the network to develop better hierarchical 

representations



} Stochastic Gradient Descent runs into 
computational problems, which were only solved in 
the last 10 years.
◦ Vanishing Gradient Problem

In practice the number of hidden layers is limited to 
20 or less



} The width of the network has a critical effect on the smoothness of 
its Loss Function

} Loss Function landscape becomes progressively smoother as we 
make network wider. This makes the optimization task much easier

} Effect more pronounced in networks with hundreds of layers

https://arxiv.org/pdf/1712.09913.pdf

https://arxiv.org/pdf/1712.09913.pdf


Feed Data in Batches Validation Data

Flatten 3D Tensor into a Vector

Convert Labels from Integers 
to 1-Hot Vectors

Define Model

Execute ModelCompile





Input Output

Sequential Processing



Example: Majority Vote
models

Increases prediction accuracy

Multiple Predictions



The final decision is a 
function of more than
one type of input data



Input

Output 1
Binary: Yes/No

Output 2
Binary: Yes/No

Output 3
Binary: Yes/No

For classifying more than one object per input



Input Output+

Residual Connection

Enables the training of models with hundreds of hidden layers



All these different topologies can be easily coded using the 
Keras Functional API





Ground Truth
or

Label

Model

ℎ&(𝑋,𝑊)

X(s)

X(s)

𝑇 = (𝑡!, 𝑡", … , 𝑡')

Y=(𝑦!, 𝑦", … , 𝑦')

(3) Compute
Model Prediction

(4) Compute Loss

(5) Change W to make the Loss smaller

(1) Collect Labeled Data
(2) Choose Model hk(X,W)

ℒ 𝑊 = -[𝑡 𝑠 log 𝑦 𝑠 + (1 − 𝑡 𝑠 )log(1 − 𝑦 𝑠) ]



Need a way of Efficiently Computing           for EVERY 
Weight!!
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The training algorithm
stays the same:



} By the late 1960s, people realized that hidden layers were 
needed to increase the modeling power of Neural Networks. 

} There was little progress in this area until the mid-1980s, 
since there was no efficient algorithm for computing !ℒ

!#

} The Backprop algorithm (1986) met this need, and today 
remains a key part of the training scheme for all kinds of new 
deep architectures that have been discovered since then.





} Backprop requires only TWO passes to compute ALL the 
derivatives, irrespective of the size of the network!

FORWARD PASS
Compute the Node
Activations z
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Given an input vector X, compute the activations z for each
neuron in the network
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f: ReLu Function
h: Softmax Function
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} Chapters 5: Linear Learning Models
} Chapter 6: NNDeep Learning

https://srdas.github.io/DLBook2/
} First few Sections of Chapter 7: 

TrainingNNsBackprop

https://srdas.github.io/DLBook2/

