Convolutional Neural
Networks: Part 3

Lecture 12
Subir Varma

Transfer Learning

» Enables the use of Pre-Trained Models

> Pre-Training is usually done with very large
datasets, using Large Models

» You can take the Pre-Trained Model and Fine
Tune it for your own Dataset

Last Conv

Layer with
E d F
/ 160 1
5
MobileNet
. (3,206,976 Frozen | —» || | ¢ obal L)
Parameters from Pooling
ImageNet)
a |-
1024 256
262,257
Only the Extracted Features are Trainable Parameters

used for Training

Trends in ConvNet
Design

p—

Trends in ConvNet Design

Small Filters

Bottlenecking

Split-Transform-Merge (Grouped Convolutions)
Depthwise Separable Convolutions

Residual Connections

v Vv VvV VvV v

» Average Pooling
» Dispensing with Pooling Layer
» Dispensing with Fully Connected Layers

Small Filters

Replace this —»
With this

\

3x3

/X7

Better to use 3 Layers of 3x3 Filters
rather than a single 7x7 Filter

49C?2 Parameters

C
3x3 3x3 27(C2
g | Parameters
C
Benefits:

Less number of Parameters
More Non-Linearity

Small Filters: Telescoping Effect
with Multiple Layers

Layer 1 Layer 2 Layer 3
14
X X X
Y Y Y
X X X
Y Y Y
X X X
7 | Y Y Y
Each Activation Covers
5 X 5 Area
Each Activation Covers in Layer 1

3 X 3 Area
in Layer 1

1 X1 Filters: Bottlenecking

Depthwise
Filtering

64

— Filtering across multiple Activation Maps
— No Spatial Filtering (in a single Map)

56 1x1 CONV
- with 32 filters 96
patial
Filtering
56 56
32
Uses:

— Compress the number of Activation Maps
— Reduce number of parameters/computations

Using 1x1 Filters: Parameters

Reduction
3x3
—
C C
1x1 3x3
—p —>
C C/2
Compress

p—

C/2

9C? Parameters

1x1

Expand

3.25C2
Parameters

Using 1x1 Filters: Computations
Reduction

ii (3x3)x256x28x28x192
28 28 computations
28 28
256 19 346,816,512
1x1 3x3 (Ix1)x256x28x28x64
gl [T | TR 28 + (3x3)x64x28x28x192
28 computations
28 28 192
256 64 99,549,184

Compress

Grouped Convolutions

(.: meﬂ
: *
standard convolutions
H ¢ C, RelU c
1% " h H 2

| B
W,

VS.

¢, filters < C2fa
/ R

* L

grouped convolutions C3f /
H P £ RelU ¢
M >
W ‘ H -

h; W, “Ifg

Split up the input channels into 2 groups
and in parallel process each group with smaller filters

Application of Grouped Convolutions:

Split, Transform, Merge

1x1

256

Split

—13x3 = |
—>

4 4

—1 3x3 7 ¢
—p

4 4

—— 3Xx3 — 32
—>

4 4

- Split Transform

Concatenate

1x1
=>

128

Merge

256

Replace

Benefits:
/ - Better performance:
3x3 Activation Maps in a
— Group Tend to learn
similar features
256 256 - Decrease .in nu.mber of
B computations in
Yy proportion to number of
groups
1 ~13x3 ~7 |
(=[]
4 4
2 { 3X3 C 2 Concatenate
% o
1x1 Split 4 4
1x1
S —_—
256 128 128 256

37 ./ 3x3 2 32
(][]~
4 4

Split | |Transform | | Merge

Depthwise Separable Convolutions

NEW! » Spatial Filtering

N N

ﬁ

Depthwise Filtering

N

~ nxnconv
X X 5 1x1 conv
F
D¢ . @ [. oD [D¢
D
D _ -] D
M Activation | : + M Activation N Activation
Maps ., / Maps after Maps
\ X / Depthwise
@) Filtering
A
— N Filters of
\ Size 1x1

