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} Differentiation
} Introduction to Probability
} Introduction to Tensors





x

a = g(x) y  = f(a) = f(g(x))

g(x) f(a) h(y)

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑦
𝜕𝑦
𝜕𝑎
𝜕𝑎
𝜕𝑥

= h! y f ! a g! x = q′(x)

a y

L = h(y) = h(f(a))
= h(f(g(x)))
= q(x)

L

Example:
a=g(x) = kx, then g’(x) = !"

!#
= 𝑘

y=f(a) = $
$%&'((*")

, then f’(y)= !,
!"
= 𝑦(1 − 𝑦)

L=h(y) = −[𝑡 log 𝑦 + 1 − 𝑡 log(1 − 𝑦)], 𝑡ℎ𝑒𝑛 !-
!,
= ,*.

,($*,)

𝜕𝐿
𝜕𝑥 = 𝑘(𝑦 − 𝑡)

Easier to evaluate
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The gradient Calculation
Proceeds Backwards!
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Why is Probability Theory useful in ML/DL?

There is an inherent uncertainty in performing tasks such as 
classification or machine translation.



What number is this?

Neural Network

P(Y = 0|X)

P(Y = 1|X)

P(Y = 9|X)

.

.

.

Output Y: Probability Distribution



X1, X2, X3 are the first 3 words in a sentence

Ask a Neural Network to guess the next word

The Network computes 
P(Y|X1, X2, X3) over all possible words Y



Neural Network

P(Y = word1|X)

P(Y = word2|X)

P(Y = word 10,000|X)

.

.

.

Output Y: Probability Distribution
over the Vocabulary

X1

X2

X3

Next Word Prediction



} Experiment: Example: Pick a card from a deck of cards

} Outcome of Experiment = One of the 52 cards in the deck
Outcomes must be:
Mutually Exclusive – No two outcomes can occur together
Collectively Exhaustive – At least one of the outcome must occur

} Probability of an Outcome: Likelihood that the outcome will occur at 
the end of the experiment. 
P(The card is an Ace of Spades) = 1/52
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} Event: A Collection of Outcomes
Examples:
E: The card picked is a spade
F: The card picked is a 7
G: The card picked is a odd numbered card
H: The card picked is a Jack, Queen or King

} Two events A and B are Mutually Exclusive if they contain different 
Outcomes

} Probability of an Event: The Sum of the Probabilities of the 
Outcomes comprising the Event
P(E) = 13/52, P(F) = 4/52, P(G) = 20/52, P(H) = 12/52
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First Law of Probability
The Probability of an Event is a number between 0 and 1
The sum of the probabilities over all possible outcomes should 

be 1

Second Law of Probability
If A and B are Mutually Exclusive Events, then
P(A or B) = P(A) + P(B)
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P(Event 1|Event 3) = 1/3 
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} When the Outcomes in a Probability Model are 
numbers, then these numbers are referred to as 
Random Variables.

} A Random Variable can be:
◦ Discrete

Example: Outcome of a die toss
◦ Continuous

Example: Annual Rainfall in Santa Clara



𝑃(𝑋 = 𝑥") = 𝑝"
𝑃(𝑋 = 𝑥#) = 𝑝#
.
.
𝑃(𝑋 = 𝑥$) = 𝑝$

𝑝" + 𝑝# + . . . + 𝑝$ = 1



Outcome of a single (biased) coin toss 

Density

X = {0,1}
p

1-p



X= ∑=?@B 𝑌=
Toss a coin n times
Yi: Outcome of the ith toss = {0,1}
X: Total number of Heads (1’s)

X = {0,1, 2, …, n}



X = [a, b]

𝑋 = (−∞,+∞)

m n

𝑃 𝑋 ∈ 𝑚, 𝑛 =
𝑛 −𝑚
𝑏 − 𝑎

Probabilities are defined over Intervals



} Given a Probability Density
X={1,2,…,n}
P(X = k)=pk

} The	Probability	Distribution	of	X	is	defined	as

𝐹 𝑋 ≤ 𝑘 =>
%&"

'

𝑝'

1     2      3

F(x)
p1

p1+p2

p1+p2+p3=1

x

1



𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎)

0 ≤ 𝐹(𝑥) ≤ 1
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• Conditional Probability

𝑃 𝑌 𝑋 =
𝑃(𝑋, 𝑌)
𝑃(𝑋) =

𝑃(𝑋, 𝑌)
∑/ 𝑃(𝑋, 𝑌)

Marginal Probability



Sometimes P(X) is intractable but P(X|Y) is easier to compute



Independence

Conditional Independence

𝑃 𝑌 𝑋 = 𝑃(𝑌)
𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌)

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍)



• Statistics of a Random Variable
• Allows you to infer properties of 

the RV without knowing
the entire distribution



Given Data Samples {X1,X2,…,Xn}, find the statistics of 
the Random Variable X that generated this data
◦ Distribution of X (has complete information about X)
◦ Mean, Variance of X

Estimation Problem

This an Important Problem to solve in Deep Learning: 
Once we know the Distribution f(X) of X, we can generate new samples of X

How?



