Transformers Part 1

Lecture 17
Subir Varma

So Far ...

Lecture 3 Lecture 4 Lecture 10-12 Lecture 13 Lecture 14 Lecture 16
Linear - Dense Feed Forward - ConvNets > RNNs - LSTMs > Attention
(vectors) (images) (sequences)
v

Next: Transformers

Also used for Sequences

Transformers

Number of model parameters (in billion) (Tsinghua, BAAI, Alibaba),
BAGUALU
1000000.00 174 trilion
100000.00 BAAI, WuDao
' 1.75 triki
Google, Switch Transformer o
1000000 1.6 trillion
. OpenAl, GPT-3
1000.00 Microsoft, Turing-NLG 175 bilon > ’
Nvidia, Megatron-LM 17 billion
100.00 8.3 bilion Gaogle, T5
OpenAl, GPT-2 11 billon
10.00 Google, BERT 1.5 billion

330 million
OpenAl, GPT

110 milkion Facebook, RoBERTa

330 million

1.00
0.10
20186 20189 2018M12 2019/3 2019/68 2019/9 201912 20203 2020/6 2020/9 2020/12 2021/3 2021/6 20219 202112

- Has made possible much larger models (higher capacity)
— Can be trained using Self Supervised Learning, so very
large datasets are available

Huge Huge
Models Datasets

Problems with RNNs/LSTMs

» Sequential computation prevents
parallelization

» Despite GRUs and LSTMs, RNNs still need the
attention mechanism to deal with long range
dependencies - path length for codependent
computation between states grows with
seqguence

» But if attention gives us access to any state...
maybe we don’t need the RNN?

Embedded Word Representation
in the context of the other words in the Sentence

\ Final
Representation

Y Logit v
W W
32 132 > 32 > ’4,
Zi Zi Zi+500
U U U
32 32 Xitsool32 |« Embedded Word
X Xii Representation
3 - x
Embedding E c E
Matrix

1-Hot Vector

Ai=W0rd] 10K Ai+1: 10K Ai+500: 10K
word 3

But this representation is only a function of the Why not

words that came before it make it a
function of
\ . all the words
Final)
Representation in the
Logit sentence!
W W V Y
32 132 > 32 > ‘ »
Z Ziyy Zi+500
U U U
How?
X.
X > Xit1 > i+500 |32 ‘
3 E x
Embedding £ c e Use the Att_ention
Matrix Mechanism

1-Hot Vector

Ai=W0rd] 10K Ai+1: 10K Ai+500: 10K
word 3

Self Attention

p—

Self Attention

All words attend
to all words in
previous layer;
most arrows here
are omitted

attention

attention

embedding . . I I
h; h,

hy

» The representation of each of the words is modified by every other
word in the sequence by using the Self Attention mechanism

» The idea behind this architecture is that after several layers of Self

Attention, each word develops a representation that takes into account
all the other words that exist in the sentence.

Self Attention

» Meaning of a word is context specific:
- Example: Mark a Date vs Going on a date vs buying date at the
market
» A Smart Embedding technique would provide a different
vector representation for a word depending upon the other
words surrounding it

» Self Attention: A way to make Word Representations Context
Aware

» It does so by modulating the the word representation by
using the representations of other words in the sentence.

Self Attention (cont)

How to Compute the Self Attention Scores?

1 1 f
— 1 —/
x: I x [xs [ERJERER

Je suis étudiant

Computing Self Attention Scores

» Simplest way:

Aixk, =xj°oxp 1<k <n
Wi = softmax(a)

This technique does not involve any learning
since there are no parameters

Generalized Self Attention

» The initial word embeddings are sent through
3 independent sets of dense projections,
resulting in 3 separate vectors (per word)

Input Thinking Machines
Embedding x: T X
Queries ol T] al [T wea \

These matrices
Keys EEE T «_ are learnable!
Values vil 1 1] vl] wv

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key",
and a "value" projection of each word in the input sentence.

Generalized Self Attention (cont)

Input Thinking Machines
Embedding X1 X2

Queries q1 q2

Keys K1 k2

Values V1 V2

Score g e ki= qi* k2 =

p—

Generalized Self Attention (cont)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vd;.)

Softmax

Softmax
X
Value

Sum

Thinking
x [
a [T
o [
vi [
qi e ki=
vi [

Machines

x> [
q [T
ke [T
v. [

qi e k2 =

Q=WQX; K=WKX; V=WVX

Summarized as:

T

vd

Z = softmax()14

Generalized Self Attention (cont)

Ya

qi = W%;; ki = WKx;; v; = WVx;

Output Vector

yi = Zaijvj

Weight and Sum
value vectors Jj<i
Softmax (O o) d) score(X;,X;) = a k)
; -
Key/Query <“><
Comparisons l}:

©
G t
key, ;:\:rr;’a vealue @ @ @ @ @ @
v, ~A0 x, A0~

vectors

D T

Transformer Encoders

p—

Transformers — Encoders

ENCODER A A A

— | SN

Feed Forward

Self-Attention

X1 | | X2 | | X3 | I

Je suis étudiant

Here we begin to see one key property of the Transformer, which is that the word in each position flows through its
own path in the encoder. There are dependencies between these paths in the self-attention layer. The feed-forward
layer does not have those dependencies, however, and thus the various paths can be executed in parallel while

flowing through the feed-forward layer.
~—. 0 0 0202-w=

Transformers — Encoders

ENCODER #2 k\ jj
1 1

n LT T r. [T
ENCODER #1 (T T \ Both these
Feed Forward Feed Forward networks have
Neural Network Neural Network the same
T f parameters
z, [z, [
Self-Attention
e F 7 &,
X1 7[|7| X27 l |7
Thinking Machines

The word at each position passes through a self-attention process. Then, they each pass through a feed-forward neural network -- the
exact same network with each vector flowing through it separately.

