Image Generation Using
Diffusion Models

Lecture 19
Subir Varma

Deep Generative Learning:
Learning to Generate Data

Applications

Content Generation

Generative =N
Adversarial Networks

DeNoising Diffusion Models

Emerging as powerful generative models, outperforming GANs

“Diffusion Models Beat GANs on Image Synthesis” “Cascaded Diffusion Models for High Fidelity Image Generation”
Dhariwal & Nichol, OpenAl, 2021 Ho et al., Google, 2021

Text to Image Generation

DALL-E 2 Imagen

A group of teddy bears in suit in a corporate office celebrating

gllsdcbsanenaE A Shoarsl eSS the birthday of their friend. There is a pizza cake on the desk.

“Hierarchical Text-Conditional Image Generation with CLIP Latents” “Photorealistic Text-to-Image Diffusion Models with Deep
Ramesh et al., 2022 Language Understanding”, Saharia et al., 2022

Denoising Diffusion Probabilistic
Models

p—

Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise
3 X4 X
e S S N NS N S N S N S —
S J\L J\L e L y..
T
g(xi|xi1) = N(xe; V1= Bxe1,B1) = q(xrlxo0) = [[a(xefxi-1) (joint)
t=1

The sequence f; is chosen such that f#, < f, <.' .. < pr < 1, l.e., the amount of noise being added increases monotonically,

Re-Parametrization Trick

Note: We will use the notation N(X; u, X) for a mutivariate Gaussian (or Normal) Distribution X with mean vector u = (u,, ..., 4y) and covariance matrix X
(please see the Appendix at the end of this chapter for a short introduction to multivariate Gaussian Distributions). For the special case when the covariance
matrix is a diagonal with a common variance o2, this reduces to N(X; K, o*I) where I isaN X N identity matrix.

Note: Given a Gaussian Distribution N(X; u, 521), it is possible to generate a sample from it by using the Re-Parametrization Trick, which states that a

sample X can be expressed as
X =u+oc
where the random vector ¢ is distributed as per the Unit Gaussian Distribution N(0, I).

By using the Re-parametrization Trick, we can sample X, from the distribution g(X; |X,_)

X, =1-pX + \/Eer—l

Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

X, = \/Y—:Xo + \/(l — 7)€

Yir = H:‘=1 a; where a; = 1 — f3,

v

Y1 = 72 .>yr sothaty, = 0 asrincreases,

this implies that the distribution of X7 approaches N(0, I) which is also referred to as "white" noise.

What Happens to a Distribution in
the Forward Diffusion?

Diffused Data Distributions ,
Data Noise

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:

Sample x7 ~ N (x7;0,1)

X
Ilteratively sample X;—1 ~ q(X¢—1|x¢) X % X
— \ X » X
True Denoising Dist.
a(xg) alx) alx) a(xs) .~ q(xp)
e A 7 K~ 7 K
qa(xolxy) a(xy[x,) q(xglxs) q(xslxy) q(xq.1[%7)

In general, ¢(x;—1|x¢) o< q(x¢—1)q(x¢|x¢—1) is intractable.

Can we approximate q(xt_1|xt)? Yes, we can use a Normal distribution if ¢ is small in each forward diffusion step.

po(Xr—l |X1) ~ Q(X:—l IX:)-

N\

Approximation

Reverse Denoising Process

~ Reverse denoising process (generative)

Noise

Data

el il pol. T Rl geler g

p(x7) = N(x71:0,1) |
pH(xt—llxt) = N(X{,_lg Ly (Xt, t').: Ot‘;I)

™

Approximate using a Gaussian Distribution

ELBO (Evidence Lower Bound)

q(x|z) unknown
Approximated by pg (x|2)

q(zlx) known

Lets assume that we can approximate g(X|Z) by another (parametrized) distribution p, (X|Z).

