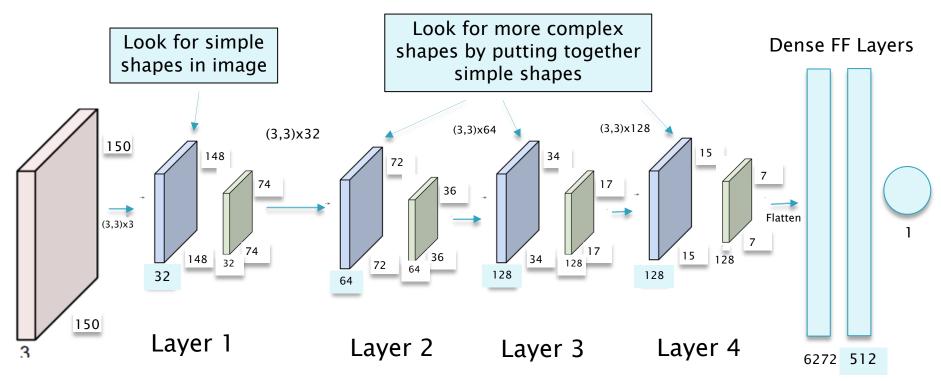
Convolutional Neural Networks: Part 2 Lecture 11

Subir Varma

CNN Architecture



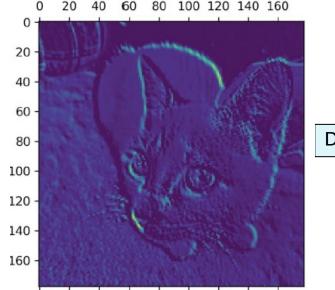
The number of Activation Maps in each Layer is a Hyper Parameter (32,64,128,128)

A Node in a Dense Feed Forward Network $\leftarrow \rightarrow$ An Activation Map in a ConvNet

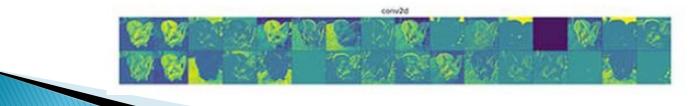
Visualizing an Activation Map

Input Image

Activation Map

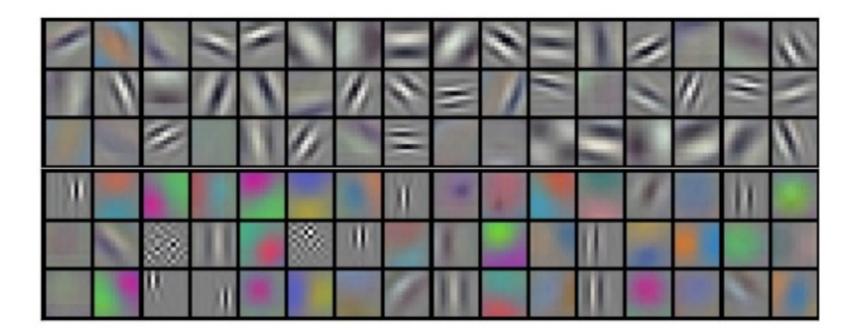


Detects Edges



Chollet P. 266

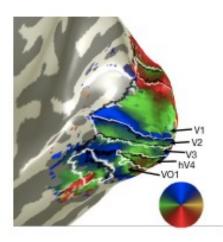
Visualizing the Local Filters – First Layer