M Filters of
Size DgxDg

Depthwise Separable Convolutions

D¢

M Activation
Maps

N,

L Pointwise Convolution

nxn conv \
1x1 conv

D¢
ﬂr . — h— D¢
| | D¢ D¢
: +« M Activation N Activation
Maps after Maps
/ Depthwise
@ Filtering
N)
S N !—'nlters of
Size 1x1
M Filters of
Size DgxDyg

Standard Convolutions have a
computational cost of:
Dy.D¢.M.N.D;.D;

Depthwise Separable Convs have a
computational cost of:
Dy.D¢.M.D;.Df + M.N.D;.D;

1

. 1
Savings of: N + Dz

Dy: Size of Filter

M: Number of Input Activation Maps
N: Number of Output Activation Maps
D¢: Size of Output Activation Map

Reference: https://arxiv.org/pdf/1704.04861.pdf

Depthwise Separable Convolutions
in Keras

Create the model

model
model
model
model
model

model
model
model
model
model

= Sequential()

.add(SeparableConv2D(32, kernel_size=(3, 3), activation='relu', input_s
.add(MaxPooling2D(pool_size=(2, 2)))

.add(Dropout(@.25))

.add(SeparableConvZ2D(64, kernel_size=(3, 3), activation="relu'))
.add(MaxPooling2D(pool_size=(2, 2)))

.add(Dropout(0.25))

.add(Flatten())

.add(Dense(256, activation="relu'))

.add(Dense(no_classes, activation='softmax'))

Residual Connections

3x3

(a)

3x3

(b)

ConvNet Architectures

p—

Pre-Trained Models in Keras

Pre-Trained on ImageNet

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Using Transfer Learning it is possible to
Use these models for non-ImageNet problems

ILSVRC Challenge

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

152 layers
& \

\ 16.4

{ 22 Iavers 19 Iayers]
' 6.7

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

Figure copyright Kaiming He, 2016. Reproduced with permission.

AlexNet (2012)

224
55 dense dense
= 13 13 13 e
n 5 27 3 13 3 13 3 13
384 384 256 1000
24 256 Max Max 4096 4096
9% Max pooling pooling
Stride pooieg
3 0f4

AlexNet replaced the tanh() activation function used in LeNet5, with the RelLLU function and
also the MSE loss function with the Cross Entropy loss.

AlexNet used a much bigger training set. Whereas LeNet5 was trained on the MNIST
dataset with 50,000 images and 10 categories, AlexNet used a subset of the ImageNet
dataset with a training set containing 1+ million images, from 1000 categories.

AlexNet used Dropout regularization (= 0.5) to combat overfitting (but only in the Fully
Connected Layers).

VGGNet (2014)

p—

‘ Deeper Networks
1152 layers | l

\ 16.4

\
\
I 22 Iavers 19 Iayers] I
3.57 l o I ‘ 8 layers] 8 layers shallow

ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.

VGGNet (2014)

224x224x3 224x224x64 | - Modular: Same block repeated multiple times
— Pyramid like structure: Number of Activation
maps increases, while their size decreases

112 x 128

28x28x512 ’IQX7X512
T % 1x1x4096 1x1x1000

—J

@ convolution+ReLLU
@ max pooling

7 fully connected+ReLU
ff] softmax

VGGNet
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

AlexNet

| Softmax |
CETE]

s

Cem] =

e |

=<1 [

| E |

L.] L

L. | 1

| K | |

|] L

I] |

L] L.

|] L

L | |

L. N

L] L

L | |1

I] L.

| K | L

|] |1

| 3%.3 COMV_ B 1 |

| 3x3cony B4 | |

| Input | |

VGG16

VGG19

Google InceptionNet
(2014)

p—

Google LeNet

= | Multiple Outputs
B an V4 Deeper networks, with computational
- efficiency
G venanglll - 22 layers
. - Efficient “Inception” module
D e - No FC layers
':_,r;ﬂ' - Only 5 million parameters!
€ SrEm e 12x less than Ale.xNet- |
] - ILSVRC'14 classification winner
B : 3 (6.7% top 5 error)
l___x.,] “Inception module™: design a
e good local network topology
3 (network within a network) and

then stack these modules on
top of each other

Google LeNet

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs

Naive Inception module together depth-wise

Q: What is the problem with this?
Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x96X5x5x256
Total: 854M ops

Very expensive compute

Google LeNet

Case Study: GooglLeNet

[Szegedy et al., 2014]
1x1 conv “bottleneck”

layers

Filter

3x3 max
pooling

Filter concatenation
concatenation

Naive Inception module

Previous Layer

Inception module with dimension reduction

Google LeNet

28x28x480

concatenaton

Fiker

28x28x128 . 28x28x192

1x1 cony,
1

Module input:
28x28x256

28x28x96 28x28x64

192 96 6
28x28x64 28x28x64 28x28x256
1x1 ::onv, 1x1 <l>onv. !

