Reinforcement Learning

Lecture 19
Subir Varma

So Far..

We have learnt how to design Neural Networks that
can:

» “See” (ConvNets)

» “Hear” (RNNs, LSTMs)

» “Talk” (Language Models)
» “Draw” (GANS)

What about Neural Networks that can make
decisions?

A Sequence of Decisions to Achieve an Objective

What is Reinforcement Learning?

Science of Making Decisions

By Interacting with the Environment

e AV
ation ‘,f,l R . action
&4 s, / (
d \ 3 \ \ ~ '. /
o, AR | S A,
.;”_ = g f
E /

Differences between RL and
Supervised Learning

o e QL A >
27 Ve \

m There is no supervisor, only a reward signal
m Feedback is delayed, not instantaneous

m Time really matters (sequential, non i.i.d data)

m Agent’s actions affect the subsequent data it receives

N

Examples

Actions: muscle contractions
Observations: sight, smell
Rewards: food

Actions: motor current or torque
Observations: camera images
Rewards: task success measure
(e.g., running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit

Examples of Reinforcement
Learning

m Fly stunt manoeuvres in a helicopter

m Defeat the world champion at Backgammon
m Manage an investment portfolio

m Control a power station

m Make a humanoid robot walk

‘I Play many different Atari games better than humans

p—

Components of an RL System

p—

Atari Example: Reinforcement
Learning

Agent: Player

P A e NP AN
- / f \ % =
observation M\ L 0 LY action
2 \ P ! F)}

Environment: Game Software

observation action
ﬂ ﬁ
(o) At

reward R

Win/Loss
Game Score

Agent and Environment

—— T —

A N

m At each step t the agent:

i G f :‘\;;’ 19 m Executes action A;
ki Lx ey 9 f\ m Receives observation O;
m_j R m Receives scalar reward R;
reward | R,
+ m The environment:

m Receives action A;
m Emits observation O;.1
m Emits scalar reward R; 1

m t increments at env. step

Agent State

m The agent state 57 is the

Agent State: P agent's internal
Last 4 A Y Y D :
PR a representation
Screens F L Y] e P

R ¢ AN e = 0 Sl \ m i.e. whatever information
= the agent uses to pick the
next action

m i.e. it is the information
used by reinforcement
learning algorithms

m It can be any function of
history:

5¢ = f(Ht)

Rewards

m A reward R; is a scalar feedback signal
m Indicates how well agent is doing at step t
m [he agent’s job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

Examples of Rewards

m Make a humanoid robot walk
m }+ve reward for forward motion
m —ve reward for falling over

m Play many different Atari games better than humans
m +/—ve reward for increasing/decreasing score

m Manage an investment portfolio
m +ve reward for each $ in bank

m Defeat the world champion at Backgammon
m +/—ve reward for winning/losing a game

Policy
m A policy is the agent’s behaviour

m |t is a map from state to action,

m Deterministic policy: a = 7(s)

m Stochastic policy: m(als) = P[A; = a|S; = s]

Agent: Player

Environment: Game Software

Can the Policy be Generated by a
Neural Network?

Actions

— n(allslw) = P(alls,W)

—» n(ag,s,w) = P(ag|s,w)

Deep Reinforcement Learning

Model

m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

psasl — IP[St+1 — SI I St = S, At — 3]
=E[Re41 | St = 5. Ar = 3

Agent: Player

TI In Reinforcement Learning a
- Model is represented by a

| ‘/
1 * Markov Decision Process

Environment: Game Software

DIRERRRRRRRIRRIRRRR R T~ T,y

MDP Tree Representation

State Nodes

a / ’ \
° Action Nodes
O. 0_3 10 '
|

5 OEBORE

¢\ /w\ /&\ /3\

p—

Value Functions and Action-Value
Functions

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

Ve(S) = Ex [Res1 + YRez2 + V2 Resz + ... | St = 5]
q(s,a) = Ex[Rey1 + YRey2 + VPReyz + -+ |S = 5,4, = a]

A Value Function specifies what is good in the long run

It is better to make decisions on the basis of Action Value Functions
rather than Immediate Rewards

Maze Example

Start

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

Goal

Maze Example: Policy

Iy
H_ 0
41— EE

“—

Start

——>

m Arrows represent policy 7(s) for each state s

Maze Example: Value Function

o]