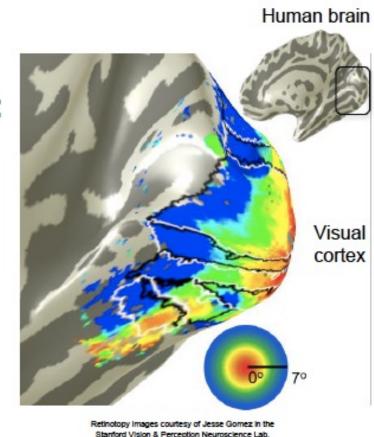


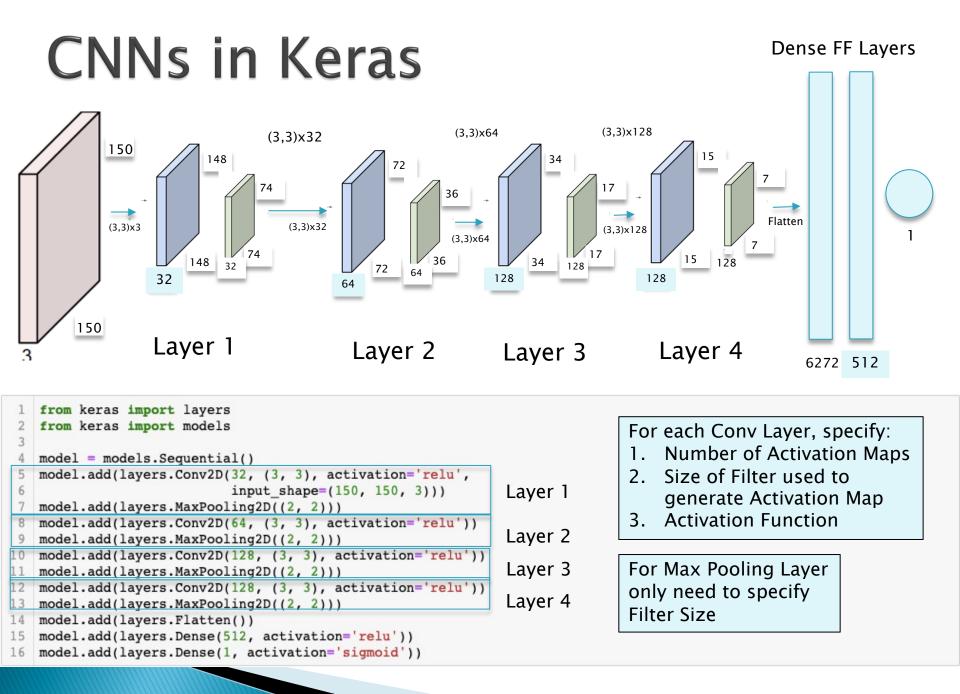
96 Local Filters, looking for simple shapes

Visual Processing in the Brain

Topographical mapping in the cortex: nearby cells in cortex represent nearby regions in the visual field







CNNs in Keras

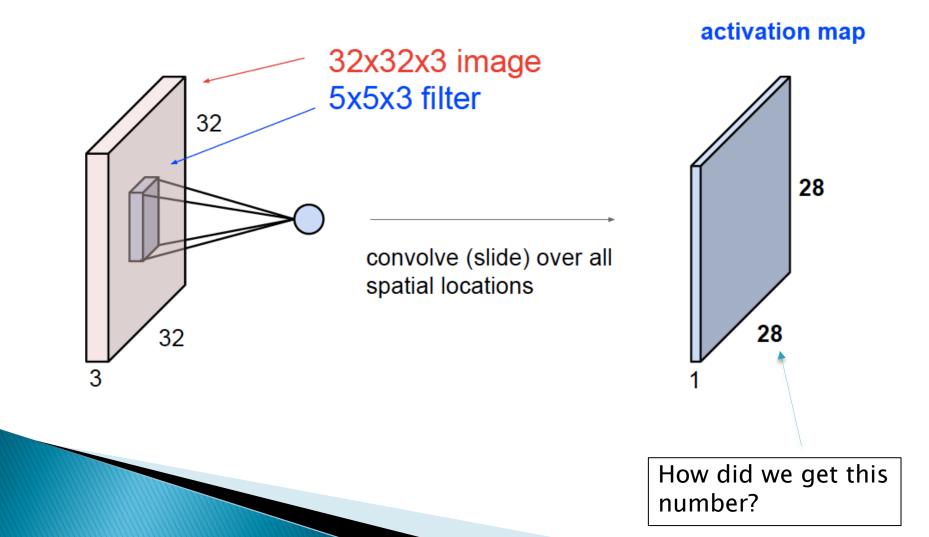
1 model.summary()

