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Today’s Lecture

Linear Classification Systems - Logistic
Regression

» Supervised Learning

» Loss Functions

» Classification with Two Classes
» Classification with K Classes




Recap of Lecture 2

The job of the neural
network is to compute
P(Y[X)

Input: ensor

P(Y = cat[X) = 0.8

= = Sampli
Neural Network P(Y = dog|X) = 0.1 »sampling | » cat

P(Y7=7 EarIX) = 0.1

Image 1 Image 2 Image B

Example of a 4D tensor:
A sample of L color images
(sample #, channels, height, width)

Output: Probability Density



Supervised Learning:
The Classification Problem

p—



Labels

cat”
In put Tensor Ground Truth Categorical
or Label = 001
Label v
X => ———» lLabel =T
A
Sparse Categorical
Label = 2

Application of the input tensor X results in the label T

{1,2,...,K} =—» Sparse Categorical Labels (Integers)
(ti, t2, ..., %) ==  Categorical Labels (1-Hot Encoded Labels)

The K categories correspond to the K unit vectors
(1,0,0,...,0) to(0,0,0,..,1)




The Supervised Learning Problem

h(X,W)
X —p 5y
-

X(1) > T(1)

X(2) > T(2)

X(M) > T(M)

Application of the input tensor X(s) results in the label T(s), | Training
and we observe M such input-output pairs Set

Problem: Find a model h(X,W) for the Unknown System, such that it is able to
Predict “suitably good” values for T, for new values of X.

Test
Set




Solution in Two Steps

» Step 1

Come up with the structure for the classifier
h(X,W) with unknown parameters W

- An educated guess!

» Step 2

Iteratively estimate the unknown parameters W
from the labeled Training Data (X(s),T(s)), s =
1,..M

- Known as Training or Learning




Probabilistic Classification

Label =T € {1,2,...,K}

h(X, W)

-
— s PT=KIX)= y= hy(X, W)

Vi = he (X, W) = P(Y = k|X)

K
ZYR =1
k=1

=.> P(MT=1|X)=y; = hy (X, W)

| i1,

Output is a Discrete
Probability Density
Function




Solution Strategy

(0) Collect Labeled Data
(1) Choose Model h (X,W)

We have reduced the problem of Model Synthesis to
an Optimization Problem !!

1-Hot Label

Ground Truth
or

‘/////

T = (tl’ tz, e tK)

I (3) Compute Loss

L(Y,T)

PDF

Label
X(s) =——»
Model
X(s) =——p

.

Y = (.Vl;er "'tyK)

(2) Compute
Model Prediction

r

(4) Change W to make the Loss smaller



Loss Functions

p—



Loss Function

Choice of Loss Functions forasingie

sample

1. Mean Square Error (MSE) 4

L(s) = = Titza () = tr($)]?

2. Mean Absolute Error (MAE)

K
1
£(s) =7 ) yi(s) = (5]
k=1

M
1
L = Mz L(s) Loss for the entire Dataset
s=1

Used in Regression
Problems




Cross Entropy Loss Function

Label =T = (ty, ty, ..., tx)

X e— hy (X, W) v zyk =1
k=1

0 PY=K|X)=y,

K
L(S) = — z ty (S)log Vie (S) Used igrglga;z:rilf;cation
k=1
L= iZ.IS‘VI=1 1:(5)

Formula Derived using Maximum
Likelihood Estimation Theory




Example: K = 2 (Binary Cross
Entropy Loss)

h(X, W) Single output
=—p PT=1|X)=y

Single Label: t
(1,0) and (0,1)

L=—[tlogy+ (1 —t)log(1—y)]
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The Cross Entropy Loss

L=—[tlogy+ (1 —1t)log(1—1y)]

t,=1
?H[Il y:-0.64663735  z: UNDEFINED L = _ log yq' O S yq S 1
L
y Exact Match Complete Mismatch
L=0 L=oco

Exercise: Plot the graph fort =0




Solution to Classification Problem

(0) Collect Labeled Data (X(s),T(s))
(1) Choose Model h (X,W) | Hot Labels

Ground Truth /

or (ty, ts o t)

—P Label
X(s) I (3) Compute Loss

LW) = — 2 T4, Ty i (5) log v (5)

PDF \ ‘
(J’1rJ’2r "'ryK)

(2) Compute
Model Prediction

r

(4) Change W to make the Loss smaller

X(s) =——p




In Rest of Course

Discover increasingly sophisticated models

h (X,W)

» Start with the simplest: Linear Models (Logistic
Regression)

» Add Hidden Layers - Dense Feed Forward Networks

» Add Local Filtering - Convolutional Neural
Networks (CNNs or ConvNets)

» Add Time Dependence - Recurrent Neural Networks
(RNNs, LSTMs)

» Add Attention - Transformers




Linear Classification Models
with Two Classes

p—



Probabilistic Classification with
K =2

hy (X, W)
= P(T=(1,0)|X)=y

Label =T = (t,1 —1t)

p—

P(T=(0,NIX)=1-y



Linear Models: Logistic Regression

X= (xlle' ...,XN) P(YIX)= (ylo:YZJ '"oyK)
_— h, (X, W) ——

Scores/Logit

e

a> 0:Class 1
a < 0:Class 2

Will this work?