Start
aE

OonD

Generating Action Value Functions
using Neural Networks

= 5 G (s,21,W) Choose the Action
-

g with the highest
. Value Function

q(s,a) = Ex[Riy1 + YResz + V?Rpyz + -+ |S; = 5,4, = a]

Deep Q Networks

Deep Reinforcement Learning

Convglution Convglution Fully cgnnected Fully cgnnected

&
4«(—»»-)5

alrcleeviy]>
©) (@) (@] (@] (@] ©] (©® (&

Deep Models allows RL algorithms to solve Complex Decision Making
Problems End-to-End

Central Problems of Deep RL

= | = =~ n(alps; W) =1 (a1|31 W) A AN [— q*‘l(s,a],W)

:4&‘ ‘é—i,:‘ B - : ('?:»? AR

D

gL .

);"' . 4 re .] & q*K(m,w)
W » m(ayg,s,w) = P(ag|s,w) W -

Train a Neural Network to implement the
Policy Function (s)

Train a Neural Network to implement the
Action Value Function q(s,a)

Playing Pong using
Policy Gradients

p—

Policy Network for Pong

hidden layer

‘\\ - orobability of
A 1':7‘. moving UP
K NINAN .

raw pixels

height width

[80 x 80]
array of

PR
AN
FRC

A

pixels

g > 1(ay, s,w) = P(as|s,w)

f ST n(ag,s,w) = P(ag|s,w)

Policy Network for Pong

height width

[80 x 80]
array of pixels

R
R
‘1’

raw pixels hidden layer

‘\\ robability of
= moving UP
= &‘&W
RN
NS

E.g. 200 nodes in the hidden network, so:

[(80*80)*200 + 200] + [200*1 + 1] =
Layer 1 Layer 2

M

~1.3M parameters

Training a Pong Player using
Labels - Supervised Learning

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

Training a Pong Player using
Labels - Supervised Lerning

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP) maximize:
(2 D0WN) 3, log p(yilx)
(x3,UP)
L=—[tlogy + (1 —1t)log(1 —y)]
. raw pixels hidden layer
M probability of

F&“?
50K

S =7 moving UP
20—

S
SEX N

X
Vats

Except, we don’t have labels...

b —

Training a Pong Player using Sample
Episodes - Reinforcement Learning

Let’s just act according to our current policy...

raw pixels hidden layer

gsiizugypof Rollout the policy
’;:;f:é#.‘ and collect an

;:;::\‘M episode

AN

WIN

Training a Pong Player using Sample
Episodes - Reinforcement Learning

Training

Collect many rollouts...
y Data

4 rollouts: /

DOWN upP

DOWN r® »® WIN

@

LOSE
DOWN

-®
v @ LOSE
-® WIN

Training Data: WIN Episodes

WIN

LOSE

LOSE

WIN

Pretend every action we took here
was the correct label.

maximize: logp(yi |xi)

Training Data: LOSE Episodes

DOWN DOWN

r®— >@

@

uP

@

WIN
LOSE

LOSE
WIN

Pretend every action we took
here was the wrong label.

maximize: (—1) * log p(y; | xi)

Training Loop

Collect Training Data
(Play the Game)

l

raw pixels hidden layer

‘\\,// : probability of
& ing UP
| AL

Modify Weights
(with Backprop)

-
-

% \(‘(”'
RN . ’

Self Driving Cars and Drones
Using Imitation Learning

p—

Training a Self Driving Car Using
Imitation Learning

mplag|og)

training -"‘I’Pe“'_ised ro(as]or)
data earning

Does it Work?

= training trajectory
= 77y expected trajectory

No!

Two Solutions:

— Multiple Cameras (NVIDIA)
- The Dagger Algorithm

NVIDIA Self Driving Car

and quickly learned to navigate cones.