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	148, 148, 32)	896
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	74, 74, 32)	0
conv2d_2 (Conv2D)	(None,	72, 72, 64)	18496
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	36, 36, 64)	0
conv2d_3 (Conv2D)	(None,	34, 34, 128)	73856
<pre>max_pooling2d_3 (MaxPooling2</pre>	(None,	17, 17, 128)	0
conv2d_4 (Conv2D)	(None,	15, 15, 128)	147584
<pre>max_pooling2d_4 (MaxPooling2</pre>	(None,	7, 7, 128)	0
flatten_1 (Flatten)	(None,	6272)	0
dense_1 (Dense)	(None,	512)	3211776
dense_2 (Dense)	(None,	1)	513
Total params: 3,453,121 Trainable params: 3,453,121 Non-trainable params: 0			

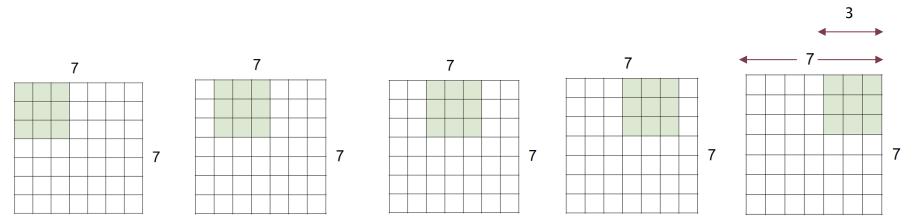
How to compute these numbers?

Sizing CNNs

Size of Convolutional Layer



Example: Stride = 1



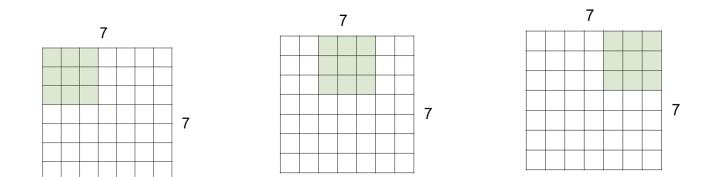
(a) 7x7 Input, 3x3 Filter, S = 1: Results in 5x5 Output

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

$$5 = (7 - 3) + 1$$
$$N' = (N - F) + 1$$

Stride = 2

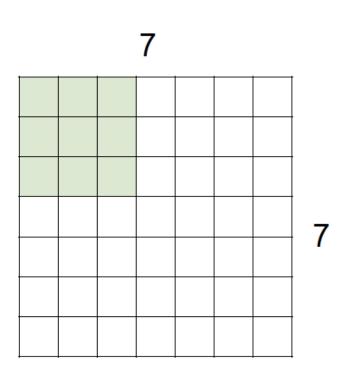


(b) 7x7 Input, 3x3 Filter, S = 2: Results in 3x3 Output

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

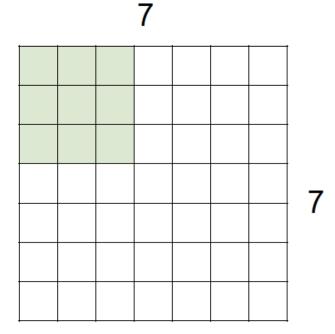
3 = (7-3)/2 + 1 $N' = \frac{(N-F)}{S} + 1$

Stride=3



7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

Stride=3

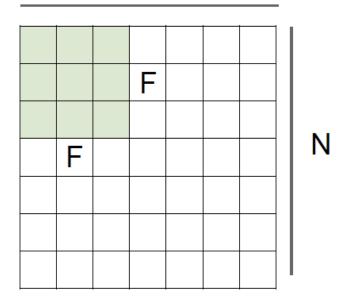


7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Size of Next Activation Map

Ν



Output size: (N - F) / stride + 1

e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5 stride 2 => (7 - 3)/2 + 1 = 3 stride 3 => (7 - 3)/3 + 1 = 2.33 :\