Multi-Headed Attention

Words in a sentence
can relate to each

X .
i other in many
Machines different ways
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo | Q1
W@ 1T W@
Ko Ki
| HEE
| WK HEE WK
Vo Vi
i i WoV Ll | W,V

ith multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did
before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices.

i —

Multi-Headed Attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained

jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Attention - Summary

@EIGs our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting matric@
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
2 with weight matrices Q/K/V matrices produce the output of the layer
W@
X 0

WoK Qo

WoV F::L KOVO

Ihinking

Machines

WK Q1

W EER,

Dense Feed Forward Layer

R, = ReLU(Z, Wy + bYW, + by, i=1,...,N

=

W,
@
/

- Size d Size 4d Size d

o0 C00 ©e0 Ce0o
©e®

Add Residual Connections and
Layer Normalization

A Single z) - R

La er AL % INOTr'malize
y X
, > LayerNorm(| +)
'
- '
'

1 2
. Thinking Machines

ENCODER #1

Layer Normalization

» Batch Normalization vs Layer Normalization

Batch Number

Bl B2 B3
Al | I »| Batch Normalization
Node
Activations A2
1 d
A3 ' u = 2 atm
m=1
Layer

d
ot == Y (am) —)
m=1

Normalization

a(m) — pur

\/or +¢€

c(m) =ya(m) + p

a(m) =

Multiple Layers

-
1

fr 1\
Feed Forward Q K v FF
4 : J| (W,° , W5t W3), Wy
()
Self-Attention
S <)
fr 1\
Feed Forward Pa ram ete)
- /| Q yi7K 1wV FF
- — NI UAN R CONE not shared
Self-Attention
L y) Between layers
s N\
(Feed Forward)
) - Q /K |4 FF
(.] (I/Vl ’Wl 'W1)l Wl
Self-Attention
\ A j

T
|| [1] 11 J

Modularity: All elements of input sequence share the same parameters:
RNN like property

Counting Number of Parameters

A B C D E F G H J
1 Parameters in the Self Attention Block # Parms Embedding Dimension 32
2 Number of Attention Heads 1
3 WA 32x32+32 1,056 Dense Dimension 32
4 'WAK 32x32+32 1,056 Number of Blocks 1
5 WAV 32x32+32 1,056 Sequence Length 600
6
7 Sub Total 3,168
8
S Number of Attention Heads 2
10
11 Sub Total 6,336
12
13 Parameters in the Projection Block 2X32X32+32 2,080
14
15 |Sub Total 8,416
16
17 Parameters in Dense Feed Forward Block
18
19 DFN1 32X32+32 1,056
20 DFN2 32X32+32 1,056
21
22 |Sub Total 10,528
23
24 Layer Normalization 1 32X2 64
25
26 Layer Normalization 2 32X2 64
27
28 Grant Total 10,656
29
30
31 Self Attention Computations
32
33 For asingle element 32 X 32 x 600 614,400
34 |For Entire Sequence () X600 368,640,000

35

Positional Encoding

» Positional information arises naturally in
RNN/LSTMs

» Transformer Architecture is invariant to
permutations of the input sequence

» This is a problem if the position is important
Example: NLP

Positional Encoding

‘= \
Transformer m | |

Composite %:;f/);,é'

Embeddings H E; U
(input + position)

Position
Embeddings

Word
Embeddings

Visualizing Attention in
Transformers

Layer:| 2 § Attention:| All

0
[CLS]
i
went
to
the
store

[SEP]
at
the
store

i

bought
fresh
straw
##berries

[SEPi

Attention to Next Word
Similar to a Backwards RNN

<«

[CLS]

went
to
the
store

[SEP]
at
the
store

i

bought
fresh
straw
##berries

iSEP]

Layer: 6 % Attention:| All

[CLS]
i
went
to
the
store

[SEP]
at
the
store

i

bought
fresh
straw
##berries

[SEPi

>

[CLS]

went
to
the
store

» [SEP]
at
the

- store

i
bought

. fresh

straw
##berries

A iSEP]

Attention to Prior Word
Similar to a Forward RNN

173279€ | L6¥9-si919weled-uol||iw-0Q | -Wolj-suia1red-9-bul||11s1p-143q-HUiIdNIISUOIIP /WO 3dUIISLIRPSPIeMOl / /:sd1iy

Visualizing Attention

[CLS]
i
went
to
the
store

[SEP]

at

the

store

i

bought
fresh
straw
##berries

[sspi

Attention to Similar Words

(€)

Layer:| 2 3 Attention:| All

>

[CLS]

went
to
the
store

[SEP]

at

the

store

i

bought
fresh
straw
##berries

issm

[CLS] |

went
to
the
store

[SEP)

at
the .

store

bought .
fresh .
straw .

t#berries -

[SEP) «

(d)

[CLS)

went

to

. the

store

[SEP]

, at

the
store

bought

fresh

~ Straw

##berries

[SEP)

Visualizing Attention

Classification using Transformers

T Softmax
”T“ Dense

[. .
1D Global Max Pooling

11 [T 1] 11]

e
| |

Self-Attention

(()\
Feed Forward
.
7 Y .
')
Self-Attention
\> /)
(j Encoder Only
Feed Forward .
L : | Architecture
-
Self-Attention)
\> /)
((N\
Feed Forward)
.
‘ .
')
&,

T
0 [e e

Further Reading

» Das and Varma: Chapter Transformers

» Chollet (2nd Edition): Chapter 11,
Sectionl 1.4

» http://jalammar.qgithub.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