P »l o) 027/1:49

\

The NVIDIA Self Driving System

Reccrded
steering ‘
whael angle | acust for shit Desired staerning command
a0 rotation
3 Nedtwodk
Lefl camera —— compuied
. steeny <Y
Center camera —————o- Random shift - CNN ‘co—._;" - 3
L) ol & rotation \ = /
Sack propagasion |, Eof
weght adustment
N
.\
4
g
\ et

Bojarski et al. “16, NVIDIA

ConvNet used in the NVIDIA

System

Output: vehicle control

Fully-connected Layar
Fully-connected Layer
Fully-connected layer

Convolutional
feature map
B4@1x18

Convolutional
feature map

64@3x20

Convolutional
feature map
45@ox22

Convolutional
feature map

36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@e6x200

* 9 layers

* 1 normalization layer
* 5 convolutional layers
* 3 fully connected layers

* 27 million connections

* 250 thousand parameters

The Dagger Algorithm

can we make Paatal(0:) = Pr,l0g)7
idea: instead of being clever about py,(0¢), be clever about pyae.(0;)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pyata(0¢)
how? just run wg(as o)

but need labels a,!
{

<> 1. train mg(as|o;) from human data D = {0y,a;,...,0x,ax}
2. run mp(a;|o;) to get dataset D = {0y,....0)}

3. Ask human to label D, with actions a,
4. Aggregate: D+ DUD,

Drone Navigation Using Dagger

o
%

IDSIA USI/SUPSI - Lugano - Switzerland

University of Zurich - Switzerland
http://www.bit.ly/perceivingtrails

TP
\‘\ University of

> »l o) 0:06/456

Playing GO with Deep
Reinforcement Learning

p—

ARTICLE

001:10.1038/nature 16961

Mastering the game of Go with deep
neural networks and tree search

David Silver's, Aja Hu:mg]', ChrisJ. Madd_isonl, Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser!, loannis Antonoglou’, Veda Panneershelvam!, Mare Lanctot!, Sander Dieleman’, Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuogh',

Thore Graepel' & Demis Hassabis'

THE INTERNATIDNAL

The game of Go has long been viewed as the most challenging of classic games for artificial Intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we Introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also Introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achleved a 99.8% winning rate ag: other Go progr , and defeated the h European Go
champlon by 5 games to 0. This s the first time that a computer program has defeated a human professional player In the

At last — a computer program that
can beat a champion Go player PAGE 484

ALLSYSTEMS 90

D NATUREASIA COM

SONSERVATION RESEARCA ETHICS
SONGBIRDS SAFEGUARD
ALACAKR I

full-sized game of Go, a feat previously thought to be at least a decade away.

All games of perfect information have an optimal value function, v'(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately & possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b~:35, d~8
especially Go (b=2250, d=+150)", exhaustive search is infeasibl
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s)=v"(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess®, checkers® and othello®, but it was believed to be intractable in Go
due to the complexity of the game”. Second, the breadth of the search
may be reduced by sampling actions from a policy p(als) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts® search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon® and
Scrabble®, and weak amateur level play in Go'".

Monte Carlo tree search (MCTS)""+'? uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant

policies'*'* or value functions'® based on a linear combination of

input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion'”, face recognition'®, and playing Atari games'®. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image™. We
employ a similar architecture for the game of Go. We pass in the board
position asa 19 x 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network p, directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work'*!%, we also train a
fast policy p. that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network p,, that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vy that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Game of Go

m [he ancient oriental game of
Go is 2500 years old

m Considered to be the hardest
classic board game

m Considered a grand

challenge task for Al
(John McCarthy)

m [raditional game-tree search
has failed in Go

The Game of GO

© 000000000
000000000
® 000000100
000000000
000000000
000000000
000000000
. 000000000

s (state) (e.g. we can represent the board into a matrix-like form)

Rules of Go

m Usually played on 19x19, also 13x13 or 9x9 board
m Simple rules, complex strategy

m Black and white place down stones alternately

m Surrounded stones are captured and removed

m [he player with more territory wins the game

Computer Aided GO: AlphaGO

= o p—— n(allslw) = P(alls,W)

- ~
e TT(Ag, S, W) = P(ak|s,w)

s (state) —
a (action)

Algorithms Used:
1. Policy Gradients
2.Monte Carlo Tree Search

Givens, pick the best a

Policy network Value network

P, @ls) Vs ()

AlphaGo Zero

a Self-play s, s,

a,~m, 4 8 ~ %

4 ﬁ?-»"éii"-» 2

(p.v)=f,(s) and 1= (z—v)*— =" logp+ (|0

Further Reading

» “Reinforcement Learning, 2"d Edition” by Barto
and Sutton