With Zero Padding

Zero padding of size P increases The dimensions of the Activation Map By 2P

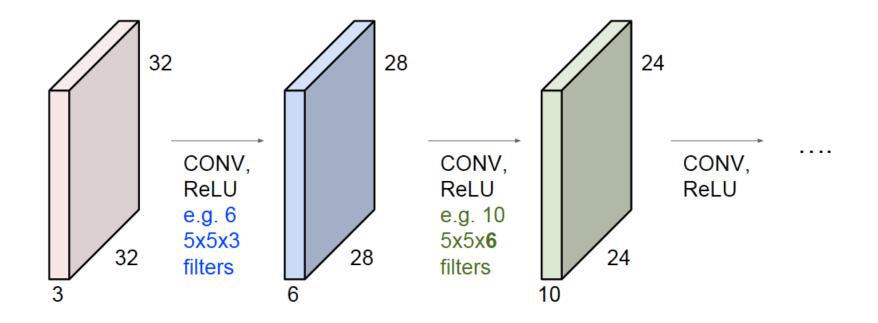
Final Formula:

$$N2 = \frac{N1 - F + 2P}{S} + 1$$

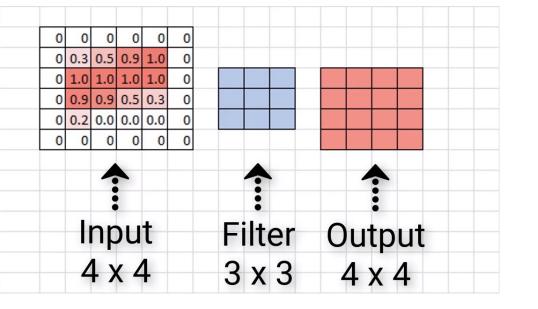
Repeated Convolutions → Shrinking Volumes

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.



Constant Volume Networks



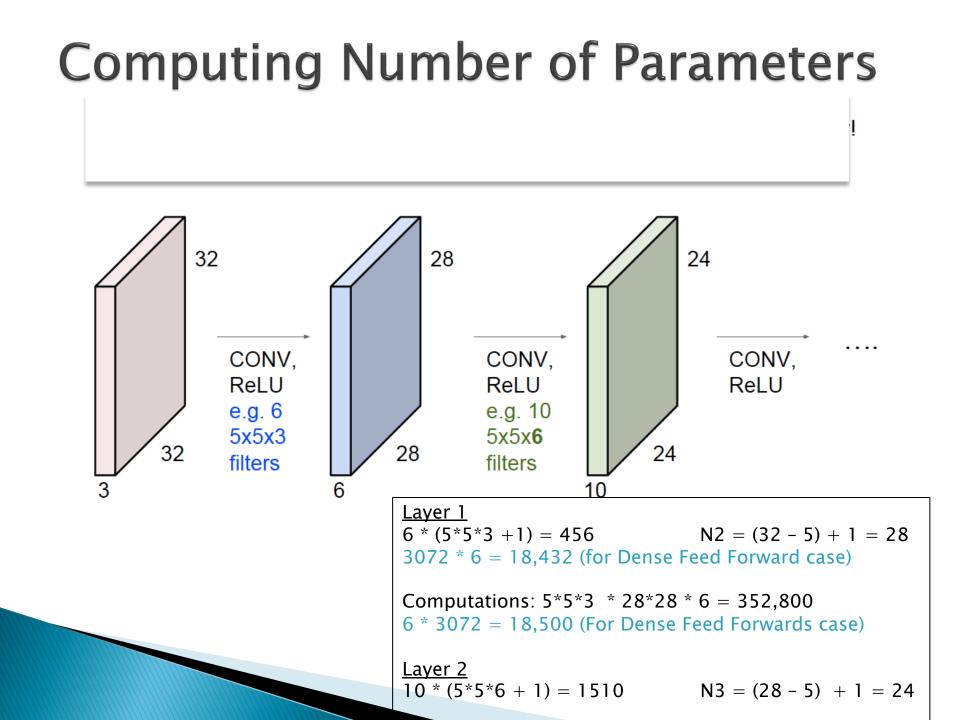
$$N2 = \frac{N1 - F + 2P}{S} + 1$$

Assume S = 1
N2 = N1 - F + 2P + 1
If N1 = N2, then

$$\mathsf{P} = \frac{F-1}{2}$$

e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3

conv = tf.keras.layers.Conv2D(6, (3,3), strides=2, padding='same')



Summary of Volume Computation

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size W₂ × H₂ × D₂ where:

$$\circ W_2 = (W_1 - F + 2P)/S + 1$$

- $\circ~H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
- $\circ D_2 = K$

 With parameter sharing, it introduces F · F · D₁ weights per filter, for a total of (F · F · D₁) · K weights and K biases.