Minimize “distance”
between the distributions

pO(Xs Z)

—— Dxe(q(X|2). po(X|2)) = log g(X) - ; 92X log = 7

9(Z|X)
po(X.Z)

This is equivalent to
minimizing

ELBO =)" q(Z|X)log
Z

Extend ELBO to the Chain

Forward diffusion process (fixed)

Data Noise

Xq X4 Xo X3 Xy S X

Reverse denoising process (generative)

Data Noise

log g(X,.7|Xp)

L = F
HLo ot po(Xo.T)

T
po(Xo.r) = pXp) [| poXicr 1X0)

=1

with

T
qX,.71Xp) = n q(X;1X,-1)

=1

ELBO Formula

q4(Xr|Xo) +Z q(X,-11X;. Xp)

L =E, |lo
e "[poXr) EH T poXia1X)

— log py (Xp| X,)]

Which is the same as

T
Lo = E, [DKL(Q(XTIXO)l |po(X7)) + Z D (q(X—11X;, Xo)| |po(X,-11X})) — log pe (X |X1)]
=2

Defining
Ly = Dg; [g(X7 | Xo)l|pp(X7)]
Lt o DKL [q(xl|Xl+l’X0)“p0(Xl|Xt+l)J 1 <t< T-1
Ly = —log py(XolX,)

Lg;po can be written as

Lgipo =Ly + Ly +...+ L

Critical Formula

Gaussian Distribution!

/

G(X,-11X,. Xo) = NX,_ 13 i(X,, Xo), B.1)

where

= 1=y,
pi=—T"—P
T

\/a_l(l -Yt—l)Xl + V=1 ‘Xo
7 1 -7

H(X;, Xp) =

This implies

1 -
L =E i, (X, Xo) — X, 0P| 11T -1

21120 (X,, 0|13

Loss Function

l 2
L=E 142, (X, Xp) — po(X;, || 1<t <T-1
[2||zo(x,,t)||% v]

Is equivalent to

b ||e; —CO(Xn’)“z]

L, = FK [7
2a,(1 - }’,)”ZU(X,J)HE/A N

Estimate of that noise

¢, is the noise that is added to the image X\, during training in order to gét X,

l -y, -1 P 1
va (1 -y l)Xl+ V-1 X, and Xo=—&X - T=7e)
l_y[l_Yl ‘\/ﬂ

Follows from (X, Xp) =

- _ 1 B
So that u(X;, Xp) = ‘\/E, {X, me‘,}

Training Objective Weighing

B} _ _
Lt—l = IEXDN(I(XO)-,ﬁNN(O,I) {203(1 . ,Bz)(]- _ @t) ||€ - 69(\/a_t X+ v 1 — ay eat)HQ
Ko ~ 4
At

The time dependent \; ensures that the training objective is weighted properly for the maximum data likelihood training.
However, this weight is often very large for small t’s.

Ho et al. NeurlPS 2020 observe that simply setting \; = 1 improves sample quality. So, they propose to use:

Limple = Exgug(xo).e~N 0D t~u(1T) [|l€ — €6(v/@ X0 + V1 — Gy €,1)||?]
e 7
Y

Xt

DDPM Algorithm: Training

Algorithm 1 Training :
l: repeat
2: xp ~ q(xp)
3: t~ Uniform({1,...,7})
4: e~ N(0,I)
5: Take gradient descent step on

Ve ||e — €g(vVarxo + /1 - c‘tte,t)”2

6: until converged

« Animage is sampled from the training dataset, with (unknown) distribution g(Xj)

» Asingle step index 7 of the forward diffusion process is sampled from the set 1, . .., T, using an Uniform Distribution

« Arandom noise vector ¢ is sampled from the Gaussian Distribution N(0, /)

« The noisy image X, is sampled at the t"" step, given by X, = \/}7,X0 + 4/1 — y,€. This is then fed into the Deep Learning model to generate an
estimate of the noise that was added to X, in order to obtain X, given by ¢, (\/‘?,XO + /1 = ye0).

« The difference between the actual noise sample ¢ and its estimate ¢, is used to generate a gradient descent step.