Convert Scores to Probabilities via
the Logistic Sigmoid Function

y




The Logistic Sigmoid Function

1
1+ exp(—a)

y=o(a) =

Takes a number and “squashes” it so
that it is between 0 and 1

- Appropriate as the output function for
networks with binary decision outputs.




Prediction

Method 1

y > 0.5: Class 1
y < 0.5: Class 2

logit/score

e —p» og(a) > Y

Method 2

Sample from the density function {y, 1-y}
to get the final prediction




Linear Models: Logistic Regression

Exam 2 score
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How to Find the Weights?

Given training samples
(X(s),T(s)),s =1,...,.M

Find weights that minimize the Loss Function

M

1
LW) = — -3 [£(5) logy(s) + (1 — £(s)) log (1 — y(5))]

s=1

where
1

N
1+ exp(— XV, wx, (5) — b) \ )

y(s) =

No Closed Form solution
Will have to use Numerical Methods




Minimization using Gradient
Descent

(finding this point x is the
goal of gradient descent)

(increasing
(decreasing values)
values)

L(w)

negative '} y Positive
gradient | E gradient

]

| |

] ]

] ]

] ]

] ]

i (stationary) E

' . =

i X
Vlll zero gradient W5 XV?’

dL
wew-nas

Learning Rate




Gradient Computation

oL
wew=ngss

where
M

1
Lw) =-+ [t(s) logy(s) + (1 —t(s)) log (1 —y(s))]

s=1

1
1+exp(— XL, wixi(s)—b)

p—

Where y(s) =



Gradient Computation

dL
wew—n % Loss for a single sample

e

M
1
L = [y Z L(s),where L(s)= -[t(s)logy(s) + (1 —t(s))log (1 — y(s))]
s=1

M
0L B 1 dL(s)
ow M ow

s=1 \

Gradient for a single sample




Gradient Computation

a=gw) = f(a) = f(g(w)) L = h(y) = h(f(a))
v =@ = oW = h(f(gw))

a y = q(w)
W—> g() —> f) |—> h0) —»<

Problem: Evaluate oL

ow

L(s)= -[t(s)logy(s) + (1 —t(s))log (1 —y(s))] 0L 0L dy da , , ,
— = = h’(y) f'(a) g’(w)
ow  Jdydadx

y() = 1+ exp(—a)

d = _ZIiV:1 Wi X (S) —b




Gradient Computation

L= -[tlogy + (1 —t)log (1 —y)]

1
y=1+e_a, a=Zwixi+b
i=1

dL 0L dy Oa
ow; 0y da Ow;

Use Chain Rule of Derivatives:

y—t‘ <
y(l—y) }I(l—Y) xi

0L
aWi

=y — t)x;



Back to Gradient Descent

oL
wew—n % Loss for a single sample

e

1
= 2 L(s),where L(s)= -[t(s)logy(s) + (1 - t(s)) log (1 — y(s))]

dL 6£(s)

OW M ow
s=1

szl@ y(s) — £(s)]

So that ..

wew ——le(s) y(s) — t(s)]




Solution to Classification Problem

(0) Collect Labeled Data (X(s),T(s))

(1) Choose Model h (X,W)

X(s) =——»

Ground Truth
or
Label

t

I (3) Compute Loss

M
LOW) = =2 ) [1(5) logy(s) + (1.~ t(5)) log (1 ~ y(&))

X(s) =——p

Model

h, (X, W)

o]

(2) Compute
Model Prediction

[ () Change W to make the Loss smalier _

M
Wew— %;xi(S)[y(S) —t(s)]



Training Algorithm

Set up Model

v

Initialize Weights

Forward Pass
Compute Network Output
(for all M inputs)

\4

Backward Pass
Compute Gradients
Compute New Weights

v

Compute Loss

Compute Validation Accuracy

Single output

X —— oy h(X, W) = PY=1|X)=y

Single Label: t

y(s) = o(a(s)) =

1+ exp(—a)

N
a(s) = Z wix;(s) + b

M

Wi e wi =25 xi(©[y(s) — €(s))

s=1

\%4
1
L) = =2 [6() logy(s) + (1 = £(s) log (1 — y(5)]
s=1



Optimization Process

t=1w; «w; —%in(S)[Y(S) — 1]

M
n
t= 0w e wp =20 ) % (5)Y(s)
s=1




Stochastic Gradient Descent

Gradient Descent

l l l - l Wi < w; — %Z x;(s)[y(s) — t(s)]
0 s=1

M
Single Weight Update per Epoch - Slow Convergence

‘\ I \ ‘\ k Stochastic Gradient Descent
Y v v v w; < w; —nx;(s)[y(s) — t(s)]

Multiple Weight Updates per Epoch > Faster Convergence, but in a noisy manner




Gradient Descent vs Stochastic
Gradient Descent

The jumping around has some
side benefits!




