Transformers Part 2

Lecture 18
Subir Varma

Language Models using
Transformers

p—

Transformer based Language
Model

»

A A L \

Self-Attention [E

Layer

The main difference between the Transformer used as Language Model, and the
Transformer used for Classification is that when a sentence is fed into a Language Model

Transformer during training, then the Attention calculations for word X, cannot take into
account words that occur after X,.

For example the Attention calculations for X; can take into account X, itself as well as X;
and X,, but not X, and X:.

Self Attention Computation for a

LM

QK" =

ql+ki

q2+k1

q2+k2

q3+k1

q3+k2

q3+k3

qé-+k1

q4-k2

q4+k3

q4+-k4

q5+k1

q5+k2

q5+k3

q5°+k4

q5°+k5

Z = softmax(

T

\d

)14

N

» If the upper half of this matrix is set to -infinity, then
row i exhibits the correct dot product for computing the Self

Attention for the it" term in the input sequence.
» The mathematical operation described above is called masking,

and is implemented in Keras using the mask argument.

All the words are fed into the model together!

Training

Next word long and thanks for all

l l l l l

Loss — 108 Yiong | [~ 108 Yand| [~log Ythanks | [108 Yror | [~ 108 Yal |
A A 3 A A

e () D @ M
7 7 =

Linear Layer

Transformer
Block

Input
Embeddings

and thanks for

Inference: Text Completion

Completion Text

A
e =

all™

Sample from Softmax (odll,]

|
- e — — ————

B
!
|
!
|
!
linear layer = :
Transformer —— —— ;
Blocks > a
: |
Input i :
Embeddings | g
| I
i |
So long and thanks for | Jal : the
s P
N _ N
—_—
Prefix Text

i T,

Text Summarization (or
Translation)

Generated Summary

e SRRy
/f,-/l ’/‘\I /./-'\
K);le | Waring | will i
B]
- | - .-
| | 1
: =]

|
|

The only reached its destination 0 1 Kyle
{

S o

-

Original Story

Delimiter

GPT-3

Model Name Nparams Mayers Omodel TMheads Jhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~4
GPT-32.7B 2.7B 32 2560 32 80 1M 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 % 107
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

Nparams IS the total number of trainable parameters,
Niayers 1S the total number of layers,

— dmodel IS the size of the embedding layer
dheag is the dimension of each attention head.

All models use a context window of n., = 2048 tokens.

In Context Learning

» In-context learning was popularized in the original GPT-3 paper as a way to use language models to learn
tasks given only a few examples.

» During in-context learning, we give the LM a prompt that consists of a list of input-output pairs that
demonstrate a task. At the end of the prompt, we append a test input and allow the LM to make a
prediction just by conditioning on the prompt and predicting the next tokens.

» To correctly answer the two prompts below, the model needs to read the training examples to figure out
the input distribution (financial or general news), output distribution (Positive/Negative or topic), input-
output mapping (sentiment or topic classification), and the formatting.

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports

Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

Scaling Laws for Language Models

4.2

5.6 — L=(N/8,8+10%)-007¢

e L= (Df5.4+1013)=00%

L~ B |

. a 4.8
e
g 39 4.0
4
© 3.3 3.2
® 3
3.0
2.4
L ={Crnin/2,3 +108)0.050
2 —_— . 2.7 y v — .
io® 1077 10°% 107 10 10! 108 107 10° 107 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Scaling Laws for Neural Language Models: https://arxiv.org/pdf/2001.08361.pdf
Training Compute Optimal LLMs: https://arxiv.org/pdf/2203.15556.pdf

https://arxiv.org/pdf/2001.08361.pdf
https://arxiv.org/pdf/2203.15556.pdf

Scaling Laws for Language Models

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
Line color indicates
Test Loss 10 number of parameters
|
100 100 100
8
£
Compute-efficient
training stops far
' short of convergence
107 10 1o 107 104 109 108
Tokens Processed Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10* to 10?
parameters (excluding embeddings).

Comparison with LSTMs

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
Test Loss 54 Poe-10ken
Test Loss 6,
4 Pararconws
N~ — L0k
5 400K
- M
)
3 200W
3on
10° 10° 107 10° 10 10" 107 10¢

Parameters (non-embedding) Token Index in Contaxt

Encoder Decoders Using
Transformers

p—

Transformers: Encoder-Decoder

m

()UIPUI[l am a Student]

A

(N O)

ENCODERS » DECODERS

\ R)

INPUT [JC Suis étucham]

p—

Transformers: Encoder-Decoder

®) Save .
e Cross Attention OUTPUT [] am a gtudem]
\ :
7 S \
ENCODER DECODER
" J J
4 4
@ u)
ENCODER DECODER
G J J
4 4
i 5 D
ENCODER DECODER
S J %
4 [
8 5 2
ENCODER DECODER
% J “
4 4
@ . 3
ENCODER DECODER
G J >
4 4
@ 2 R
ENCODER DECODER
\ J J
%) b
|
INPUT | Je suis étudiant The encoding component is a stack of encoders.

