Linear Networks

Lecture 3 Subir Varma

Today's Lecture

Linear Classification Systems - Logistic Regression

- Supervised Learning
- Loss Functions
- Classification with Two Classes
- Classification with K Classes

Recap of Lecture 2

The job of the neural network is to compute P(Y|X)

Output: Probability Density

Example of a 4D tensor:
A sample of L color images
(sample #, channels, height, width)

Supervised Learning: The Classification Problem

Labels

Application of the input tensor X results in the label T

$$\{1, 2, ..., K\}$$
 Sparse Categorical Labels (Integers)
$$(t_1, t_2, ..., t_K)$$
 Categorical Labels (1-Hot Encoded Labels)

The K categories correspond to the K unit vectors (1, 0, 0, ..., 0) to (0, 0, 0, ..., 1)

The Supervised Learning Problem

Application of the input tensor X(s) results in the label T(s), and we observe M such input-output pairs

Training Set

Problem: Find a model h(X,W) for the Unknown System, such that it is able to Predict "suitably good" values for T, for new values of X.

Test Set

Solution in Two Steps

Step 1

Come up with the structure for the classifier h(X,W) with unknown parameters W

- An educated guess!

Step 2

Iteratively estimate the unknown parameters W from the labeled Training Data (X(s),T(s)), s=1,...M

Known as Training or Learning

Probabilistic Classification

Label = $T \in \{1, 2, ..., K\}$

$$y_k = h_k(X, W) = P(Y = k|X)$$

$$\sum_{k=1}^{K} y_k = 1$$

Solution Strategy

(0) Collect Labeled Data

(1) Choose Model $h_k(X,W)$

We have reduced the problem of Model Synthesis to an Optimization Problem !!

(4) Change W to make the Loss smaller

Loss Functions

Choice of Loss Functions

Loss Function for a single sample

Mean Square Error (MSE)

$$\mathcal{L}(s) = \frac{1}{K} \sum_{k=1}^{K} [y_k(s) - t_k(s)]^2$$

Mean Absolute Error (MAE)

$$\mathcal{L}(s) = \frac{1}{K} \sum_{k=1}^{K} |y_k(s) - t_k(s)|$$

$$L = \frac{1}{M} \sum_{s=1}^{M} \mathcal{L}(s)$$

Loss for the entire Dataset

Used in Regression Problems

Cross Entropy Loss Function

$$\mathcal{L}(s) = -\sum_{k=1}^{K} t_k(s) \log y_k(s)$$
 Used in Classification Problems

$$L = \frac{1}{M} \sum_{s=1}^{M} \mathcal{L}(s)$$

Formula Derived using Maximum Likelihood Estimation Theory

Example: K = 2 (Binary Cross Entropy Loss)

$$\mathcal{L} = -[t \log y + (1-t) \log(1-y)]$$

The Cross Entropy Loss

$$\mathcal{L} = -[t \log y + (1-t) \log(1-y)]$$

$$t_q = 1$$

 $\mathcal{L} = -\log y_q, \ 0 \le y_q \le 1$

Complete Mismatch $y_q = 0$ $\mathcal{L} = \infty$

Exercise: Plot the graph for t = 0

Solution to Classification Problem

(0) Collect Labeled Data (X(s),T(s))

(4) Change W to make the Loss smaller

In Rest of Course

Discover increasingly sophisticated models $h_k(X,W)$

- Start with the simplest: <u>Linear Models</u> (Logistic Regression)
- Add <u>Hidden Layers</u> Dense Feed Forward Networks
- Add <u>Local Filtering</u> Convolutional Neural Networks (CNNs or ConvNets)
- Add <u>Time Dependence</u> Recurrent Neural Networks (RNNs, LSTMs)
- Add <u>Attention</u> Transformers

Linear Classification Models with Two Classes

Probabilistic Classification with K = 2

Label =
$$T = (t, 1 - t)$$

$$P(T=(0,1)|X)=1-y$$

Linear Models: Logistic Regression

Convert Scores to Probabilities via the Logistic Sigmoid Function

The Logistic Sigmoid Function

$$y = \sigma(a) = \frac{1}{1 + \exp(-a)}$$

Takes a number and "squashes" it so that it is between 0 and 1

 Appropriate as the output function for networks with binary decision outputs.