Summary of Volume Computation

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

Common settings:

Produces a volume of size W₂ × H₂ × D₂ where:

$$\sim W_2 = (W_1 - F + 2P)/S + 1$$

- $\circ~H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
- $\circ D_2 = K$
- With parameter sharing, it introduces F · F · D₁ weights per filter, for a total of (F · F · D₁) · K weights and K biases.

Max Pooling

Single depth slice



У

Х

max pool with 2x2 filters and stride 2

6	8
3	4

Size of Pooling Layer

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size W₂ × H₂ × D₂ where:

•
$$W_2 = (W_1 - F)/S + 1$$

• $H_2 = (H_1 - F)/S + 1$

$$\circ D_2 = D_1$$

Introduces zero parameters since it computes a fixed function of the input

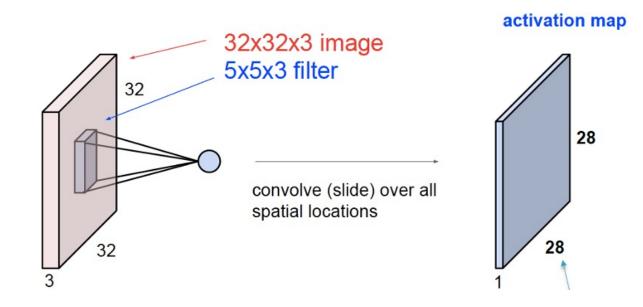
Common settings:

F = 2, S = 2 F = 3, S = 2

Number of Computations

 Number of computations needed to generate all the activations in ConvNet layer (r+1)

 $Mult = F_r F_r D_r \times W_{r+1} H_{r+1} \times D_{r+1}$



Number of Computations

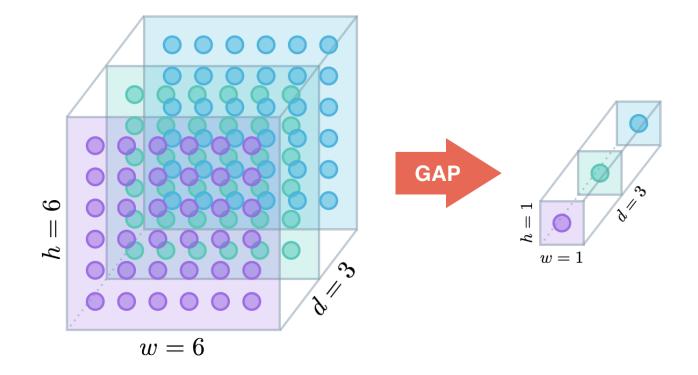
Number of computations needed to generate all the activations in ConvNet layer (r+1)

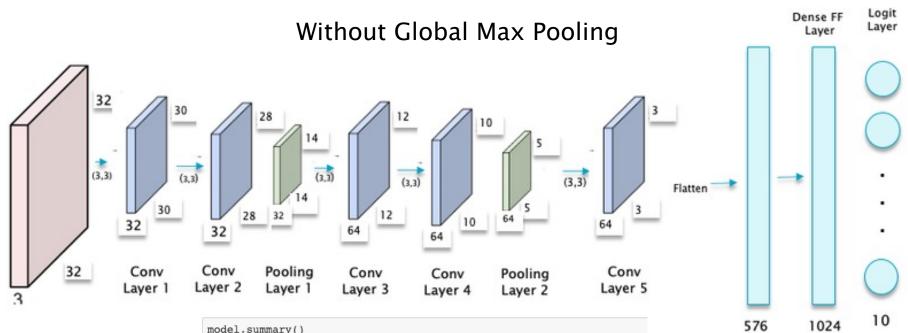
 $Mult = F_r F_r D_r \times W_{r+1} H_{r+1} \times D_{r+1}$

- Number of computations needed to generate all the activations in Dense Feed Forward layer (r+1) $= D_r D_{r+1}$
- ConvNet computations greater by a factor of F_rF_rW_{r+1}H_{r+1}!!