Inception module with dimension reduction

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128Xx1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1X1 conv, 64] 28x28x64Xx1Xx1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

Google LeNet

Case Study: GooglLeNet

=

[Szegedy et al., 2014] e
__——‘L7'*~:— — ! T J
_x;\z;‘{:‘,_i_ﬁ:’

Stack Inception modules

with dimension reduction

on top of each other Sl
Inception module {EER

t—-m-mgi

Google LeNet

Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

v

|

Stem Network:
Conv-Pool-
2x Conv-Pool

p—

Google LeNet

Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

i

Stacked Inception
Modules

p—

Google LeNet

Global Average

Case Study: GooglLeNet Pooling

[Szegedy et al., 2014]

Full GoogLeNet
architecture

Classifier output
(removed expensive FC layers!)

Google LeNet

Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

ResNet (2015)

p—

/ “Revolution of Depth”

1152 layers

R2 layers } | 19 Iayers

8 Iayers

' 6.7
3.57 l o I ‘ 8 Iayers shallow
ILSVRC'15 VRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet oogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.

Deep Models

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?
l layer I

lterations - kerations

Training emor
Test error

o6-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

ResNet

Fundamental New Idea: Residual Connections

D relu Very deep networks using residual

FX) + X connections
- 152-layer model for ImageNet
- X - ILSVRC’15 classification winner
() e identity (3.57% top 5 error)

- Swept all classification and
detection competitions in
ILSVRC'15 and COCO'15!

X
Residual block

ResNet

T relu
F(x) + x

F(x) relu ide)r:tity

X
Residual block

Input

Convolution

Batch Norm

Convolution

Batch Norm

Addition

Output

ResNet

T relu

F(x) + x

X

) identity

X
Residual block

3x3 conv, 128
filters, 12
spatially with

stride 2
O

Ix3 conv, 64
filters

| ¢——— Beginning

conv layer

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

- No FC layers at the end
(only FC 1000 to output
classes)

Global
average
pooling layer
after last
conv layer

Improved ResNets: Use 1x1 Layer

Case Study: ResNet

[He et al., 2015]
28x28x256
output

1x1 conv, 256 filters projects
back to 256 feature maps

For deeper networks (28x28x256)

(ResNet-50+), use “bottleneck”

layer to improve efficiency 3x3 conv operates over

(similar to GoogLeNet) only 64 featrfe maps
1x1 conv, 64 filters

to project to
28x28x64

28x28x256
input

Effect of Skip Connections on Loss
Surfaces

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

» The Loss Surface has become much more smooth and convex in shape, which makes it easier
to run the SGD algorithm on it.

» In contrast, the chaotic shape of the Loss Surface without residual connections makes it very
easy for the SGD algorithm to get caught in local minimums.

[Li, Xu et.al.] (https://arxiv.org/pdf/1712.09913.pdf)

https://arxiv.org/pdf/1712.09913.pdf

Effect of Skip Connections on Loss
Surfaces

TSR TR IR .

“(a) ResNet-20,7.37% (b) ResNet-56, 5.89%

| O T
s SN

and

-

-

I T e T s e 8 = T T) s e e Im e o .

(d) ResNet-20-NS, 8.18% (e) ResNet-56-NS, 13.31% (f) ResNet-110-NS, 16.44%
Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

» Networks with a smaller number of layers, such as the 20 layer ResNet on the LHS, exhibit fairly
well behaved Loss Surfaces, even in the absence of Residual Connections. Hence Residual
Connections are not essential for smaller networks.

