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» Differentiation
» Introduction to Probability
» Introduction to Tensors




Differentiation
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Chain Rule of Derivatives

a = g(x) = f@) = f(g(x)) L = h(y) = h(f(a))
y I = h(f(g(x))
a y = CI(X)

X =—=> g6 =—> fa —> hy —»t

dL JdLdyada N , , Easier to evaluate
9% 3y dadx Wf'(@g'x) =9 |k, ht§5q9pposed
Example:

a=g(x) = kx, then g’(x) = 3—;: =k

daL
L then f'(y)= 2 = y(1—y) — o~ KO -0

1+exp(-a)’ da

y=f(a) =

—h(v) = — _ — oL - -t
L=h(y) = —[tlogy + (1 — t)log(1 — y)], then 3= = "“—




Backpropagation

a = g(x) y = f(a) = f(g(x)) L = h(y) = h(f(a))
= h(f(g(x)))
a y =q(x)
X =—=> g6 =—> fa —> hy —»t
oL OL oL
Problem: Evaluate —,— and =
dy da dx
oL
Fvie h'(y)
Y The gradient Calculation
oL _ dLdy_ ., , Proceeds Backwards!
5a — 7y 5N (y) £'@a)

BL_a_La_y@_ , ’ ’
ax _ dydadx h'(y) f'(a) g’(x)



Chain Rule of Derivatives

More than one input
and more than one output

‘::hz(al,az ..... ay) :l — v, =P L(y1,y|<)

K
/ oL ~_ 0L dyy

da; £ Oy da;

oL oL 9
For K=2, —= 1, OL 9y,
da, dy, da, 9y20aq




Probability Theory
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Probability Theory and ML/DL

Why is Probability Theory useful in ML/DL?

There is an inherent uncertainty in performing tasks such as
classification or machine translation.




The Output of a Classification System is a
Probability Distribution

ndAdaanaag

HANAN o - 0
» P(Y = T|X)
" Neural Network
What number is this?
» P(Y = 9]X)

Output Y: Probability Distribution




Probabilities in NLP

X1, X2, X3 are the first 3 words in a sentence
Ask a Neural Network to guess the next word

The Network computes
P(Y[|X; X,, X3) over all possible words Y




Text Generation in NLP

4

Neural Network

Next Word Prediction

—» P(Y = word1 |X)
—» P(Y = word2|X)

~» P(Y = word 10,0001X)

Output Y: Probability Distribution
over the Vocabulary



Probability: Outcomes

» Experiment: Example: Pick a card from a deck of cards Atoms
| of Probability

Theory

» Qutcome of Experiment = One of the 52 cards in the deck
Outcomes must be:
Mutually Exclusive - No two outcomes can occur together
Collectively Exhaustive - At least one of the outcome must occur

» Probability of an Outcome: Likelihood that the outcome will occur at
the end of the experiment.
P(The card is an Ace of Spades) = 1/52

Outcome
. Space




Probability: Events

» Event: A Collection of Outcomes
Examples:
E: The card picked is a spade
F: The card picked is a 7
G: The card picked is a odd numbered card
H: The card picked is a Jack, Queen or King
» Two events A and B are Mutually Exclusive if they contain different
Outcomes
» Probability of an Event: The Sum of the Probabilities of the

Outcomes comprising the Event
P(E) = 13/52, P(F) = 4/52, P(G) = 20/52, P(H) = 12/52

Event 3
Event 1




Laws of Probability

First Law of Probability
The Probability of an Event is a number between 0 and 1

The sum of the probabilities over all possible outcomes should
be 1

Second Law of Probability

If A and B are Mutually Exclusive Events, then
P(A or B) = P(A) + P(B)

Event 3

Event 2




Conditional Probability

P(A|B): Probability of the Event A, given that the Event B has
occurred

Third Law of Probability

If A and B are two Events, then
P(A and B)

P(B)

P(A|B)=

Example:
A: The card picked is the queen of any suit
B: The card picked is a face card

P(A|B)=?i=1/3

52

Event 3
Event 1

P(Event 1|Event 3) = 1/3

Event 2




Independent Events

Two Events A and B are Independent if knowing that B has
occurred does not influence the probability of A occurring

Fourth Law of Probability
If A and B are independent Events, then

NB) = P(A) and P(A and B) = P(A) x P(B)
AR

Event 3
Event 1

Event 2




Random Variables
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Random Variables

» When the Outcomes in a Probability Model are
numbers, then these numbers are referred to as
Random Variables.