Prediction

Linear Models: Logistic Regression

How to Find the Weights?

Given training samples (X(s),T(s)), s=1,...,M

Find weights that minimize the Loss Function

$$L(W) = -\frac{1}{M} \sum_{s=1}^{M} [t(s) \log y(s) + (1 - t(s)) \log (1 - y(s))]$$

where

$$y(s) = \frac{1}{1 + \exp(-\sum_{i=1}^{N} w_i x_i(s) - b)}$$

No Closed Form solution
Will have to use Numerical Methods

Minimization using Gradient Descent

$$w \leftarrow w - \eta \, \frac{\partial L}{\partial w}$$

Learning Rate

$$w \leftarrow w - \eta \, \frac{\partial L}{\partial w}$$

where

$$L(W) = -\frac{1}{M} \sum_{s=1}^{M} [t(s) \log y(s) + (1 - t(s)) \log (1 - y(s))]$$

Where
$$y(s) = \frac{1}{1 + \exp(-\sum_{i=1}^{N} w_i x_i(s) - b)}$$

$$w \leftarrow w - \eta \frac{\partial L}{\partial w}$$
 Loss for a single sample $L = \frac{1}{M} \sum_{s=1}^{M} \mathcal{L}(s)$, where $\mathcal{L}(s) = -[t(s) \log y(s) + (1 - t(s)) \log (1 - y(s))]$

$$\frac{\partial L}{\partial w} = \frac{1}{M} \sum_{s=1}^{M} \frac{\partial \mathcal{L}(s)}{\partial w}$$

Gradient for a single sample

Problem: Evaluate $\frac{\partial \mathcal{L}}{\partial w}$

$$\mathcal{L}(s) = -[t(s)\log y(s) + (1 - t(s))\log (1 - y(s))]$$

$$y(s) = \frac{1}{1 + \exp(-a)}$$

$$a = -\sum_{i=1}^{N} w_i x_i(s) - b$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial a} \frac{\partial a}{\partial x} = h'(y) f'(a) g'(w)$$

$$\mathcal{L} = -[t \log y + (1 - t) \log (1 - y)]$$

$$y = \frac{1}{1 + e^{-a}}, \quad a = \sum_{i=1}^{n} w_i x_i + b$$

Use Chain Rule of Derivatives:

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial a} \frac{\partial a}{\partial w_i}$$

$$\frac{y-t}{y(1-y)} \qquad y(1-y) \qquad x_0$$

$$\frac{\partial \mathcal{L}}{\partial w_i} = (y - t)x_i$$

Back to Gradient Descent

$$w \leftarrow w - \eta \, \frac{\partial L}{\partial w}$$

Loss for a single sample

$$L = \frac{1}{M} \sum_{s=1}^{M} \mathcal{L}(s), where \quad \mathcal{L}(s) = -[t(s) \log y(s) + (1 - t(s)) \log (1 - y(s))]$$

$$\mathcal{L}(s) = -[t(s)\log y(s) + (1 - t(s))\log (1 - y(s))]$$

$$\frac{\partial L}{\partial w} = \frac{1}{M} \sum_{s=1}^{M} \frac{\partial \mathcal{L}(s)}{\partial w} = \frac{1}{M} \sum_{s=1}^{M} x_i(s) [y(s) - t(s)]$$

So that ..

$$w \leftarrow w - \frac{\eta}{M} \sum_{s=1}^{M} x_i(s) [y(s) - t(s)]$$
L(w)

L(w)

(increasing values)