Global Max Pooling

Global Max Pooling



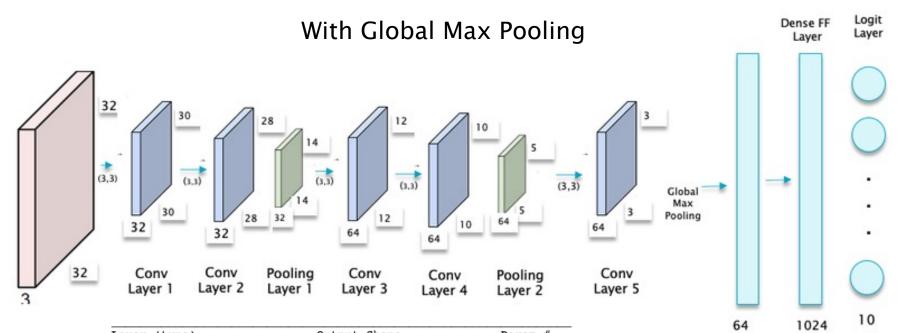


model.summary()

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	30, 30, 32)	896
conv2d_2 (Conv2D)	(None,	28, 28, 32)	9248
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	14, 14, 32)	0
conv2d_3 (Conv2D)	(None,	12, 12, 64)	18496
conv2d_4 (Conv2D)	(None,	10, 10, 64)	36928
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	5, 5, 64)	0
conv2d_5 (Conv2D)	(None,	3, 3, 64)	36928
flatten_1 (Flatten)	(None,	576)	0
dense_1 (Dense)	(None,	1024)	590848
dense_2 (Dense)	(None,	10)	10250
Total params: 703,594 Trainable params: 703,594			

Non-trainable params: 0



Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 30, 30, 32)	896
conv2d_2 (Conv2D)	(None, 28, 28, 32)	9248
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None, 14, 14, 32)	0
conv2d_3 (Conv2D)	(None, 12, 12, 64)	18496
conv2d_4 (Conv2D)	(None, 10, 10, 64)	36928
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None, 5, 5, 64)	0
conv2d_5 (Conv2D)	(None, 3, 3, 64)	36928
global_max_pooling2d_4 (Glob	(None, 64)	0
dense_7 (Dense)	(None, 1024)	66560
dense_8 (Dense)	(None, 10)	10250
Total params: 179,306 Trainable params: 179,306 Non-trainable params: 0		

Transfer Learning

Example from F. Chollet: "8.3-using-a-pretrained-convnet"

Transfer Learning: Motivation

Modern CNNs have tens of millions of parameters

They correspondingly need very large Training Datasets Example: ImageNet has 1 Million images

Training can be very expensive and time consuming

Transfer Learning: Motivation

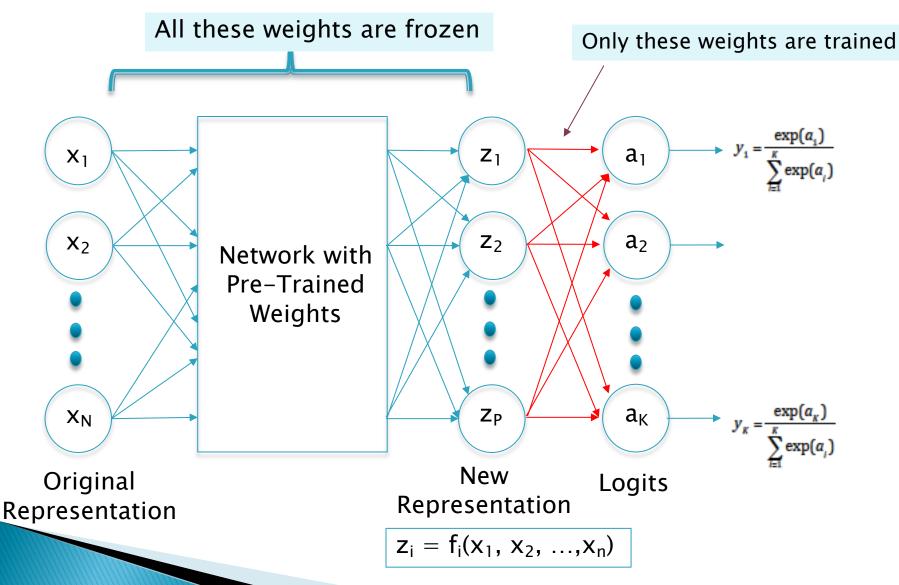
What if we use Small Dataset instead?