» A Random Variable can be:

> Discrete
Example: Outcome of a die toss

- Continuous
Example: Annual Rainfall in Santa Clara




Probability Density Functions:
Discrete Random Variables

P(X - xl) - pl Probability
P(X = x3) = py
P(X = xn) = Pn 1 “BRERERD

0N %
11 42 43 44 45 46 47 48
Number of orders (per week)

pr+p,+...+p, =1
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Probability Density  Functions:

Discrete RVs

Bernoulli Distribution X ={0,1}
P(X=1)=p o
P(X=0)=1-p=q

|
©

Outcome of a single (biased) coin toss

p—




Probability Density Functions:
Binomial Distribution

Binomial Distribution X=10,1,2, .., n}

n! r n-r
P(X=r)= ' p(l-p)— r=01,.n
r.(n— r)!

Toss a coin n times

_\n

X= Zi=1 Yl Y;: Outcome of the ith toss = {0,1}
X: Total number of Heads (1’s)

Binomial Distribution

p=0.5,n=30

0.15

Binomial Distribution (n = 20, p =.25)
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Probability Density Functions:
CO nt| nNUuous RVS Probabilities are defined over Intervals

Examples: _ [a b]

» Uniform Distribution ’ — ——
1 if a=x=<b
f(x)={ b-a § §
{0 otherwise
g m n %

» Normal Distribution = (—00, +00) P(Xe[m»nD;Z,__TZ

/ (x u)"\

> )

f(X)_\/—O k

02

0.1

0
-3 -2 -1




Probability Distributions Functions

» Given a Probability Density
X={1,2,...,n}
PX = k)=p

» The Probability Distribution of X is defined as

k
FX<K) =) py
=1

1 P1+pP+p3=l——

F(x)

S Tl O —




Probability Distribution Function

Probability density function Cumulative distribution function
f(x) F(x)
fla) F(b) t———y
Pria < X < b) Fa) ‘ﬁs
fh)
a b o G b

Pla<X <b)=F()—F(a)

F(x)=P(X <x)

0<F(x)<1




Joint Probability Distributions

» Given two RVs (X,Y), their Joint Probability Distribution is
given by

p, = P((X.Y)= (/)

2 21
{ J

» Sum Rule

. P(X)- ZP(X,Y)

Marginal Probability

« Conditional Probability Y

P(X,Y)  P(X,Y)

P(Y|X) =

PX) EyPXX.Y)




Joint Probability Distributions

» Product Rule
P(X,Y)=P(Y|X)p(X)=P(X|Y)p(Y)

The above two rules imply that
P(X)= Y P(X,Y)= P(X|Y)p(Y)

\ Law of Marginal Probabilities

Sometimes P(X) is intractable but P(X|Y) is easier to compute

p—



Independence and Conditional
Independence

Independence

P(Y|X) = P(Y)
P(X,Y) = P(X)P(Y)

Conditional Independence

P(X,Y|Z) = P(X|Z)P(Y|Z)




Expectation, Variance, Co-Variance

» Discrete RVs
E(X)=p, = Y pX,

Var(X)=o3 = ¥ p,(x,~ u, Y

« Statistics of a Random Variable
« Allows you to infer properties of

the RV without knowing
the entire distribution

cov(X,¥)=E|(X-ECNY-E(YD) |- 3 3 b, (x,~ 1), - 1)
1)

» Continuous RVs
i, =ff(x)dx

o =f(x -1, )* f(x)dx

cov(X,¥)= [ [F(x,y)(x - 1t,)(y -, )dxdy

p—




Problems in Statistics

Estimation Problem

Given Data Samples {X;,X,,...,X,,}, find the statistics of
the Random Variable X that generated this data

- Distribution of X (has complete information about X)
- Mean, Variance of X

This an Important Problem to solve in Deep Learning:
Once we know the Distribution f(X) of X, we can generate new samples of X

AN

How?