(increas

Solution to Classification Problem

- (0) Collect Labeled Data (X(s),T(s))
- (1) Choose Model $h_k(X,W)$

Training Algorithm

$$y(s) = \sigma(a(s)) = \frac{1}{1 + \exp(-a)}$$

 $a(s) = \sum_{i=1}^{N} w_i x_i(s) + b$ $s = 1,...M$

$$w_i \leftarrow w_i - \frac{\eta}{M} \sum_{s=1}^{M} x_i(s) [y(s) - t(s)]$$

$$L(W) = -\frac{1}{V} \sum_{s=1}^{V} [t(s) \log y(s) + (1 - t(s) \log (1 - y(s))]$$

Optimization Process

Stochastic Gradient Descent

Gradient Descent

$$w_i \leftarrow w_i - \frac{\eta}{M} \sum_{s=1}^{M} x_i(s) [y(s) - t(s)]$$

Single Weight Update per Epoch → Slow Convergence

Stochastic Gradient Descent

$$w_i \leftarrow w_i - \eta x_i(s)[y(s) - t(s)]$$

Multiple Weight Updates per Epoch \rightarrow Faster Convergence, but in a noisy manner

Gradient Descent vs Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm

Gradient Descent vs Stochastic Gradient Descent vs Batch Stochastic Gradient Descent

Gradient Descent

$$w_i \leftarrow w_i - \frac{\eta}{M} \sum_{s=1}^{M} x_i(s) [y(s) - t(s)]$$

Stochastic Gradient Descent

$$w_i \leftarrow w_i - \eta x_i(s)(y(s) - t(s))$$

Batch Stochastic Gradient Descent

$$w_i \leftarrow w_i - \frac{\eta}{B} \sum_{s=1}^{B} x_i(s) [y(s) - t(s)]$$

Batch Stochastic Gradient Descent Algorithm

Issues in Running Gradient Descent Algorithms

- Choosing the Learning Rate parameter η
- Weight Initialization
- Deciding when to stop the algorithm

Gradient Descent: Choice of η

(finding this point x is the goal of gradient descent)

(decreasing values)

negative gradient

(stationary)

X₁

zero gradient X₂

X₃

X

f(w)

Effect of choice Of η

f(w)

Too small: converge very slowly

Too big: overshoot and even diverge

Gradient Descent: Initialization

Gradient Descent: Saddle Points

Linear Classification Models with K Classes

Image Classification: CIFAR-10 Image Dataset

10 classes50,000 training images10,000 testing images

K-ary Classification

How to convert the logits into a PDF?

$$A = WX + B$$
$$Y = h(A)$$

The SoftMax Classifier

$$y_k = h_k(a_1,...,a_K) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$

Sum of all K outputs is 1 Results in a probability distribution

Appropriate for K-ary classification networks

Loss Function

Loss Function for the sth Sample

$$\mathcal{L}(s) = -\sum_{k=1}^{K} t_k(s) \log y_k(s)$$

Loss Function for the Entire Training Set

$$L(W) = -\frac{1}{M} \sum_{s=1}^{M} \sum_{k=1}^{K} t_k(s) \log y_k(s)$$

Gradient Calculation

Evaluate
$$\frac{\partial \mathcal{L}}{\partial w_{kj}}$$
, where

$$w_{kj} \leftarrow w_{kj} - \eta \frac{\partial \mathcal{L}}{\partial w_{kj}}$$

$$\mathcal{L} = -\sum_{k=1}^{K} t_k \log y_k$$
, and

$$y_k = \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}}$$
, $a_k = \sum_{j=1}^N w_{kj} x_j + b_k$

Answer:

$$\frac{\partial \mathcal{L}}{\partial w_{kj}} = x_j \left(y_k - t_k \right)$$

K-ary Classification

If
$$\mathcal{L} = -\sum_{k=1}^{K} t_k \log y_k$$

then
$$\frac{\partial \mathcal{L}}{\partial w_{kj}} = x_j (y_k - t_k)$$

Supplementary Reading

- Chapter 2: Pattern Recognition
- Chapter 5: Supervised Learning
- Chapter 6: Linear Learning Models

https://srdas.github.io/DLBook2/