Small Dataset and Large Model \rightarrow Overfitting

Solution: Transfer Learning

Reduces the number of Parameters (and training time)

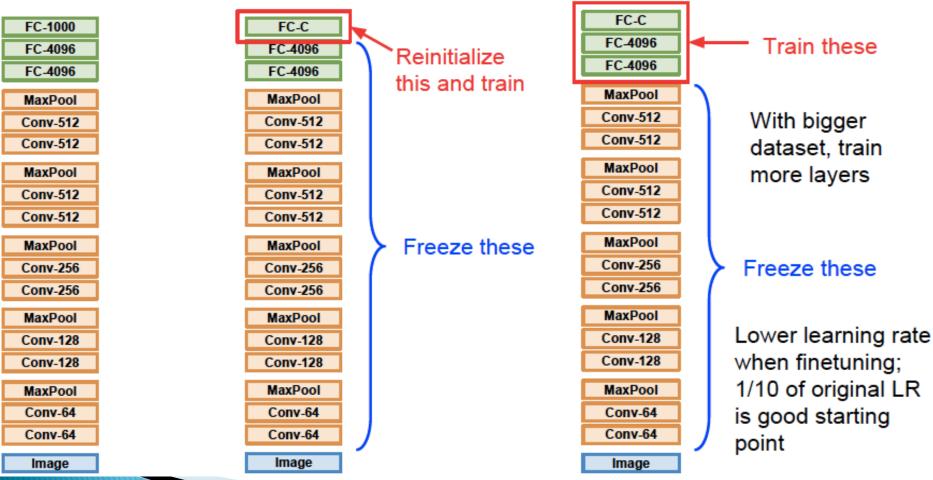
Transfer Learning



Transfer Learning Using ConvNets

3. Bigger dataset

1. Train on Imagenet 2. Small Dataset (C classes)



Why Transfer Learning Works?

Why does Transfer Learning work so well?

- A CNN trained on a large dataset such as ImageNet, learns to recognize generic patterns and shapes that also occur in non-ImageNet data.
 - Even non-image data, such as audio wave signals, can be classified well with the patterns that are learnt with ImageNet.
- A general rule of thumb is that the earlier Hidden Layers in the CNN contain the more generic portion that can be re-used in other contexts, and the model becomes more and more specific to the particular dataset, as we go deeper into the network.