Problems in Statistics

The Sampling Problem

Given a Random Variable X with a known
distribution, generate data samples {X;,X,,...,X,,}, that
follow this distribution




Sampling from a Discrete
Distribution

Sampling Problem: Generate random numbers which follow this

F(X)

distribution

o p
Example: Bernoulli Distribution ‘

||CI

PX=0) =p 0
PX=1)=q=1-p

p+q=1

P

1

Solution:
Compute the Distribution Function

F(X) for X

Generate a Uniform U in [0,1]

If U is on [0,p] then generate X=0
Otherwise generate X=1




Sampling from a Continuous
Distribution

Norrwl S0P
1 /’,_.—
4 s
Q% //
J
[ /
g ;
F(x) | 2
F(x) =P(X <x)
| T ||
2 3 [
F(_l)(U)
Yy = FCU()

- PY<y)=P(FCYU)<y)=PWU<F(y) =F()



Random Sequences
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Random Sequences

» Sequence of Random Variables

X, X, X For example successive
1 2 n .
toss of a dice

» Joint Probability Distribution
P(X,, X, X )

Examples:
X is a word, (X;, X,, ...,X,) is a sentence

X is a pixel, (X5, X5, ...,X,) is an image




Random Sequences: Special Cases

» Sequence of Independent Random Variables

P(X,,X,..X )=P(X,)P(X,).. .P(X )  |Example: Tossing

a die multiple times

p—



Chain Rule of Probabilities

P(XhXZ) — P(X2|X])P(X1)

P(Xl 1X21X3) — P(X3 |X1 1X2)P(X1 1X2)
= P(X3/X;,X2)P(X3 [X;)P(Xy)

More Generally for a Sequence of RVs
P(X11X21---1Xn) — P(Xn|x11---1xn—1) P(Xn—1 |X11---1Xn—2)---P(X2|X]) P(X])

Joint Probability Product of Conditional
Distribution: What we are really Probability Distributions: Easier
interested in to compute with a Neural Network

This formula is Fundamental in Deep Learning

In NLP, enables the system to generate text




Tensors

(NumPy Arrays)
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Scalars, Vectors

» Scalars: A single number

>>»> import numpy as np
>>>» X = np.array(12)
> K

array(12)

>>»> x.ndim

0

» Vectors: A 1-D array of numbers

X1

X
Column Vector: x = < ;2)
Row Vector: x = (x1 x5 ... xp,)

»>»>» x = np.array([12, 3, 6, 14])

>>> X

array([12, 3, 6, 14])
>>> x.ndim

1




Matrices

Matrix: A 2-D array of numbers
Wii 0 Win

)

W =

Wmi = Wmn
Wis a matrix with m rows and n columns

w; j The element at the it row and j column
W;. The it row of the matrix
W.,j The jth column of the matrix

5, 78,
[6, 79,
7., 80,

. 34,

Example of a matrix:
1) | Pixels in a grayscale image
28x28 array of numbers

35,

[ PSR S |
N = O

. 36,

»>» x.ndim

v




Tensors

Tensor: A generalization of matrices to n dimensions
(X1,X25---,Xp)

Example:

Example of a 3D tensor:
RGB pixels in a color image

A 3-D Tensor of dimensions = KMN
is equivalent to K matrices of
size MN

»»>» x = np.array([[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1]
[7, 80, 4, 36, 211,
[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1]
[7, 80, 4, 36, 211,
[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1]
[7, 80, 4, 36, 2]11)

>>> x.ndim
3




Example: 4D Tensors in Image
Processing

A 4-D Tensor of dimensions = LMNK

is equivalent to L, 3D Tensors of size MNK (w=L, x=2,y=3,2=2)

Image 1 Image 2

Image L

Example of a 4D tensor:
A sample of L color images
(sample #, height, width, channels)




Example: Tensors in NLP

features

Word _ A word can be represented by a vector of features

features

Word 1
Word 2

Word 3 A sentence can be represented by a 2D matrix

Word N

Sentence 3

A collection of sentences can be represented
sentence | by a 3D tensor

(samples, words, features)



Example: Time Series

features
— Set of features at T = 1
features
=3 ! A single sample from T=1 to T=N

Sample 3

A collection of samples can be represented
sample | by a 3D tensor
(samples, timesteps, features)



Key Attributes of a Tensor

» Number of Axes (Rank): X.ndim in NumPy

» Shape: Tuple of integers that describes how many dimensions
the tensor has along each axis. Obtained with X.shape in
NumPy. Examples:
> 2D Tensor: (3,5)
- 3D Tensor: (3,3,5)
> Vector: (5,)
> Scalar: ()

» Data Type: Could be float32, uint8, float64 etc. Obtained by

X.dtype in NumPy




Example: MNIST Dataset

Download the MNIST dataset

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Get its shape

>>>» print({train_images.shape)
(60000, 28, 28)

Display an element of the dataset

digit = train_images[d4]

import matplotlib.pyplot as plt
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()

