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Dense FF LayersLook for simple
shapes in image

Look for more complex
shapes by putting together

simple shapes

The number of Activation Maps in each Layer
is a Hyper Parameter

(32,64,128,128)

A Node in a Dense Feed Forward Network !" An Activation Map in a ConvNet



Input Image Activation Map

Detects Edges

Chollet P. 266



96 Local Filters, looking for simple shapes
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Dense FF Layers

For each Conv Layer, specify:
1. Number of Activation Maps
2. Size of Filter used to 

generate Activation Map
3. Activation Function

For Max Pooling Layer
only need to specify
Filter Size

(3,3)x32
(3,3)x64

(3,3)x128



How to compute these
numbers?





How did we get this
number?



(a) 7x7 Input, 3x3 Filter, S = 1: Results in 5x5 Output

3



(b) 7x7 Input, 3x3 Filter, S = 2: Results in 3x3 Output









Final Formula:

𝑁2 =
𝑁1 − 𝐹 + 2𝑃

𝑆 + 1

Zero padding of size P increases
The dimensions of the Activation Map
By 2P





P = *+,
-

conv = tf.keras.layers.Conv2D(6, (3,3), strides=2, padding='same')

𝑁2 =
𝑁1 − 𝐹 + 2𝑃

𝑆
+ 1

Assume S = 1
N2 = N1 – F +2P +1
If N1 = N2, then



Layer 1
6 * (5*5*3 +1) = 456                  N2 = (32 – 5) + 1 = 28
3072 * 6 = 18,432 (for Dense Feed Forward case)

Computations: 5*5*3  * 28*28 * 6 = 352,800
6 * 3072 = 18,500 (For Dense Feed Forwards case)

Layer 2
10 * (5*5*6 + 1) = 1510             N3 = (28 – 5)  + 1 = 24











} Number of computations needed to generate 
all the activations in ConvNet layer (r+1)



} Number of computations needed to generate all 
the activations in ConvNet layer (r+1)

} Number of computations needed to generate all 
the activations in Dense Feed Forward layer (r+1) 
= DrDr+1

} ConvNet computations greater by a factor of
FrFrWr+1Hr+1!!







Without Global Max Pooling



With Global Max Pooling



Example from F. Chollet: 
“8.3-using-a-pretrained-convnet”



Modern CNNs have tens of millions of 
parameters

They correspondingly need very large Training 
Datasets

Example: ImageNet has 1 Million images

Training can be very expensive and time consuming



Small Dataset and Large Model  " Overfitting

Solution: Transfer Learning 

Reduces the number of Parameters 
(and training time)

What if we use Small Dataset instead?
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Why does Transfer Learning work so well? 
} A CNN trained on a large dataset such as ImageNet, learns to 

recognize generic patterns and shapes that also occur in non-
ImageNet data. 
◦ Even non-image data, such as audio wave signals, can be classified well 

with the patterns that are learnt with ImageNet. 

} A general rule of thumb is that the earlier Hidden Layers in the CNN 
contain the more generic portion that can be re-used in other 
contexts, and the model becomes more and more specific to the 
particular dataset, as we go deeper into the network.



Feature Extraction: Only the Dense part is Trained.
Two Methods
1. Method 1: Fast Feature Extraction Without Data 

Augmentation (Chollet Ch. 8, p 289)
2. Method 2: Feature Extraction Together with Data

Augmentation (Chollet Ch. 8, p. 231)

Fine Tuning: Several Convolutional Layers at the top 
of the network are trained



Only the Extracted Features are
used for Training



Entire Network is used during Training
with the Base Model Frozen



Read in the Base Model

Create a ‘New’ Dataset by passing existing Data through the Base Model









} Chapter 12 (Sections 12.2 to 12.7) of “Deep 
Learning” by Das and Varma

} Chollet Chapter, Section 8.2, 8.3