» Networks with a larger number of layers on the other hand, start to exhibit chaotic non-convex
behavior in their Loss Surface in the absence of Residual Connections.

[Li, Xu et.al.] (https://arxiv.org/pdf/1712.09913.pdf)

https://arxiv.org/pdf/1712.09913.pdf

Effect of Skip Connections on Forward
Paths

Buiking block
Skip

Ji) J3
Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

» In a network with no Residual Connections, there exists only a single forward path and all data
flows along it. However in a network with n Residual Connections, there exist 2" forward paths.

This is illustrated for the case n=3. The 8 separate forward paths that exist in this network are
shown in Part (b) of this figure.

» As a result, the network decisions are effectively made by all of these 8 forward paths, that are
operating parallel. This is very much like what is done in the Ensemble method, in which multiple

models operate in parallel to improve model accuracy.

[Veit, Wilbur, Belongie] (https://arxiv.org/pdf/1605.06431.pdf)

https://arxiv.org/pdf/1605.06431.pdf

Effect of Skip Connections on Forward
Paths

t--{B2 -4
z & 5
2 -l '
4 ‘ ‘é z
2 ety 4o -3 1
g / 1i 5"' E |’ \
B I o i e T 9 0 B 7 W = - e LLY LX) =
/l \ §°-’-‘1l""g path lengt 'g“-"'-L’-—-S. ----------------
0.0 et e e e S ——— mo__k _— oo--/_ ___x--—---——--—---
° 0 20 0) % ° 10 20 30 “« 50 0 10 20 20 @ 50
path length path length path length
(@) (b) (©)

» They furthermore showed that gradient flow in the backwards direction is dominated by a few shorter paths. This
is illustrated in the figure which has results for a network with 54 Residual Connections. Part (a) of this figure
shows the distribution of the path lengths in this network, while Part (b) plots the gradient magnitudes.

» They further multiplied the gradient magnitudes with the number of pathlengths for a particular path, and and
obtained the graph in Part (c). As can be seen the majority of the gradients are contributed by path lengths of 5
to 17, while the higher path lengths contribute no gradient at all.

» From this they concluded that in very deep networks with hundreds of layers, Residual Connections avoid the

vanishing gradient problem by introducing short paths which can carry the gradient throughout the extent of
these networks.

[Veit, Wilbur, Belongie] (https://arxiv.org/pdf/1605.06431.pdf)

https://arxiv.org/pdf/1605.06431.pdf

Implementing Residual

Connections

from tensorflow import keras This is Ehe layer aroupd “.'h!ch T CTa
B Lt e D e symeosa a residual connection: it increases the
number of output filers from 32 to 64.
Set inputs = keras.Input (shape=(32, 32, 3)) e T padding="same"
lide the A 5 Ae=wh Tkt . to avoid downsampling
esidual. X = layers.Conv2D(32, 3, activation="relu") (inputs) due to padding.
residual = x
X = layers.Conv2D(64, 3, activation="relu", padding="same") (x) B
residual = layers.Conv2D(64, 1) (residual) The residual only had 32
X = layers.add([x, residuall) filters, soweusea 1 X 1
Now the block output and the Conv2D to project it to the
residual have the same shape correct shape.
and can be added.
8 Set inputs = keras.Input (shape=(32, 32, 3))
asu!e the X = layers.Conv2D(32, 3, activation="relu") (inputs)
residual. L TR
X = layers.Conv2D(64, 3, activation="relu", padding="same") (x) |
X = layers.MaxPooling2D(2, padding="same") (x)
—> residual = layers.Conv2D(64, 1, strides=2) (residual)
X = layers.add([x, residuall)
This is the block of two layers around which
Now the block output and the residual we create a residual connection: it includes a
have the same shape and can be added. 2 x 2 max pooling layer. Note that we use
) y _ padding="same" in both the convolution
We use strides=2 in the residual layer and the max pooling layer to avoid
projection to match the downsampling downsampling due to padding.
created by the max pooling layer.

