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So Far ...

Lecture 3 Lecture 4 Lecture 10-12 Lecture 13 Lecture 14 Lecture 16
Linear - Dense Feed Forward - ConvNets > RNNs - LSTMs > Attention
(vectors) (images) (sequences)
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Next: Transformers

Also used for Sequences




Transformers
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- Has made possible much larger models (higher capacity)
— Can be trained using Self Supervised Learning, so very
large datasets are available

Huge Huge
Models Datasets




Problems with RNNs/LSTMs

» Sequential computation prevents
parallelization

» Despite GRUs and LSTMs, RNNs still need the
attention mechanism to deal with long range
dependencies - path length for codependent
computation between states grows with
seqguence

» But if attention gives us access to any state...
maybe we don’t need the RNN?




Embedded Word Representation
in the context of the other words in the Sentence
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But this representation is only a function of the Why not
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Self Attention

p—



Self Attention

All words attend
to all words in
previous layer;
most arrows here
are omitted
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» The representation of each of the words is modified by every other
word in the sequence by using the Self Attention mechanism

» The idea behind this architecture is that after several layers of Self

Attention, each word develops a representation that takes into account
all the other words that exist in the sentence.




Self Attention

» Meaning of a word is context specific:
- Example: Mark a Date vs Going on a date vs buying date at the
market
» A Smart Embedding technique would provide a different
vector representation for a word depending upon the other
words surrounding it

» Self Attention: A way to make Word Representations Context
Aware

» It does so by modulating the the word representation by
using the representations of other words in the sentence.




Self Attention (cont)

How to Compute the Self Attention Scores?
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Computing Self Attention Scores

» Simplest way:

Aixk, =xj°oxp 1<k <n
Wi = softmax(a)

This technique does not involve any learning
since there are no parameters




Generalized Self Attention

» The initial word embeddings are sent through
3 independent sets of dense projections,
resulting in 3 separate vectors (per word)
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Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key",
and a "value" projection of each word in the input sentence.




Generalized Self Attention (cont)
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Generalized Self Attention (cont)
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Generalized Self Attention (cont)
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Transformer Encoders
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Transformers — Encoders
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Here we begin to see one key property of the Transformer, which is that the word in each position flows through its
own path in the encoder. There are dependencies between these paths in the self-attention layer. The feed-forward
layer does not have those dependencies, however, and thus the various paths can be executed in parallel while

flowing through the feed-forward layer.
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Transformers — Encoders
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The word at each position passes through a self-attention process. Then, they each pass through a feed-forward neural network -- the
exact same network with each vector flowing through it separately.




Multi-Headed Attention

Words in a sentence
can relate to each
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ith multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did
before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices.
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Multi-Headed Attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained

jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN




Attention - Summary
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Dense Feed Forward Layer

R, = ReLU(Z, Wy + bYW, + by, i=1,...,N
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Add Residual Connections and
Layer Normalization
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Layer Normalization

» Batch Normalization vs Layer Normalization
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Multiple Layers
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Modularity: All elements of input sequence share the same parameters:
RNN like property




Counting Number of Parameters

A B C D E F G H J
1 Parameters in the Self Attention Block # Parms Embedding Dimension 32
2 Number of Attention Heads 1
3 WA 32x32+32 1,056 Dense Dimension 32
4 'WAK 32x32+32 1,056 Number of Blocks 1
5 WAV 32x32+32 1,056 Sequence Length 600
6
7 Sub Total 3,168
8
S Number of Attention Heads 2
10
11 Sub Total 6,336
12
13 Parameters in the Projection Block 2X32X32+32 2,080
14
15 |Sub Total 8,416
16
17 Parameters in Dense Feed Forward Block
18
19 DFN1 32X32+32 1,056
20 DFN2 32X32+32 1,056
21
22 |Sub Total 10,528
23
24 Layer Normalization 1 32X2 64
25
26 Layer Normalization 2 32X2 64
27
28 Grant Total 10,656
29
30
31 Self Attention Computations
32
33 For asingle element 32 X 32 x 600 614,400
34 |For Entire Sequence () X600 368,640,000

35



Positional Encoding

» Positional information arises naturally in
RNN/LSTMs

» Transformer Architecture is invariant to
permutations of the input sequence

» This is a problem if the position is important
Example: NLP




Positional Encoding
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Visualizing Attention in
Transformers
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[SEP]
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Attention to Next Word
Similar to a Backwards RNN
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[SEP]
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[SEP]
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» [SEP]
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Attention to Prior Word
Similar to a Forward RNN
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Visualizing Attention
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[SEP]
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Attention to Similar Words
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[SEP]
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[SEP]
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Visualizing Attention




Classification using Transformers
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Further Reading

» Das and Varma: Chapter Transformers

» Chollet (2nd Edition): Chapter 11,
Sectionl 1.4

» http://jalammar.qgithub.io/illustrated-transformer/



http://jalammar.github.io/illustrated-transformer/