Figure 2.2 The fourth sample in our dataset




Manipulating Tensors: Slicing

Selecting specific elements in a tensor is called tensor slicing

Select images #10 to #99

>>»> my slice = train_images[10:100]
»>»> print(my_slice.shape)

>>»> my slice = train_images[10:100, :, :]
»>> my_ slice.shape

(90, 28, 28) .
These are both equivalent

»>> my slice = train_images[10:100, 0:28, 0:28]

»>> my_ slice.shape

(90, 28, 28)
Select 14x14 pixels in the bottom
my slice = train_images([:, 14:, 14:] . .
right corner of all images
I Crop Images to pa_ltches of 14x14 pixels
centered in the middle




Tensor Reshaping

Reshaping: Re-arranging the tensor’s rows and columns to match a
target shape

>>> X = np.array([[0., 1.1,
2., 3.1,
(4., 5.11) Original tensor
»>»>» print (x.shape)
(3, 2)
»»» x = x.reshape((6, 1))
> X
arrayu% 0.] After reshape operation 1
[ 2.
[ 3.
I d-.l
[ 5.11)

»»> X = x.reshape((2, 3))

>>> x After reshape operation 2
array([[ 0., 1.,
[ 3.,

4., .11)

(S o8 )

>>> a = np.array([[1, 2, 3], [4, 5, 6]], float)
>>> a
array([[ 1., 2.,

3.1, Flatten operation
[ 4., 5., 6.11)

>>> a.flatten() Creates 1D array
array([ 1., 2., 3., 4., 5., 6.])




Tensor Operations

Elementwise Operations: Operations applied independently to each
entry of the tensor

Z=X+Y < Element-wise addition

z = np.maximum(z, 0.) <+—— Element-wise relu

Broadcasting

If the shape of the two tensors is different, the smaller tensor is

broadcasted to match the shape of the larger tensor, in 2 steps:
1. Axes are added to the smaller tensor to match the ndim of the

larger tensor
2. The smaller tensor is repeated alongside these new axes

import numpy as np J x is a random tensor with
shape (64, 3, 32, 10).

np.random.random( (64, 3, 32, 10))
np.random.random( (32, 10))

w
" |}

y is a random tensor
with shape (32, 10).

z = np.maximum(x, y) <1
\—‘ The output z has shape

(64, 3, 32, 10) like x.




Tensor Dot Product

import numpy as np

z = np.dot(x, y)

If x and y are vectors

z = 0.

for i in range(x.shape[0]): ReturnS a Scalar
z += x[i] * yli]

return z

If x is a matrix and y is a vector

(m,n) (n,1) (m,T)

z = np.zeros (x.shape[0])
for i in range(x.shape([0]):
for j in range(x.shape[l]):
z[i] += x[i, j] * yI3]]
return z

Both x and y are matrices

More Generally

(m,n)  (n,p) (m,p)

{a, b, C, d} - (d;) — [a: bl c]

—
- (a, b, ¢, d) . (4, e) -> {a, b, ¢, e)




Creating Arrays

>>> np.arange (5, dtype=float)
array([ 0., 1., 2., 3., 4.])
>>> np.arange(l, 6, 2, dtype=int)
array([1, 3, 5])

>>> np.ones((2,3), dtype=float)
array([[ 1., 1., 1.],

[1., 1., 1.]1)
>>> np.zeros (7, dtype=int)
array([O0, O, O, O, O, O, O])

>>> np.random.rand (2, 3)

array([[ 0.50431753, 0.48272463, 0.45811345],
[ 0.18209476, 0.48631022, 0.49590404]11)

>>> np.random.rand(6) .reshape((2,3))

array([[ 0.72915152, 0.59423848, 0.25644881],
[ 0.75965311, 0.52151819, 0.60084796]1)

>>> np.random.randint (5, 10)
9

>>> 1 = range(10)

>>> 1

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> np.random.shuffle (1)

>>> 1

[4, 9, 5,0, 2,7, 6, 8 1, 3]

Arrays with consecutive
integers

Arrays with 1’s or O’s

Generating Random
Numbers

Random Shuffle



Transpose of a Matrix

W — Wi1 Wi2 Wig
- (Wz,l W2 W2,3)
then
Wi1 W21
Wl =[wi2 wyp
W13 W23
In general




Supplementary Reading

» For Probability Theory: Chapters 2 of “Deep Learning” by
Goodfellow, Bengio and Courville.
http://www.deeplearningbook.org/

» For Tensors: Chapter 2, Sections 2.2 and 2.3 of Chollet



http://www.deeplearningbook.org/