Chollet Page 253

Implementing Modular

Architectures

inputs = keras.Input (shape=(180, 180, 3))
g x = data_augmentation (inputs)
Don't
ﬁﬁgs: X = layers.Rescaling(1./255) (x)
1H£g‘ x = layers.Conv2D(filters=32, kernel size=5, use_bias=False) (x)
—> for size in [32, 64, 128, 256, 512]:
residual = x
X = layers.BatchNormalization() (x)
X = layers.Activation("relu") (x)
X = layers
X = layers.BatchNormalization() (x)
X = layers.Activation("relu") (x)
X = layers.SeparableConv2D(size,
X = layers.MaxPooling2D(3,
residual = layers.Conv2D(
size,
X = layers.add([x, residuall)
X = layers.GlobalAveragePooling2D() (x)
X = layers.Dropout (0.5) (x)
outputs = layers.Dense(l, activation="sigmoid") (x)
model = keras.Model (inputs=inputs,
Like in the original model, we add a
dropout layer for regularization.
We apply a series of convolutional blocks with
increasing feature depth. Each block consists of two
batch-normalized depthwise separable convolution
layers and a max pooling layer, with a residual
connection around the entire block.

.Separableconv2D(size, 3, padding="same", use_bias=False) (x)

strides=2, padding="same") (x)

1, strides=2, padding="same", use_bias=False) (residual)

We use the same
data augmentation
configuration as before.

B

3, padding="same", use_bias=False) (x)

In the original model, we used a Flatten
layer before the Dense layer. Here, we go
with a GlobalAveragePooling2D layer.

.

outputs=outputs)
Note that the assumption that underlies
separable convolution, “feature channels are
largely independent,” does not hold for RGB
images! Red, green, and blue color channels
are actually highly correlated in natural
images. As such, the first layer in our model
is a regular Conv2D layer. We’'ll start using

SeparableConv2D afterwards.

Chollet: Page 260

Beyond ResNets

p—

Improving ResNets: ResNext

[Xie et al. 2016] 256-d out

- Also from creators of
ReSNet 256-d out
- Increases width of |
residual block through T
multiple parallel
pathways | T
(“cardinality”)
- Parallel pathways
similar in spirit to 256-din
Inception module 256-d in

Grouped Convolutions

Improving ResNets: DenseNet

Densely Connected Convolutional Networks

Softmax

[Huang et al. 2017] t FC

Pool

- Dense blocks where each layer is

Dense Block 3

connected to every other layer in

| Pool

feedforward fashion
- Alleviates vanishing gradient,

| DenseBlock 2

strengthens feature propagation,

encourages feature reuse

| Pool

| Dense Block 1

Instead of addition, uses concatenation of

| Input

activation maps to combine layers

Dense Block

Input

Prediction
g Dense Block 1 g § Dense Block 2 g Dense Block 3
2 g g

Improving ResNets - XceptionNet

Entry flow

Middle flow

Exit flow

299x299x3 images

|
Conv 32, 3x3, stride=2x2
Rell

|
Conv 64, 3x3

Rell

]
|SeparableConv 128, 3x3 |
|

Conv

ix1

stride=2x2

Rell
SeparableConv 128, 3x3

|
|MaxPooling 3x3, stride=2x2 |

+

RelU

SeparableConv 256, 3x3
1

Conv

Ix1

stride=2x2

ReLU
SeparableConv 256, 3x3

I
| MaxPooling 3x3, stride=2x2 |

Conv

ix1

stride=2x2

+

ReLU
SeparableConv 728, 3x3
1

RelLU
SeparableConv 728, 3x3

1
[HaxPooling 3Ix3, stride-ZxZ]

+

19x19x728 feature maps

19x19x728 feature maps
|

|
ReLU

SeparableConv 728, 3x3

|

19x19x728 feature maps

ReLU

SeparableConv 728, 3x3

RelLU
SeparableConv 728, 3x3
I
Conv 1x1 ReLU
stride=2x2| ISeparableConv 1024, 3x3

RelLU

SeparableConv 728, 3x3

g

19x19x728 feature maps

Repeated 8 times

I
| MaxPooling 3x3, stride=2x2 |

+

SeparableConv 1536, 3x3
RelLU

1
SeparableConv 2048, 3x3
RelU

1
| GLobalAveragePooling |

2048-dimensional vectors

Optional fully-connected
Layer(s)

Logistic regression

Improving ResNets — MobileNet

* No pooling, downsampling done
using strided convolutions

* 95% of the computations done in
1x1 convolutions, which can be
implemented very efficiently

Table 3. Resource usage for modifications to standard convolution.
Note that each row is a cumulative effect adding on top of the
previous row. This example is for an internal MobileNet layer
with DK =3, M =512, N =512, DF = 14.