Given a Random Variable X with a known 
distribution, generate data samples {X1,X2,…,Xn}, that 
follow this distribution

The Sampling Problem



Sampling Problem: Generate random numbers which follow this 
distribution

Example: Bernoulli Distribution
P(X=0) = p
P(X =1) = q = 1-p

0 1

p

Solution:
Compute the Distribution Function
F(X) for X

Generate a Uniform U in [0,1]

If U is on [0,p] then generate X=0
Otherwise generate X=1

0 1

p

q

p+q=1

X

F(X)



F(x)

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
U

𝐹(*$)(𝑈)

𝑌 = 𝐹(*$)(𝑈)

𝑃 𝑌 ≤ 𝑦 = 𝑃 𝐹(*$) 𝑈 ≤ 𝑦 = 𝑃(𝑈 ≤ 𝐹 𝑦 = 𝐹(𝑦)





Examples:
X is a word, (X1, X2, …,Xn)  is a sentence

X is a pixel, (X1, X2, …,Xn) is an image

For example successive
toss of a dice



• Important instance of Random Sequences in DL: Natural Language
Processing. A sentence can be treated either as:
• A Sequence of Words, or
• A Sequence of Characters

• Elements of these sequences are not independent



P(X1,X2) = P(X2|X1)P(X1)

P(X1,X2,X3) = P(X3|X1,X2)P(X1,X2)
= P(X3|X1,X2)P(X2|X1)P(X1)

More Generally for a Sequence of RVs
P(X1,X2,…,Xn) = P(Xn|X1,…,Xn-1) P(Xn-1|X1,…,Xn-2)...P(X2|X1) P(X1)

This formula is Fundamental in Deep Learning

In NLP, enables the system to generate text 

Joint Probability
Distribution: What we are really

interested in

Product of Conditional 
Probability Distributions: Easier
to compute with a Neural Network





} Scalars: A single number

} Vectors: A 1-D array of numbers

Column Vector: 𝐱 =
%+
%,
⋮
%-

Row Vector: 𝐱 = 𝑥' 𝑥(… 𝑥)



Matrix: A 2-D array of numbers

𝑾 =
𝑤',' ⋯ 𝑤',)
⋮ ⋱ ⋮

𝑤+,' ⋯ 𝑤+,)
W is a matrix with m rows and n columns
𝑤,,- The element at the ith row and jth column
𝑊,,: The ith row of the matrix
𝑊:, j The jth column of the matrix

Example of a matrix: 
Pixels in a grayscale image
28x28 array of numbers



Tensor: A generalization of matrices to n dimensions
(x1,x2,…,xn)

Example:

A 3-D Tensor of dimensions = KMN
is equivalent to K matrices of
size MN

Example of a 3D tensor: 
RGB pixels in a color image

(x,y,z)



A 4-D Tensor of dimensions = LMNK
is equivalent to L, 3D Tensors of size MNK

Example of a 4D tensor: 
A sample of L color images

(sample #, height, width, channels)

Image 1 Image 2 Image L

. . .

(w=L, x=2,y=3,z=2)



A sentence can be represented by a 2D matrix

Word 1
Word 2
Word 3

Word N

.

.

.

.

.

.

Word A word can be represented by a vector of features

A collection of sentences can be represented 
by a 3D tensor

(samples, words, features)

Sentence 1

Sentence 2
Sentence 3

features

features



A single sample from T=1 to T=N

T=1
T=2
T=3

T=N

.

.

.

.

.

.

T=1 Set of features at T = 1

A collection of samples can be represented 
by a 3D tensor

(samples, timesteps, features)

Sample 1

Sample 2
Sample 3

features

features



} Number of Axes (Rank): X.ndim in NumPy
} Shape: Tuple of integers that describes how many dimensions 

the tensor has along each axis. Obtained with X.shape in 
NumPy. Examples:
◦ 2D Tensor: (3,5)
◦ 3D Tensor: (3,3,5)
◦ Vector: (5,)
◦ Scalar: ( )

} Data Type: Could be float32, uint8, float64 etc. Obtained by 
X.dtype in NumPy



Download the MNIST dataset

Get its shape

Display an element of the dataset



Selecting specific elements in a tensor is called tensor slicing

Select images #10 to #99

These are both equivalent

Select 14x14 pixels in the bottom
right corner of all images

Crop images to patches of 14x14 pixels
centered in the middle



Reshaping: Re-arranging the tensor’s rows and columns to match a
target shape

Original tensor

After reshape operation 1

After reshape operation 2

Flatten operation
Creates 1D array



Elementwise Operations: Operations applied independently to each
entry of the tensor

Broadcasting

If the shape of the two tensors is different, the smaller tensor is
broadcasted to match the shape of the larger tensor, in 2 steps:
1. Axes are added to the smaller tensor to match the ndim of the

larger tensor
2. The smaller tensor is repeated alongside these new axes 



If x and y are vectors

Returns a Scalar

If x is a matrix and y is a vector (m,n) (n,1) (m,1)

Both x and y are matrices
(m,n) (n,p) (m,p) More Generally 



Generating Random 
Numbers

Arrays with 1’s or 0’s

Arrays with consecutive
integers

Random Shuffle



𝑾 =
𝑤"," 𝑤",#
𝑤#," 𝑤#,#

𝑤",3
𝑤#,3

then

𝑾4 =
𝑤"," 𝑤#,"
𝑤",# 𝑤#,#
𝑤",3 𝑤#,3

In general
(𝑾4)%,5= 𝑤5,%



} For Probability Theory: Chapters 2 of “Deep Learning” by 
Goodfellow, Bengio and Courville.
http://www.deeplearningbook.org/

} For Tensors: Chapter 2, Sections 2.2 and 2.3 of Chollet

http://www.deeplearningbook.org/