Stochastic Gradient Descent Algorithm

Set up Model

\ 4

Initialize Weights

Loop for

Compute Gradients

Feed-in Next Training Sample

Compute New Weights

y

A 4

Compute Loss
Compute Training Accuracy
Compute Test Accuracy

'

v

oL
e IOLJORIIO)
i = wi = nx($)[y(s) — t(s)]

= —[t(s) logy(s) + (1 — t(s) log (1 — y(s))]



Gradient Descent vs Stochastic Gradient

Descent vs Batch Stochastic Gradient
Descent

Gradient Descent

M Wi e Wi == 5 ()[Y(s) — £(5)]
O s=1

M
‘\ \ \ ‘\ l Stochastic Gradient Descent
Y e e e e W; &< Wi — UXL(S)()’(S) - t(S))
0 M

Batch Stochastic Gradient Descent

TR

——

Wi < w; —%in(s)[Y(S) — t(s)]



Batch Stochastic Gradient Descent Algorithm

Set up Model

v

Initialize Weights

B
oL 1

Feed-in Next Training Batch ¥ ow; = Ez x;($)[y (s) —t (s)]

Compute Gradients s=1

Compute New Weights
B
n
' Cowp e wi— 2 x(®)[y(s) - ()
A 4

s=1
Compute Loss

Compute Training Accuracy
Compute Test Accuracy

\ 4



Issues in Running Gradient
Descent Algorithms

» Choosing the Learning Rate parameter n
» Weight Initialization
» Deciding when to stop the algorithm




Gradient Descent: Choice of

3

f(x)

(finding this point x is the
goal of gradient descent)

(increasing
(decreasing values)
values)

JL oy e

W, i i
I i (stationary) i

X, zero gradient X, X5 X—

fiw) fiw)
Effect of choice
Of n
w* w w* w
Too small: converge Too big: overshoot and
very slowly even diverge

W -



Gradient Descent: Initialization




INTS

Saddle Po

Gradient Descent




Linear Classification Models
with K Classes

p—



Image Classification: CIFAR-10
Image Dataset

10 classes
90,000 training images
10,000 testing images

airplane [ B oo Dl Bl = 5 9 i |

bird A REET EETH RS i Neural |y,
5 u..u@g !n —> Network horse
deer .Fa.. . -E

dog EHR-!E G.m

frog VUESaG RS E

horse P “.E!g

ship |

truck

jex Krizhevsky, “Leaming Multipie Layers of Features from Tiny images”, Technical Report, 2009.



K-ary Classification

Logits

How to convert the logits
into a PDF?

PDF

.__\
Zw x +b"-}—> Y=

._\“
/,/ \
A=WX+B

Y = h(A)




The SoftMax Classifier

e
)= Sum of all K outputs is 1
Results in a probability

K
z eai distribution

j=1

=h (a

1’ I

» Appropriate for K-ary classification networks




Loss Function

Loss Function for the sth Sample

K
L) ==, t(©)Iogy(s)

Loss Function for the Entire Training Set

1

L(W) = — o Yk=1tr (s) log yx(s)




Gradient Calculation

0L
aij

Evaluate . where Wij < Wij —

L = —Yg=1txlogy, and

eak N
Vi = T Ax = 2j=1WkjXj + by

Answer:
0L

=X (Vi — ti)




K-ary Classification

If L ==Yk tilogyy
then
oL

—aij = X; (Yx — tx)




Set up Model| Training Using
Batch Gradient Descent
For K-ary Classification

v

Initialize Weights

Loop for
E Epochs

v a
e’k
Forward Pass, Compute Model Output Vi = SK o a, = Z?’zl Wgj Xj + by,
i€
J=1 B
v

Backward Pass, Compute New Weighty Wy j < Wy —% x; () [yi (s) — t (s)]
1

j=

A\ 4
Compute Loss
Compute Training Accuracy
Compute Test Accuracy

A\

4

v

L= —=3E, 3K, t ()logyi(s)



Supplementary Reading

» C
» C
» C
htt

Nd
Nd
Nd

DS.

oter 2: Pattern Recognition
oter 5: Supervised Learning

oter 6: Linear Learning Models
//srdas.github.io/DLBook?2 /



https://srdas.github.io/DLBook2/