The decoding component is a stack of decoders

\ of the same number.

Transformers — Decoders

DECODER
$
.)
Feed Forward
ENCODER A _ y,
(| | \ ‘
f R @)
Feed Forward Encoder-Decoder Attention
L J _ y
A fr— 4
(Y (N
Self-Attention Self-Attention
\. : J - : v

The decoder has an extra attention layer that helps it
focus on relevant parts of the input sentence

Cross Attention

088 . &

K, V Come from Encoder (s X gl) glis)
(Linear Layer J
t 1 t t
- IR i
Eﬂ R B f) Bick2
Block3 [) " ioyerNomaize) |
bttt t -
Block2 |) i
S S— - r— [Feedoward Layer |
(Layer Normalize J
4% (Layer Normalize)
Block 1 [B] é Decoder
\ s B
(Layer Normalize) ‘
93 Q comes from
e (Layer Normalize) D d
[suln:'lmu] ;é ecoder
- i ’ [Causal Setf-Attention Layer |
CIEE N> N f J

|

Decoder

Encoder Decoder using Transformers

Decoder
-1 - - 7’
cross-attention llego ! la”” | bruja | verde </s>
risssiisiisseeseioneo N b e b
_PSIIIIIIIIIIIIIIIIIIIIIIN M () ! () ! (i) ' (o) | (i)
(= 20 TR s et s T A st
@ @ @ | i : i N 7
“\~ ‘\\::‘\ = --I-__ | : % : é
% # % N '*}-\,=-]'\= | | — | e |
= — N — NN %F_ B——_—
transformer |VF= == = _ X ‘.:Er—r —_ : —— : ——
blocks < | —_— — "] ° | R [| [[
[——r] [——] [——] [——] ‘_ I Il E i i >
= \ ~,1__= | | — | — | | —
= EE B =
- . Y, ! | 2 | _—
The green witch arrived y
Encoder verde

« The Queries come from the decoder layer
« The Keys and Values come from the output of the encoder.

Qe input sequence

\

This allows every position in the decoder to attend over all positions in

BERT

Bi-Directional Encoder Representations from

Transformers (2019)

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang

Kenton Lee Kristina Toutanova

Google AI Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQUAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test FI to 83.1
(5.1 point absolute improvement).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers

(2)
()
=4 &>
=
o)
=
- (S
S
-
O
+ &>
()
=
-
L (=)
(Y B
.
=3
T g8
nn = <5
3

> https://arxiv.org/pdf/1810.04805.pdf
ERT

Context
|
[|
We went €o Hhe niver bank. Cannot use “Predict the
IM&W&M&Wa&pﬂ. Next Word” anymore
\ J

Context

» The openAl transformer only trains a forward language
model. Could we build a transformer-based model whose
language model looks both forward and backwards

» Solution: BERT alleviates the unidirectionality constraint by

using a “masked language model” (MLM) pre-training
objective

https://arxiv.org/pdf/1810.04805.pdf

BERT Training: Masked Language
Model

Ioiwg thanks
CE Loss ‘
Softmax over
Vocabulary

Bidirectional Transformer Encoder

p3 ps p7
So [mask] and [mask] for all apricot fish

So long and thanks for all the fish

2

Token + +é
Positional

Embeddings P

Up to 15% of the words in a sequence are randomly selected for prediction.
Out of these, 80% of the words are replaced by a special MASK token,

10% of the words are left unchanged and the remaining 10% are replaced by a
randomly selected word.

BERT Training: Span Based Loss

The span based training works as follows:

- The length of the span is chosen randomly by sampling from a
geometric distribution, and is limited to 10 words or less.

- The start of the span is randomly selected using a uniform
distribution. The Loss Function used to predict a word occuring
within the span is the sum of two loss functions:

- The first Loss Function is simply the Cross Entropy Loss associated
with the word being predicted

- The second Loss Function is computed using the word immediately
preceding the span AND the word immediately following the span,
augmented with a position token for the location of the missing
word within the span.

BERT Training: Span based Loss

Span-based loss

=08 Vinens -
yloniz \lm/
Yal FFN -_,

220

Ch)

C Bidirectional Transformer Encoder)
Embedding é é é é
Layer
1 f 1]
So long [mask] [mask] [mask] all the fish
So long and thanks for all the fish

BERT Pre-Training: Next Sentence
Prediction

Consider that we have a text dataset of 100,000 sentences, so there
will be 50,000 training examples or pairs of sentences as the training
data.