Layer/Modification Million Million
Mult-Adds Parameters
Convolution 462 2.36
Depthwise Separable Cony 523 0.27
a=0.75 29.6 0.15
p=0.714 15.1 0.15

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
Conv MobileNet 71.7% 4866 293
MobileNet 70.6% 569 42

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv / s2 3 x3x3x32 224 x 224 x 3
Conv dw / sl 3 x3x32dw 112 x 112 x 32
Conv /sl 1 x1x32x64 112 x 112 x 32
Conv dw / s2 3 x3 x64dw 112 x 112 x 64
Conv / sl 1 x1x64x128 o6 x 56 x 64

nvdw/s I X3 X W oh x5
Conv /sl 1 x1x128 x 128 06 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1 x1x 128 x 256 28><28x128
Conv /sl 1x1x2obx206 28><28x256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1x1x206><o12

14x14x2ob

¥ T X%
1 X 1 x 1024 x 1024 | Tx T x 1024
Avg Poo [Pool Tx T | TXTx1024
FC /sl 1024 x 1000 1 x1x 1024
Softmax / sl Classifier 1 x1 x 1000

Improving ResNets: Networks with
Stochastic Depth

[Huang et al. 2016]

_—

- Motivation: reduce vanishing gradients and
training time through short networks during
training

- Randomly drop a subset of layers during each
training pass

- Bypass with identity function

- Use full deep network at test time

This is a type of Regularization!

One Dimensional
Convolutions

p—

Why Use 1D Convolutions?

A way in which Convolutional Networks can be
used for:

- Natural Language Processing
- Tabular Data (CSV or Excel)

Input Activation Output Activation
Map Map

Filter

Convolutlon < >
Depth C=# Actlvatlon Maps With D Filters Depth D=# Activation Maps
Input Activation
Map 1 Output Activation
Filter Map 1

Map 2 3 4

/

Map2 3 4

-

) , Convolution « >
Depth C=4, # Activation Maps With D Filters Depth D=4, # Activation Maps

1D Convolution
With 2x1 Filter
With Depth 4

Why are 1D Convolutions Useful?

» 1-D Convolutions can be used to process 1D
input data. Examples:

> NLP

- Tabular Data: Good alternative to using Dense Feed
Forward Networks

Input Activation

Map 1 Output Activation

|+ Map2 3 4

e

« Convolution «

C= 1 # Input Activation Maps With D Filters

D=4 # Output Activation Maps

Processing IMDB Reviews with 1D ConvNets

Review Embedding
- Layer
Embeddings
word 1 (]).1 tz).z 315 ‘1
3 08 92 -
(3’7’2]’.-.’5) g E % 1D Conv # 1D|)(:/|OEIIX =>]DCOHV# . =>.
(5,1) @0
Max
A Single Review hax Conv .
500 4 >
(500 word vector) 32 32 ‘ 32
« | 2 Global
Embedded 32 Max Pool
Representation
(2D Tensor)

_ N1—F+2P
B S

+1

N2

1D Convolutions in Keras

from keras.models import Sequential
from keras import layers
from tensorflow.keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Embedding(max features, 128, input length=max len))
model.add(layers.ConvlD(32, 7, activation='relu'))
model.add(layers.MaxPoolinglD(5))

model.add(layers.ConvlD(32, 7, activation='relu'))
model.add(layers.GlobalMaxPoolinglD())

model.add(layers.Dense(1l))

model . summary ()

model.compile(optimizer=RMSprop(learning rate=le-4),
loss="'binary crossentropy'’,
metrics=['acc'])
history = model.fit(x train, y train,
epochs=10,
batch size=128,
validation split=0.2)

Further Reading

» Das and Varma: Chapter ConvNetsPart?2
» Chollet Chapter 9, Section 9.3