DDPM Algorithm: Sampling

Algorithm 2 Sampling

: x7 ~ N(0,I)
cfort=1T,...,1do
z~ N(0,I)ift > 1,elsez =10

1
2
3
& o= o (30— Bk eo(xi,t)) + 0z
5
6

. end for
: return xo

Once we have a trained model, we can use it to generate new images by using the procedure outlined in Algorithm 2. At the first step we start with a Gaussian
noise sample X7, and then gradually de-noise it in steps X7_,, X7_>, ..., X, until we get to the final image X|,. The de-noising is carried out by sampling from
the Gaussian Distribution N(uy(X,, t), 1), so that

X1 = poXp, 0) + \/Pre

ug(X,, 1) is computed by running the model to estimate ¢, and then using the following equation to get y,
1 2

poXp,) = — § X, — ——€p(X,, 1)

\/a: 1 -7

The Neural Network

input
image
tile

¥

Downsampling

HH

¥ sz 512

1024

i

H

output
segmentation
& map

Upsampling

Use Conv2DTranspose
(see Chollet page 245)

E

I :

=»conv 3x3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White

boxes represent copied feature maps. The arrows denote

the different operations.

Conv2DTranspose

Example:

(100,100,64) == Conv2D(128,3,strides=2, padding=‘same’) == (50,50,128)

(50,50,128) == Conv2DTranspose(64,3,strides=2, padding=‘same’) == (100,100,64)

Inverse Convolutions!

The Neural Network (cont)

Time Representanon

Fully-connected

Layers \

Time representation is similar to positional embedding in Transformers

R E -

J
J
'
J
'
'
'
J
J
4

1
1
1
] '
] '
] I
s I

Latent Diffusion Models

Two aspects to image re-construction:

» Semantic Re-Construction: Reconstructing specific objects
and how they relate to each other

» Texture Re-Construction: Difference in pixel content

Diffusion Models excel at Semantic Re-Construction, but spend a
lot of their processing on Texture Re-Construction

Latent Diffusion Models

£ \m LatentSpace @ Conditioni
E + Diffusion Process @q
)) Ma
2 ' Denoising U-Net €9 J2r Text
Repres

D

IPixel Space)

pd 2
denoising slep crossaltention swilch skip connection concat _/

« Part 1 of the model (in red) consists of an autoencoder whose Encoder E converts the original image X into a lower dimensional image Z in the Latent
Space that is perceptually equivalent to the image space, but a significantly reduced computational complexity (since the high frequency,
imperceptible details are abstracted away). This autoencoder is trained by a combination of perceptual loss and patch based adversarial objective
(see Esser, Rombach, Ommer).

« A Diffusion Model is then run on this modified image (in green). The reconstructed image Z is fed into the Decoder of the Auto Encoder to get the final
image)20. Since the Diffusion Model operates on a much lower dimensional space, they are much more computationally efficient. Also it can focus on
important, semantic bits of data rather than the imperceptible high frequency content.

Conditional Diffusion Models

Text-to-image generation

DALL-E 2 IMAGEN

“a propaganda poster depicting a cat dressed as french “A photo of a raccoon wearing an astronaut helmet,
emperor napoleon holding a piece of cheese” looking out of the window at night.”

Imagen

Conditional Diffusion Models

_— =

Denoising U-Net €9 \2r Text
entations |

i

r -

-

e : 0
bd - . T &
denoising slep crossaltention swilch skip conneclion concat h - -

« As shown in the box on the right, the tokenized input y is first passed through a network 7, that converts it into a sequence ¢ Mxd: \where M is the
length of the sequence and d; is the size of the individual vectors. This conversion is done by means of an unmasked Transformer that is implemented
using N Transformer blocks consisting of global self-attention, layer-normalization and position-wise MLP layers.

« { is mapped on to each stage of the de-noising section of the Diffusion Model using a cross-attention mechanism as shown in Figure gen17. In order
to do so, the Self Attention modules in the ablated UNet model (see Dhariwal and Nichol for a description) are replaced by a full Transformer
consisting of T blocks of with alternating layers of self-attention, position-wise MLP and cross-attention. The exact structure is shown in Figure gen18,
with the shapes of the various layers involved.

The Cross Attention is implemented by using the flattened "image" tensor of shape h. w X d. n;, to generate the Query, and using the text tensor of shape
M X d. to generate the Key and Value.

inpm R’l Xwxce

LayerNorm Rhxwxe
Convlxl ghxwxdng
Reshape Rh-wxdnp
SclfAttention RA-wxdony
™ Rh-wxdmny,
xT ¢ MLP ph-uxdn

CrossAttention

Reshape ghxwxdmng

Convlxl ghxwxe

Further Reading

» Das and Varma: Chapter Image Generation Using
Diffusion Models, Chapter GenerativeModels