« For 50% of the pairs, the second sentence would actually be the
next sentence to the first sentence

« For the remaining 50% of the pairs, the second sentence would

be a random sentence from the corpus

« The labels for the first case would be /sNext’and ‘NotNext’ for
the second case

Next Sentence Prediction

CE Loss

Bidirectional Transformer Encoder

Token +

Segment +
Positional) ¢) © ©)) o))))
Embeddings " " ® o1 p3 sl pe sl ps 2 e 2 o7 2 p8 2 p

[CLS] Cancel my flight [SEP] And the hotel [SEP]

Classification Using a Pre-Trained
BERT Model

YcLs

softmax (uJ].[].n)

We £

Bidirectional Transformer Encoder

Word +
Positional
Embeddings

[CLS] entirely predictable and lacks energy

T

Vision Transformers

p—

Vision Transformers

Vision Transformer (ViT)

MLP
Head

|

Transformer Encoder

"":-‘:':2:::*:""*@5@6@6@6@666@5@6%
;:;:.‘::,i:.'rﬁ].-; I.me.u Projection of Fl.nllem:d Patches
24~ | o] I I l
ﬁg;—»l.ﬂ?glﬁﬂ

—

The main idea behind ViT is quite simple and illustrated in Figure trans18. Given an input image X of shape RHEXWXC ‘\where C is the number of channels and

H and W are the dimensions of the image in pixels, sub-divide it into a sequence of flattened 2D patch vectors, which is of shape RV*P ‘c . Each of the patch
vectors is obtained by dividing the original image into image patches of size P X P X C as shown in the figure, so that there are N = A W

all. Each image patch is then flattened to create N patch vectors of size P2C. These patch vectors are then sent through a learnable embedding layer, and a
position embedding is added to them, to create the input into the model. The Transformer model itself is exactly the same as was used for NLP.

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE https://arxiv.org/abs/2010.11929

ViT Models

Model Layers Hiddensize) MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 300M
ViT-Huge 32 1280 5120 16 632M

In order to test this new model, the researchers created three versions of ViT, as shown in Figure trans19, with increasing size. We use the notation ViT-L/16 to

refer to the "Large" variant, with 16x16 input patch size. Note that decreasing the patch size increases the sequence length into the model, thus making it more
computationally intensive.

ViT Performance

90

x
A

=
=

ImageNet Topl Accuracy [%)
-3
N

NIE

&
¢ 3
BiT ViT-1L/32
. e VIT-BA2 ViT-L/16
ViT-B/16 ViT-H/14
lm.nt:c.\lcl Imugcg'c(-.'.' Ik JFT-200M

Pre-training dataset

=

2

£

Lincar 5-shot ImageNet Topl [%]
A

s

E—
p— = - -3
s M —8
—
/l.
¥ ViT-L/16 - VIT-B/32 = ResNet$0x1 (BIT)
o ViT-1J32 = ViT-b/32 @ ResNetl52x2 (BiT)
10 M WM 100 M 300 M

Number of JFT pre-training samples

The most interesting observation from this graph is that the performance of the
ViT models varies very strongly as a function of the training dataset size.
Indeed with smallest dataset (ImageNet), the ResNet models outperform all
the VIiT models. With the intermediate size dataset ImageNet-21k, their
performances are about the same, while with the largest dataset, the best ViT
model performs better than all the ResNet models. From this we can conclude
that the strong inductive prior built into ResNet models, that feature
representations are only influenced by nearby features in the neighborhood,

works well when the training set is not very large. However for large training
sets such as the JFT-300M, learning the relevant attention patterns from the

data works as well or better.

Mean Attention Distance

ViT-L/16
) o ©°
o 1204 b ’
.g .;-.'. .‘-.'ll‘lnuﬂ"
<1004 * !".:-!!i
v °
- .!3. .3;3.‘
E 80 + : !.ou.o
g = ® -..:'.2
g 60 - .’:‘.0 ¢
o 3 : ,? * Headl
i A T » Head2
LY "
c 20 .‘.. . Head 3
o
[< ®
2 0 L] L J L LJ LJ
0 5 10 15 20

Network depth (layer)

The plot illustrates that in the early layers, the query patch is already paying
attention to patches that are far it, indeed it seems to be paying attention across
a broad spectrum of all the patches in the sequence. In later layers on the other
hand, the Attention seems to focused more on patches that are further away.

This behavior is in contrast to that in ConvNets, in which the convulation in the
early layers is influnced solely by pixels that are in the immediate neighborhood.

Further Reading

» Das and Varma: Chapter Transformers

» Chollet (2nd Edition): Chapter 11,
Sectionl 1.4

