
Lecture 11
Subir Varma

150

150

512

1(3,3)x3

(3,3)x32 (3,3)x64 (3,3)x128

Flatten

32

148

148

74

74
32

64

72

72

36

36
64 128

34

34

17

17
128

128

15

15

7

7
128

6272
Layer 1 Layer 2 Layer 3 Layer 4

Dense FF LayersLook for simple
shapes in image

Look for more complex
shapes by putting together

simple shapes

The number of Activation Maps in each Layer
is a Hyper Parameter

(32,64,128,128)

A Node in a Dense Feed Forward Network !" An Activation Map in a ConvNet

Input Image Activation Map

Detects Edges

Chollet P. 266

96 Local Filters, looking for simple shapes

150

150

512

1(3,3)x3

(3,3)x32 (3,3)x64 (3,3)x128

Flatten

32

148

148

74

74
32

64

72

72

36

36
64 128

34

34

17

17
128

128

15

15

7

7
128

6272

Layer 1

Layer 2
Layer 3
Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Dense FF Layers

For each Conv Layer, specify:
1. Number of Activation Maps
2. Size of Filter used to

generate Activation Map
3. Activation Function

For Max Pooling Layer
only need to specify
Filter Size

(3,3)x32
(3,3)x64

(3,3)x128

How to compute these
numbers?

How did we get this
number?

(a) 7x7 Input, 3x3 Filter, S = 1: Results in 5x5 Output

3

(b) 7x7 Input, 3x3 Filter, S = 2: Results in 3x3 Output

Final Formula:

𝑁2 =
𝑁1 − 𝐹 + 2𝑃

𝑆 + 1

Zero padding of size P increases
The dimensions of the Activation Map
By 2P

P = *+,
-

conv = tf.keras.layers.Conv2D(6, (3,3), strides=2, padding='same')

𝑁2 =
𝑁1 − 𝐹 + 2𝑃

𝑆
+ 1

Assume S = 1
N2 = N1 – F +2P +1
If N1 = N2, then

Layer 1
6 * (5*5*3 +1) = 456 N2 = (32 – 5) + 1 = 28
3072 * 6 = 18,432 (for Dense Feed Forward case)

Computations: 5*5*3 * 28*28 * 6 = 352,800
6 * 3072 = 18,500 (For Dense Feed Forwards case)

Layer 2
10 * (5*5*6 + 1) = 1510 N3 = (28 – 5) + 1 = 24

} Number of computations needed to generate
all the activations in ConvNet layer (r+1)

} Number of computations needed to generate all
the activations in ConvNet layer (r+1)

} Number of computations needed to generate all
the activations in Dense Feed Forward layer (r+1)
= DrDr+1

} ConvNet computations greater by a factor of
FrFrWr+1Hr+1!!

Without Global Max Pooling

With Global Max Pooling

Example from F. Chollet:
“8.3-using-a-pretrained-convnet”

Modern CNNs have tens of millions of
parameters

They correspondingly need very large Training
Datasets

Example: ImageNet has 1 Million images

Training can be very expensive and time consuming

Small Dataset and Large Model " Overfitting

Solution: Transfer Learning

Reduces the number of Parameters
(and training time)

What if we use Small Dataset instead?

x1

x2

xN

z1

z2

zP

a1

a2

aK

Network with
Pre-Trained

Weights

Original
Representation

New
Representation
zi = fi(x1, x2, …,xn)

Logits

Only these weights are trainedAll these weights are frozen

Why does Transfer Learning work so well?
} A CNN trained on a large dataset such as ImageNet, learns to

recognize generic patterns and shapes that also occur in non-
ImageNet data.
◦ Even non-image data, such as audio wave signals, can be classified well

with the patterns that are learnt with ImageNet.

} A general rule of thumb is that the earlier Hidden Layers in the CNN
contain the more generic portion that can be re-used in other
contexts, and the model becomes more and more specific to the
particular dataset, as we go deeper into the network.

Feature Extraction: Only the Dense part is Trained.
Two Methods
1. Method 1: Fast Feature Extraction Without Data

Augmentation (Chollet Ch. 8, p 289)
2. Method 2: Feature Extraction Together with Data

Augmentation (Chollet Ch. 8, p. 231)

Fine Tuning: Several Convolutional Layers at the top
of the network are trained

Only the Extracted Features are
used for Training

Entire Network is used during Training
with the Base Model Frozen

Read in the Base Model

Create a ‘New’ Dataset by passing existing Data through the Base Model

} Chapter 12 (Sections 12.2 to 12.7) of “Deep
Learning” by Das and Varma

} Chollet Chapter, Section 8.2, 8.3