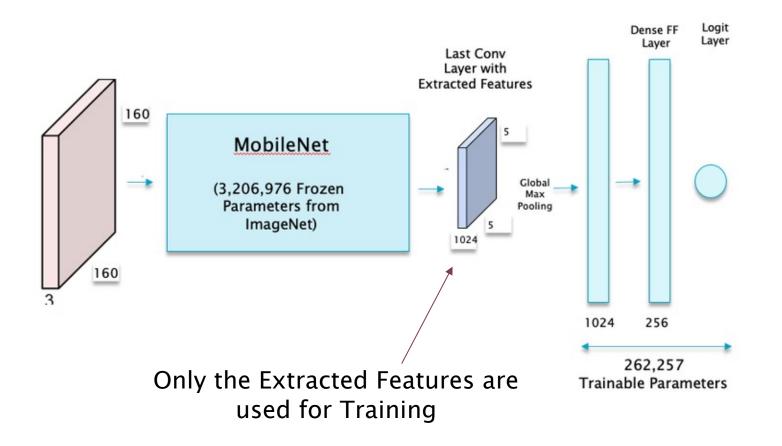
Transfer Learning in Keras

<u>Feature Extraction</u>: Only the Dense part is Trained. Two Methods

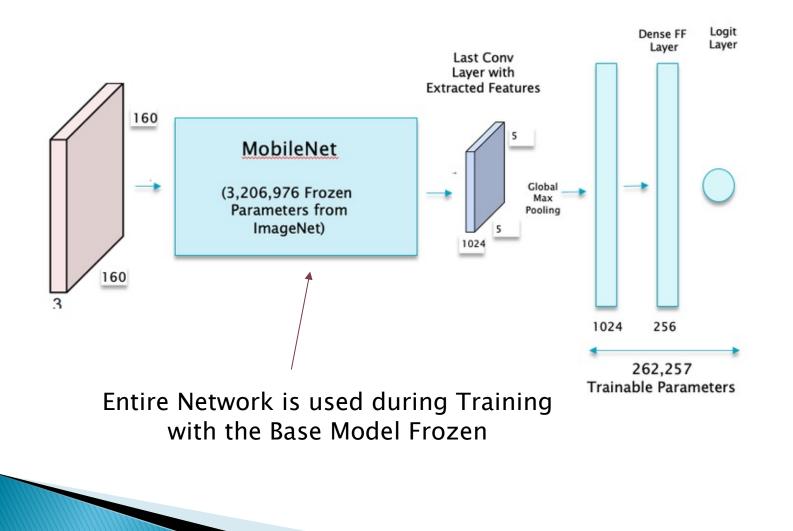
- 1. Method 1: Fast Feature Extraction Without Data Augmentation (Chollet Ch. 8, p 289)
- 2. Method 2: Feature Extraction Together with Data Augmentation (Chollet Ch. 8, p. 231)

<u>Fine Tuning</u>: Several Convolutional Layers at the top of the network are trained

Fast Feature Extraction: Method 1



Fast Feature Extraction: Method 2



Fast Feature Extraction : Method 1

Read in the Base Model

Create a 'New' Dataset by passing existing Data through the Base Model

```
train dataset = image dataset from directory(
    new base dir / "train",
   image size=(160, 160),
   batch size=20)
validation dataset = image dataset from directory(
   new base dir / "validation",
   image size=(160, 160),
   batch size=20)
def get features and labels(dataset):
   all features = []
    all labels = []
    for images, labels in dataset:
        preprocessed images = tensorflow.keras.applications.mobilenet.preprocess input(images)
        features = conv base.predict(preprocessed images)
        all features.append(features)
        all labels.append(labels)
    return np.concatenate(all features), np.concatenate(all labels)
train features, train labels = get features and labels(train dataset)
val features, val labels = get features and labels(validation dataset)
```

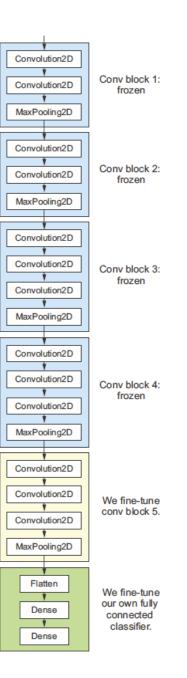
Fast Feature Extraction : Method 1

Fast Feature Extraction : Method 2

```
conv base = keras.applications.vgg16.VGG16(
    weights="imagenet",
    include top=False)
conv base.trainable = False
data_augmentation = keras.Sequential(
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(0.1),
        layers.RandomZoom(0.2),
                                                Apply data
inputs = keras.Input(shape=(180, 180, 3))
                                                augmentation.
x = data augmentation(inputs)
x = keras.applications.vgg16.preprocess_input(x)
                                                          Apply input
x = conv base(x)
                                                          value scaling
x = layers.Flatten()(x)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(loss="binary_crossentropy",
              optimizer="rmsprop",
              metrics=["accuracy"])
```

Transfer Learning with Fine Tuning

conv_base.trainable = True
for layer in conv_base.layers[:-4]:
 layer.trainable = False



Further Reading

- Chapter 12 (Sections 12.2 to 12.7) of "Deep Learning" by Das and Varma
- Chollet Chapter, Section 8.2, 8.3